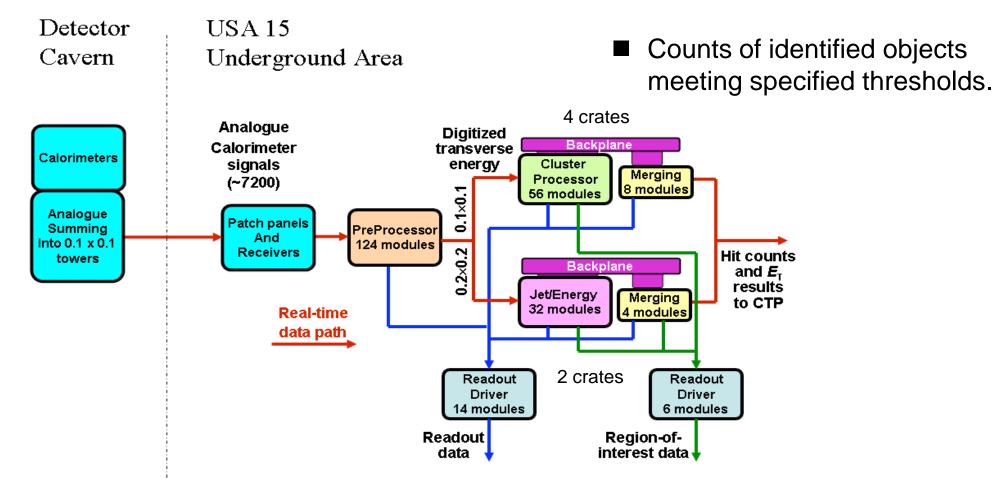
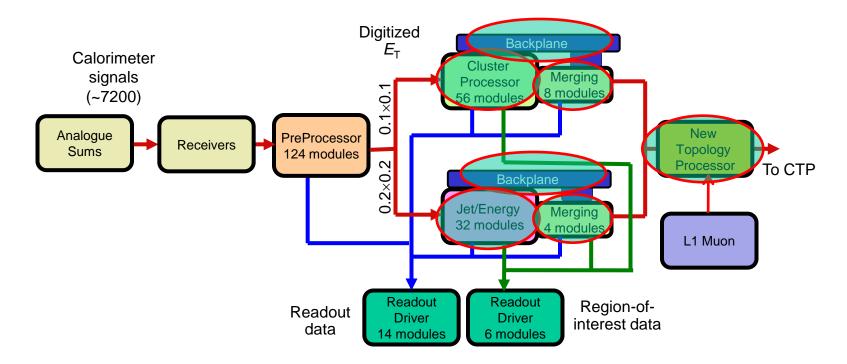
CMX (Common Merger eXtension module)


Y. Ermoline for CMX collaboration Preliminary Design Review, Stockholm , 29 June 2011

Outline

- Current L1 Calorimeter trigger system
 - Possible improvement to maintain trigger quality
- Topology information in real-time data path
 - Functional requirements
 - Project specification overview
 - Development schedule
- Technical aspects
 - CMM/CMX differences
 - FPGA & Links
- CMX modes of operation
- CMX firmware development
- MSU test stand


 Jets and em/tau clusters identified in different subsystems Region of Interest (ROI) topology information read-out only on L1Accept.

- Add topology information to the real-time data path
- Examples using local topology information (single calo quadrant)
 - Identify spatial overlap between e/tau clusters and jets
 - Use local jet Et sum to estimate energy of overlapping e/tau object
 - \Rightarrow Requires jet energies to be added to real time data path
- Examples using global topology
 - Non back-to-back jets
 - Rapidity gaps
 - Invariant or transverse mass calculations
 - Jet sphericity
- Required upgraded CMM and Topology Processor
- Simulation study
 - In progress (see talk on Monday)

