

Status of CMX design studies

Philippe Laurens, MSU 8-Feb-2012 @RAL

CMX development work on 3 fronts

- 1. VME/ACE/TTC interface "daughter card" @CERN
 - Yuri
- 2. CMX input module firmware @CERN
 - Wojciech and Yuri
- 3. Engineering @MSU
 - Philippe and Dan

Only focusing on #3 today

CMX Project's Goals for this meeting

We would like a short term outcome of this meeting to be:

- "Yes/No" on continue designing for CMX-TP

 and agreement on approach
- 2. Agreement on FPGA choice
- 3. Agreement on 10Gb output option

Initial CMX design studies phase

- Trying to address **two main questions**
 - 1) FPGA choice for implementing the Base-CMX functionality
 - 2) Strategies, costs and risks for adding Topological Processing capability to the CMX platform
- Guidance from **Stockholm review**
 - Use Virtex 6
 - Evaluate FF1924 & FF1923 packages
 - Design for 6.4Gb optical outputs
 - Implement G-link encoding on FGPA
 - \rightarrow be conservative to deliver on time

Definition: Base-CMX functionality

- 1. All of CMM functionality (both Crate CMM and System CMM)
 - Receive and process 400 JEM/CPM input signals (4x higher rate)
 - Crate CMXs send local summary to System CMX through backplane connector over LVDS cables (2x higher rate probably desirable)
 - System CMXs form and send triggering information to CTP over LVDS cables (same as CMM)
 - all CMXs send ROI and DAQ information over G-links (same as CMM)

2. Send JEM/CPM info out to a TP optically

- using 12-fiber bundles
- with some level of duplication (at least 2x copies sent)
- 6.4Gbps nominally sufficient for all raw data on one 12-fiber bundle
- also possible to send zero-suppressed data on less fibers
- SNAP12 (modified) or miniPOD available from Avago up to 10Gbps

Definition: **TP-CMX** functionality

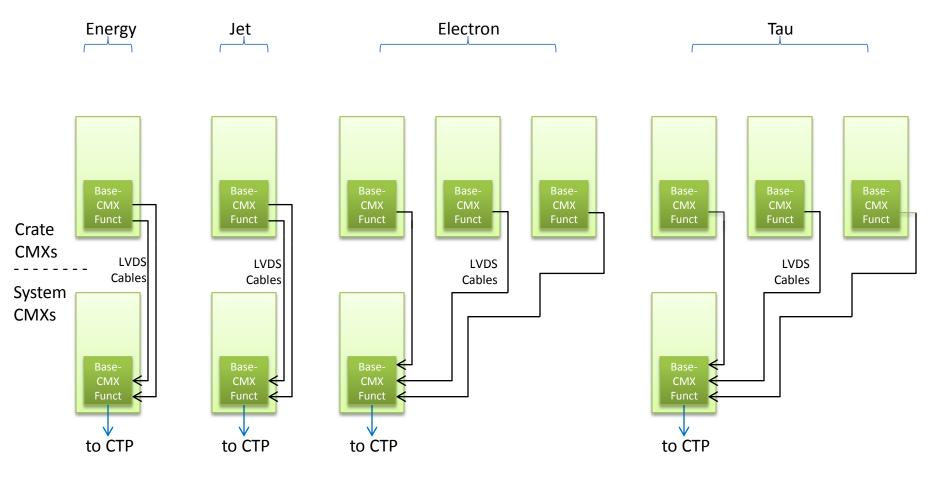
Topological Processing capability on CMX platform

- 1. Receive optical inputs from each of 12x CMXs
- 2. Run multiple Topological Algorithms
- 3. Send Topological triggering information to CTP
- TP-CMX functionality is needed if dedicated TP not built, or availability delayed, or as additional safety/backup
- The CMX platform would then be asked to provide as much generic TP functionality as possible.
- When all final TP decisions can be made is not clear.

