CMX online software status

Duc Bao Ta MSU

L1 Calo Workshop 19th May 2014

Overview

- CMX timing software
 - Timing procedure
- CMX online software
 - CMX package
 - Bit manipulation class, data formats class
 - JEM jet simulation

CMX timing software

- CMX timing procedure
 - Finding the center of the delay setting window for each data line and channel using patterns or pseudo-random data
 - Delay scan over 31 taps for data lines
 - Can use the same delay setting for all data lines
 - Delay scan over 30 taps for clock lines
 - Check data error flag for each data line
 - Store "best" delay setting for each data line in database
 - Long term tests on delay settings or verification of delay setting(s) from database
 - Supply additional tests for backplane tests
 - Record parity errors at the same time with the data error flags

CMX timing software

• Manual setup still needed

- Firmware configurations
 - CMX firmware needs to be manually configured via JTAG
 - JEM can be configured via command line, but need two versions for pattern and random
 - CPM configured via dbHDMC GUI
 - Maybe will be alleviated by final (single) firmware versions
- Setup before scan for synchronization
 - Reset TTC module
 - Synchronization via BC reset manually via dbHDMC GUI in the TTC crate
 - Start address finding for JEMs, setting start addresses for pattern comparison
 - Start address procedure for CPM using "random" resets and analysis of the captured data
 - Verification of synchronous reception of the patterns

CMX timing software

- CMX timing procedure software
 - Implemented
 - Select pattern (single or all) or pseudo-random data from software
 - Upload of patterns into spy memories
 - Software scans the delays of data bit and source-synchronous clock
 - Histograming of data comparison errors and parity errors versus delay, storing counters
 - Manual merging of cycles, external code to analyse histograms
 - Running long-term tests with simple delay settings
 - Todo:
 - Finding of best setting and storing into database
 - Reading from database
 - Integration into the TDAQ software as a "calibration run"

- CMX online software package copy of CMM package
 - Copy of CMM simulation
 - Basic structure available: cmxServices, cmxSim, cmxTests
 - Reading test vectors
 - Creation of test vectors, but no sensible patterns defined, yet
- cmxServices = FPGA register map
 - Update with FW development
 - Functions available for CMX tests:
 - setting delays (on 24+1 times 16 data/clock lines)
 - reading/writing timing test patterns

• cmxSim

- Data formats implemented in classes
 - JEM (jet and energy sum), CP -> CMX
 - crate CMX -> system CMX
 - CMX -> ROS, CTP
 - Also partially support conversion into the other direction
 - Readability
 - Good for physics test vector generation
 - Data format coding from the other end

• cmxSim

• Data formats implemented in classes

116	// decode jemjet data	
117	Cmxbitcoder::JEMJETdata jemjetdata[16];	
118	for (int n=0; n<16; n++){	
119	<pre>int result = jemjetdata[n].readdatawords(m_input[n]);</pre>	
139	<pre>if (jetenergy > dbcmx->getJetThreshValue(thresn,jemjetdata[jem].geteta(j,jem))){</pre>	
140	if (thresn<10){ // check for the first 10 thresholds with window A	
141	jetcmxcmxdata.thresholdmultiplicity0[thresn]+=1;	
142	if (jetcmxcmxdata.thresholdmultiplicity0[thresn] > 7) {	
143	jetcmxcmxdata.overflow=1; Re-use for offline sin	nulation?
144	jetcmxcmxdata.thresholdmultiplicity0[thresn]=7;	
145	}	
146	} else { // check for the remaining 15 thresholds with window B	
147	jetcmxcmxdata.thresholdmultiplicity1[thresn-10]+=1;	
148	if (jetcmxcmxdata.thresholdmultiplicity1[thresn-10] > 3) {	
149	jetcmxcmxdata.overflow=1;	
150	jetcmxcmxdata.thresholdmultiplicity1[thresn-10]=3;	
151	}	
159	int datawords0[2], datawords1[2];	
160	jetcmxcmxdata.getdatawords(datawords0,datawords1);	
161	Cmxbitcoder::writetoIntPort(getOutputPort(0), datawords0 ,2);	
162	Cmxbitcoder::writetoIntPort(getOutputPort(1), datawords1 ,2);	
	8	

- Online software development, finished tasks
 - Thresholding of jets implemented
 - JEM system and crate merger implemented
 - CMX timing software
- Online software development, todo (in order of priority)
 - Update of CMM parts in the software
 - JET Daq merger
 - CMX test vector generation
 - CMX stand-alone test environment
 - Code is already available, need to adapt this
 - Update of CMM parts in the software
 - Energy sum merger, similar to CMM
 - CP thresholding and merging
 - CMX to Topo development

Same timeline as firmware development for M4

Summary

• CMX timing software

- Implementation for test ready and successfully used
- Need to complete connection to database
- Need to make it more automatized

• CMX online software

- Copy of CMM packages
- Data mostly formats available, except Topo
- Implemented functionality: thresholding of jets
- Need to complete simulation chain (at least for jets) standalone and for firmware testing
- Synchronize priorities with firmware development and deliveries for M runs