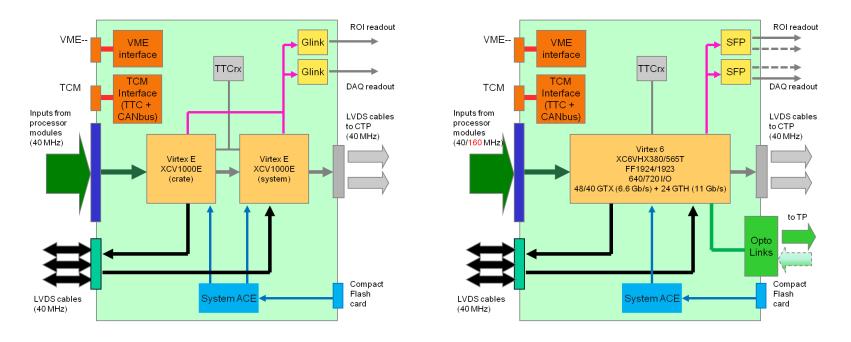
Topology information in real-time data path

- Add ROI positions to the real-time data path, enabling new algorithms based on event topology (in new Topological Processor)
- Modify firmware in processor modules to increase data transfer rate over crate backplane (40 Mbit/s -> 160 Mbit/s)
- Replace merging modules (CMM) with upgraded hardware (CMX)
- Add new Topological Processor (TP)

- Backward compatibility :
 - be designed to fit in the CMM positions in the processor crates ,
 - inherit all main logical components, electrical interfaces, programming model and data formats of the current CMM,
 - be able to implement all different versions of CMM FPGA logic, adapted to new hardware.
- Data source for topological processor:
 - receive extra data from upgraded processor modules over the crate backplane at higher data transfer rate (160Mb/s),
 - transmit data to the TP via multi-fiber optical ribbon link(s),
 - ⇒ optionally electro-optical data replication using available spare transmitters
 - transmit extra data from upgraded processor modules to the L1Calo DAQ and Rol Read-Out Drivers (RODs).
- "Insurance policy" option against unforeseen
 - Optional standalone mode may require (unnecessary) extra complexity
 - ⇒ have to be weighted against benefits

CMX project specification overview

- The version 0.7 of the CMX project specification available:
 - http://ermoline.web.cern.ch/ermoline/CMX/
- This document specify:
 - CMX functional requirements,
 - CMM/CMX differences,
 - technical aspects of the CMX implementation.
 - ⇒ The engineering solutions will be reflected in the following detailed hardware and firmware specifications
- Comments from Jim, Uli, Ian, Sam, Dan, Philippe, Hal, Chip
 - Added into document
- Next steps:
 - Jul 2011 Jan 2012: Preliminary design study, engineering specification, design documentation, test rig checked out at MSU
 - Feb 2012 Sep 2012: Prototype design and test
 - ⇒ Sep 2012: Production Readiness Review


CMX development schedule

- 2011: Project and engineering specifications
 - CMX project Preliminary Design Review (this week)
 - Preliminary design studies
 - Test rig installed, checked out at MSU
- 2012: Prototype design and fabrication
 - CMX schematics and PCB layout
 - Production Readiness Review
 - Prototype fabrication, CMM firmware ported on CMX
 - Basic tests for backward compatibility in test rig at MSU
- 2013: Prototype testing/installation/commissioning, final fabrication
 - Full prototype tests in test rig at CERN
 - CMX firmware development and test
 - Test in the L1Calo system during shutdown
 - Fabricate and assemble full set of CMX modules
- 2014: Final commissioning in the L1Calo trigger system in USA15

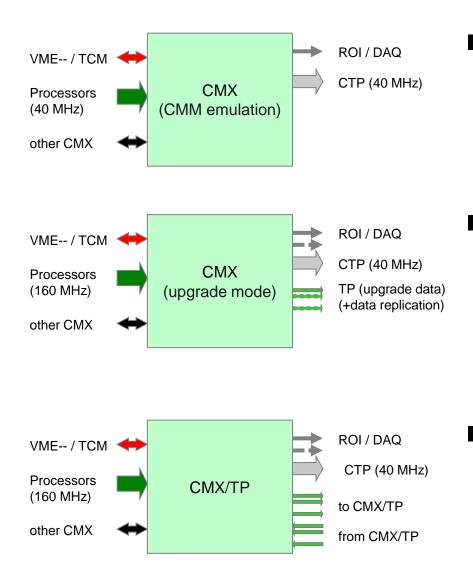
Technical aspects (1): CMM/CMX differences

- Main modifications to the CMM hardware:
 - replacement of the obsolete FPGA devices by new parts to receive data at 160Mb/s from the backplane, transmit and receive data via multi-fiber optical ribbon link using transceivers in FPGA,
 - implementation of the G-link protocol in firmware,
 - implementation of multi-fiber optical ribbon links.