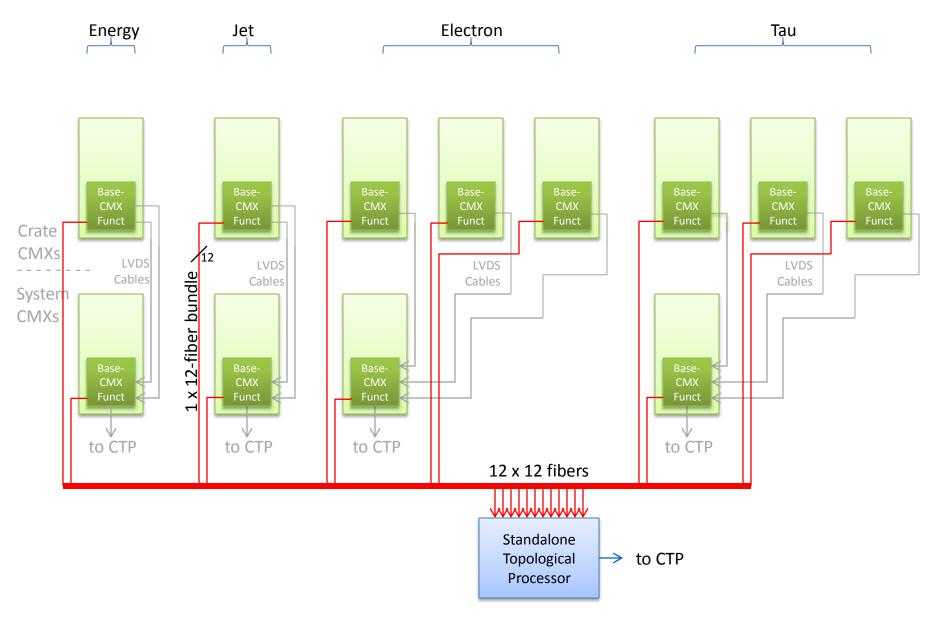
Nota Bene

Distinction between **locally** and **globally derived** triggering information

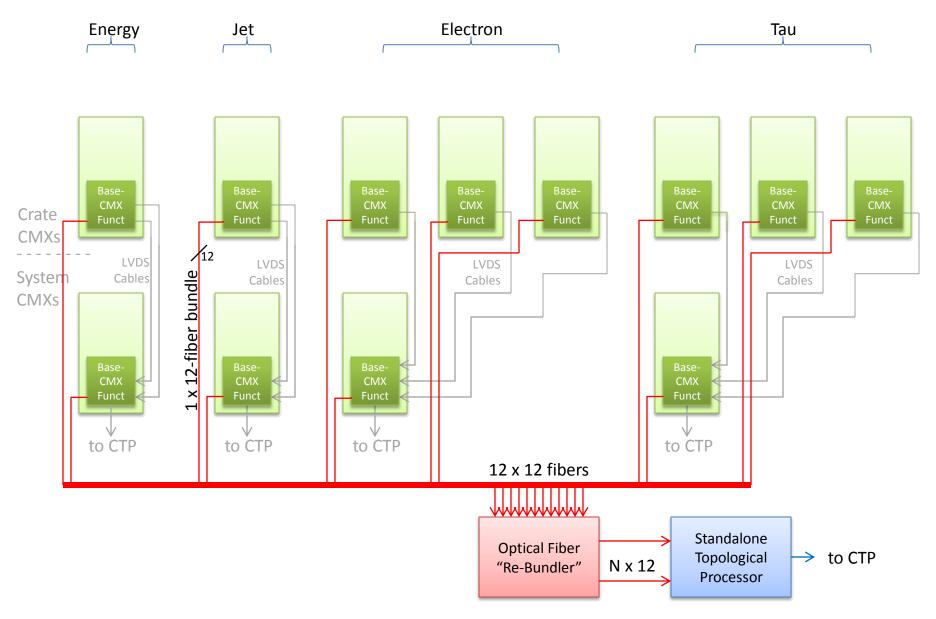
- Any Trigger Information that can be derived locally and then gathered/summed into an overall summary
 - can use the Crate->System path
 - e.g. implementing additional thresholds
- An Algorithm that correlates geographically separated or different types (e.g. electron vs jet) of information
 - needs TP architecture

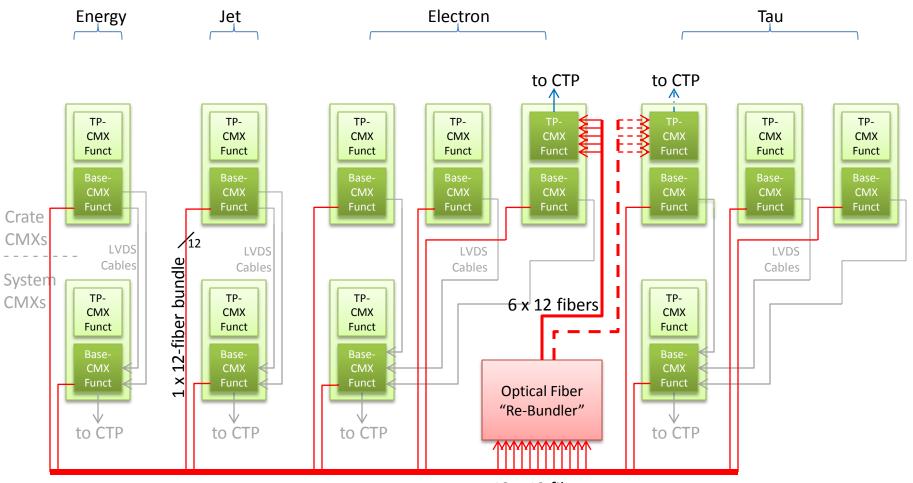

Overview/Review of possible use cases

Illustrated in following diagrams...

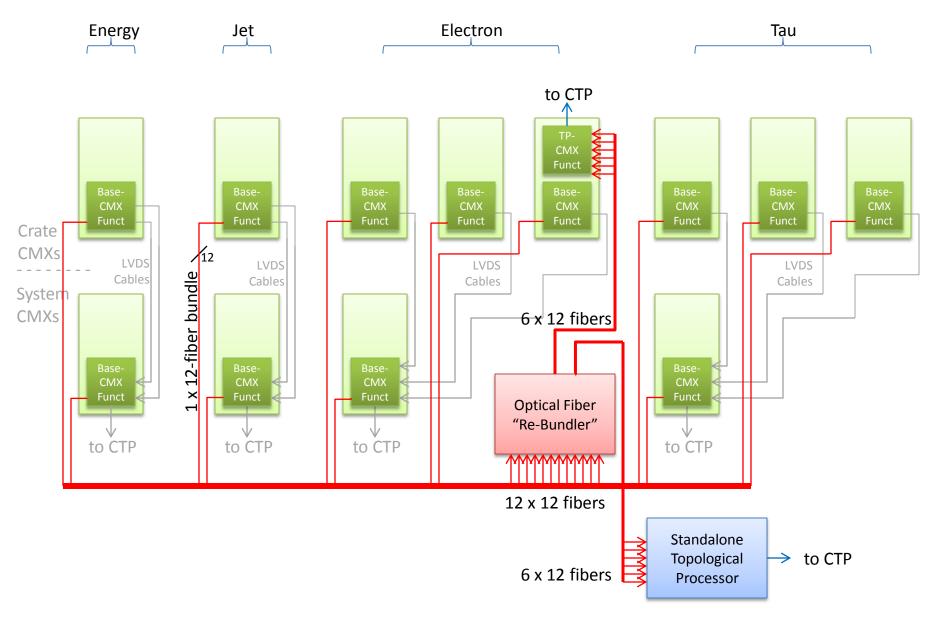

- CMM emulation only
- Base-CMX functionality only

 Send data to Standalone TP
- TP-CMX functionality used
 - Only CMX-TP
 - Both CMX-TP and Standalone TP