The new FPGA or FPGAs for the CMX board shall provide sufficient:

- IO pins, compatible with the L1Calo system backplane signal levels,
 ⇒ pins (~640) for all external interfaces of two original CMM FPGAs
- high speed serial transceivers for data transmission and reception,
 - ⇒ Minimum: 8 to 18 transmitters (TP, RODs); optionally fan-out and reception
- internal logical resources (logical blocks and memories).

⇒ Virtex 6 / Virtex E: ~ x2 LUTs, x4 FFs, x10 RAM, x2.5 faster


- G-Link implementation
 - Original part obsolete:
 - ⇒ G-Link transmitter chips (HDMP 1022) -> G-Link protocol emulation in FPGA

⇒ FPGA GTX transmitter at 960 Mbit/s

⇒ Transceiver Infineon V23818-M305-B57 -> Avago AFBR-57M5APZ

- Multi-fiber (12 fibers) optical ribbon links
 - GTX and GTH Virtex 6 FPGA transceivers
 - parallel fiber modules: SNAP12 or Avago (-> compatible with TP)

- Backward compatible mode:
 - CMM firmware ported to CMX h/w
 - Looks like CMM in current system
 - No optical links to TP
- Upgrade mode:
 - new data format
 - data processing/reduction
 - \Rightarrow to fit links in a single TP module
 - data replication to multiple TPs
- Standalone mode (optional) :
 - "Insurance policy" option
 - data reception from other CMX

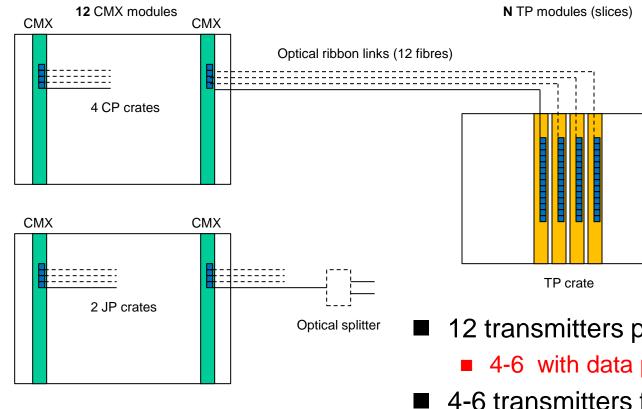
11/0

The Common Merger Module (CMM)

- CP (e/γ) / Tau hits:
 - 3-bit multiplicity x 16 threshold sets x 56 CPMs (4 crates)
 → 3 bits x 16 threshold sets
- Jet hits:
 - 3-bit multiplicity x 8 thresholds x 32 JEMs (2 crates) \rightarrow 3 bits x 8 thresholds
 - $\begin{array}{l} & 2\mbox{-bit multiplicity x 8 thresholds x 4 JEMs (2 crates)} \\ \rightarrow 2 \mbox{ bits x 8 thresholds} & (forward jets) \end{array}$
- Total E_T:
 - Sum E_T over 32 JEMs (2 crates) & compare with 4 thresholds → 4 bits
- Missing E_T:
 - − Vector sum $E_x \oplus E_y$ over 32 JEMs (2 crates) & compare with 8 thresholds → 8 bits
- · Organised in tree structure:
 - all CMMs receive CPM/JEM data over backplane & perform crate-level merging
 - 1 CMM / tree also receives crate-level results via cable & performs system-level merging
 - CP / Tau system: 4 CMMs x 2
 - Jet hits: 2 CMMs
 - Energy: 2 CMMs