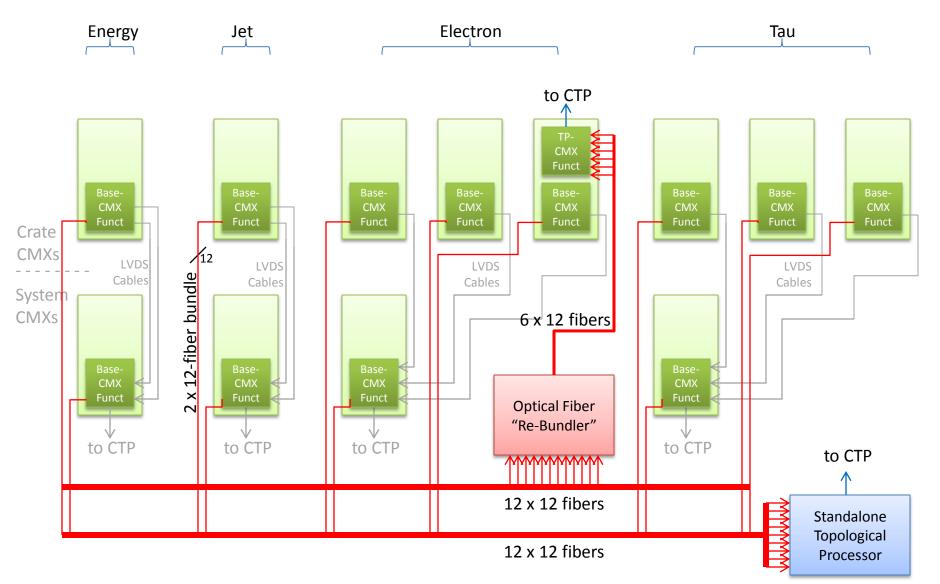

1. CMX emulation of CMM functionality (no TP involved)


2. Standalone TP receiving Raw CMX Inputs

3. Standalone TP receiving Zero-Suppressed CMX Inputs



4. One (or more) CMX TP receiving Zero-Suppressed Inputs



12 x 12 fibers

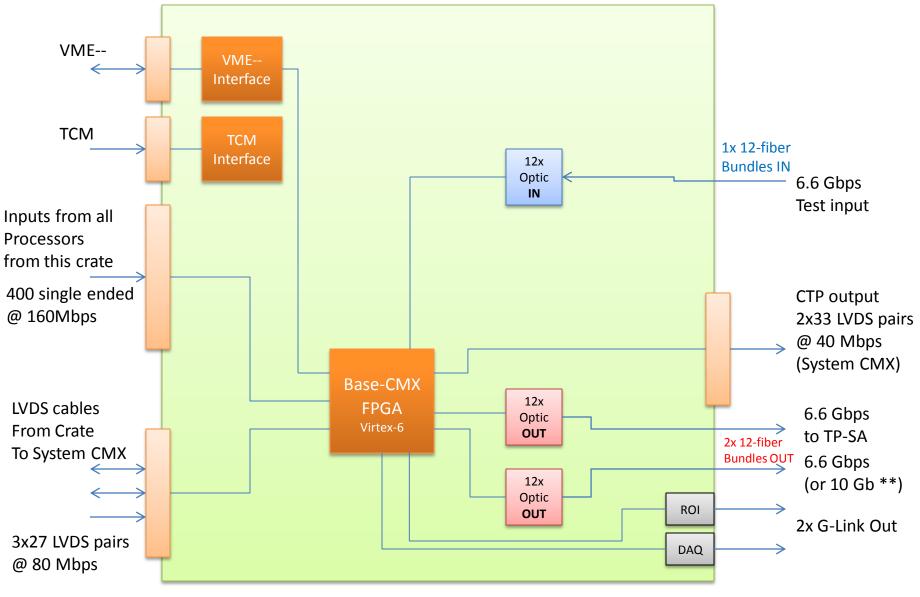
5. CMX TP & Standalone TP receiving Zero-Suppressed Inputs

6. CMX TP receiving Zero-Suppressed Inputs & Standalone TP raw inputs

Base-CMX Implementation

Question #1:

FPGA choice for implementing the Base-CMX functionality

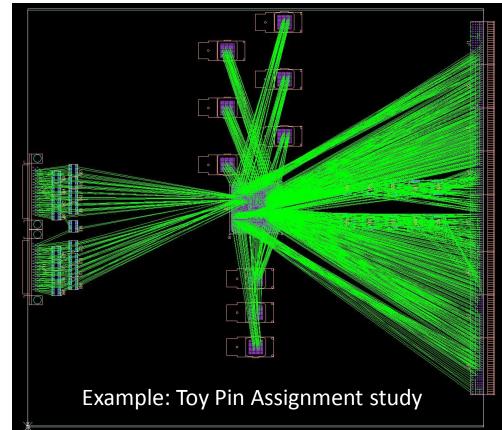

Base-CMX Implementation

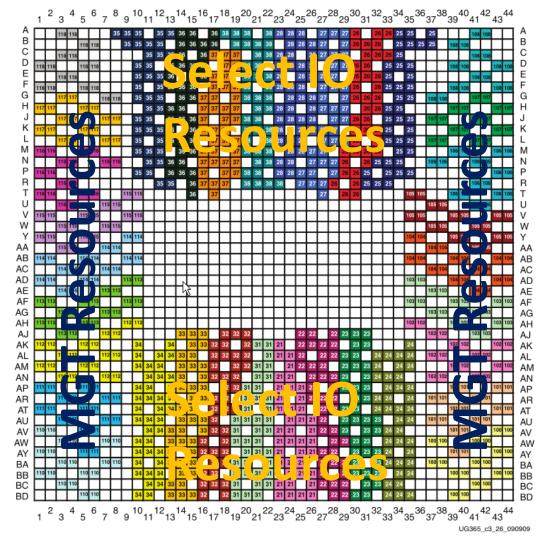
400x 160Mbps backplane inputs

- routed directly to FPGA, no termination on CMX
- merged parity and clock
 - cannot afford 1x IO block per source JEM/CPM processor
 - but need regrouping in neighbor IO blocks
- Processor sources spread out on backplane connectors
- Up to 3x 12 "6Gb" optical transceivers (2 out, 1 in)
 - multi gigabit transmission lines
 - need careful layout and field simulation tools
 - use mid-board transmitters for shorter traces
 - need optical power study of whole optical distribution
 - compete for access to, and real estate near, FPGA
 - will need protocol to transfer 12x 6.4 Gbps of payload + overhead
 - XILINX notes have example
 - needs external oscillator, not necessarily synchronous with accelerator

Large FPGA package require many trace layers

A. CMX Card with only Base-CMX functionality


8-Feb-2012


Philippe Laurens, MSU

** 10Gb output to TP-Standalone option to be determined

Package Choice and Pin Assignment

- Made toy layouts using several packages
- Focusing on main signal flow (PreProc In, Cable IO, CTP Out)
- Helps visualizing challenges