25 March 2009

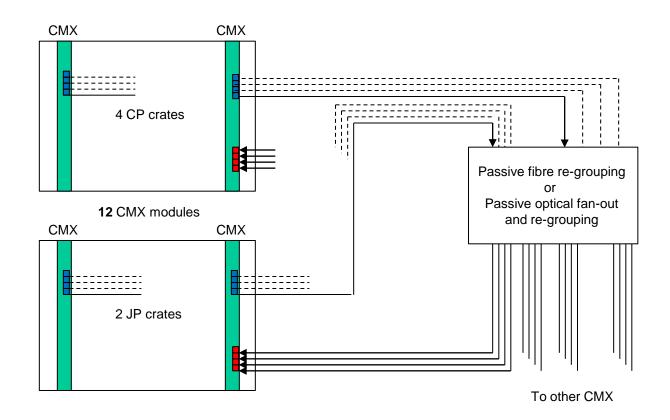
2 FPGA transmitters for the DAQ and ROI G-Links


lan Brawn

3

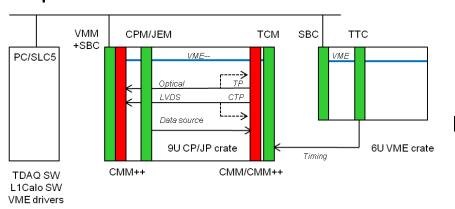
 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Upgrade mode with data replication / fan-out



- 12 transmitters per CMX
 - 4-6 with data processing
 - 4-6 transmitters for the DAQ and ROI G-Links (not shown)
- Spare transmitters (out of 72) for data replication / fan-out to N TPs
 - 54-64 with data processing

Standalone mode (optional)

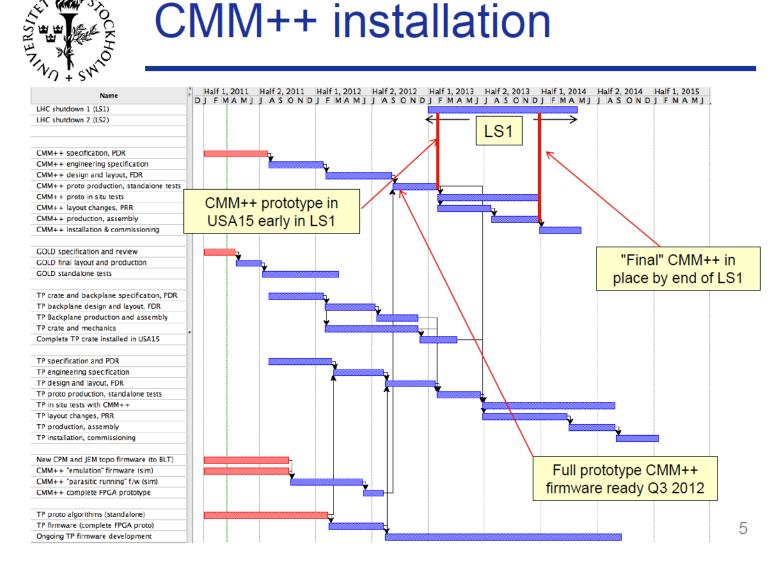

- CMX modules may be used without TP
 - The role of the topological processor can be executed by one (or several) CMX module(s) in the system.
- Require inter CMX communication data fan-out and re-grouping

CMX firmware development

- Two little-overlapping activities with different sub-sets of people
- Porting the existing CMM firmware to the new CMX hardware
 - MSU (CMX), RAL/Stockholm (CMM) + ?
 - new FPGA selection, I/O pin allocation, signal levels, clock distribution
 - new G-Link implementation in FPGA will be used in upgrade modes
 - test firmware in the test rig hardware, no VHDL test-benches
- New firmware for the upgrade modes of CMX operation
 - MSU (CMX), Mainz (TP, JEM), Birmingham (CPM), RAL (ROD) + ?
 - new CMX interfaces development, data transfer CMX->TP (MSU)
 - algorithm development for the TP (Mainz),
 - \Rightarrow Optionally applicability for CMX (MSU)
 - test-benches:
 - ⇒ data source for CMX from upgraded CPM (Birmingham) and JEM (Mainz)
 - ⇒ data source for TP from CMX (MSU) [also for ROD and CTP ?]
 - Data files for the test-benches:
 - ⇒ from simulation software and MC

Proposed MSU test stand

CPM/Jem and TTC crates at CERN



- The test rig will be required:
 - To acquire initial knowledge on CMM module operation
 - To develop and test the CMX
 - Initially assembled at CERN, tested and then sent to MSU
 - Hardware (without DCS)
 - Online software
 - Online simulation
- Hardware available
 - -> focus on software
- Testing procedure:
 - Backplane data transfer
 - Optical & LVDS links (2nd CMX)
 - ROD connection -> at CERN

Back-up slides

CMX commissioning schedule