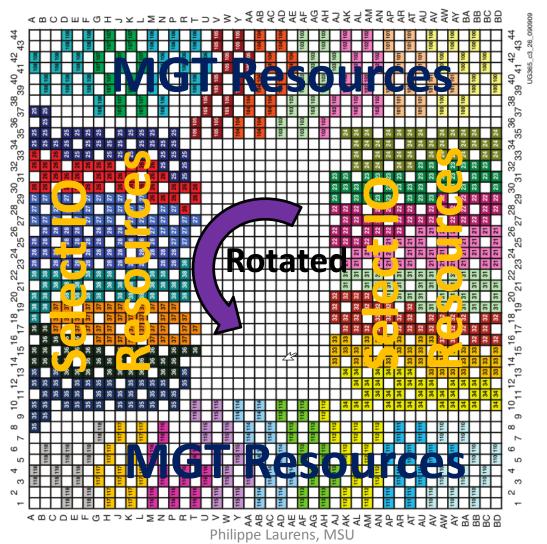
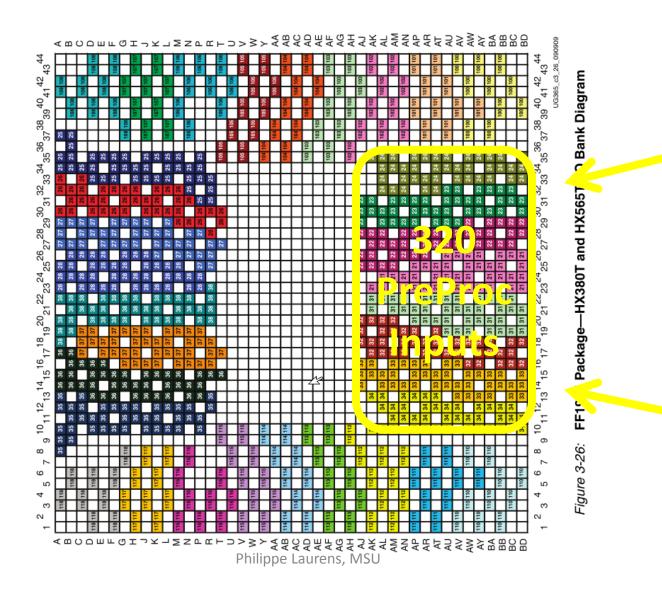
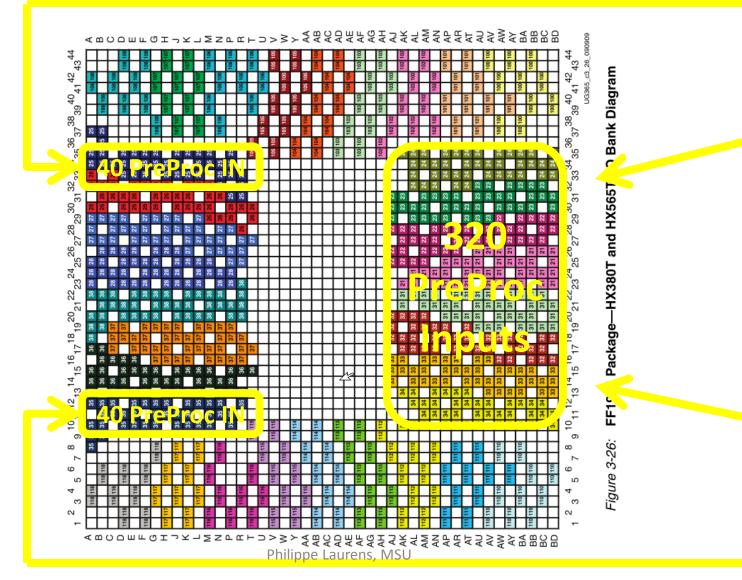


Figure 3-26: FF1924 Package HX360Tsah65HX565T I/O Bank Diagram

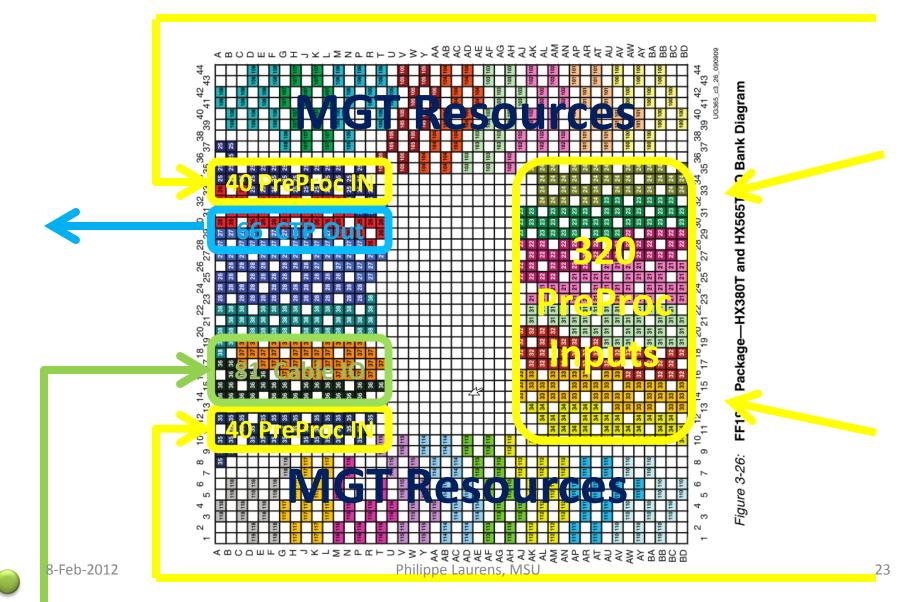

Backplane Side

FF1924 Package—HX380T and HX565T I/O Bank Diagram 3-26: Figure

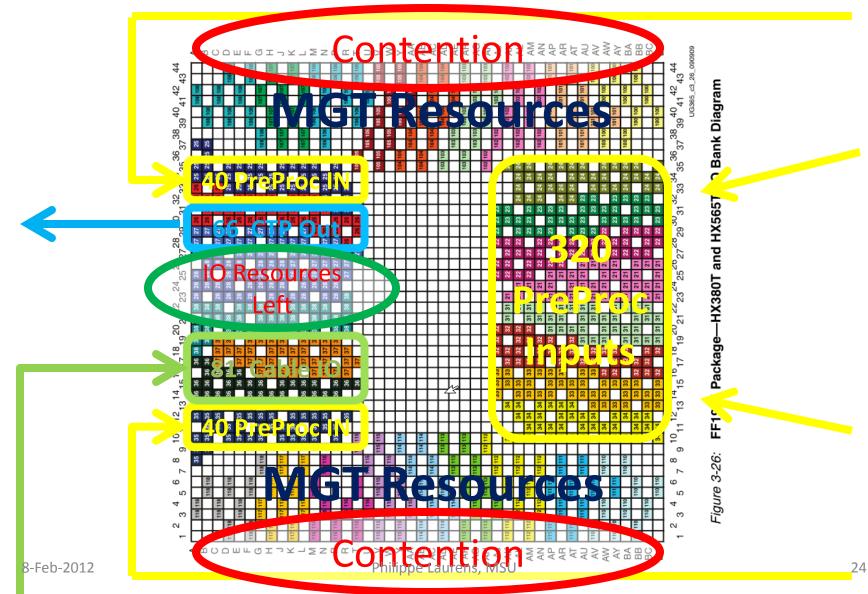


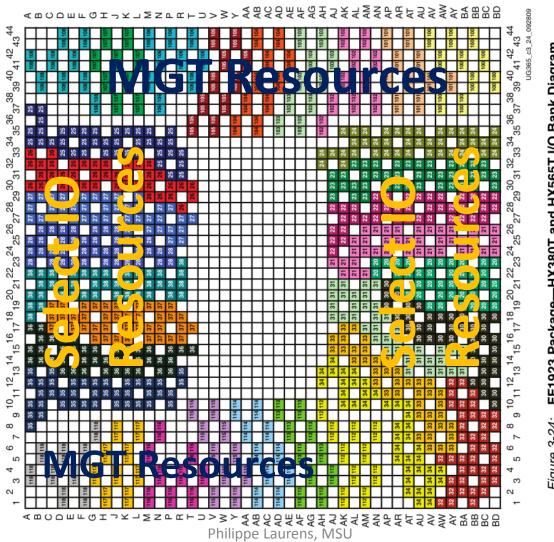
FF1924

Panel Side Front |

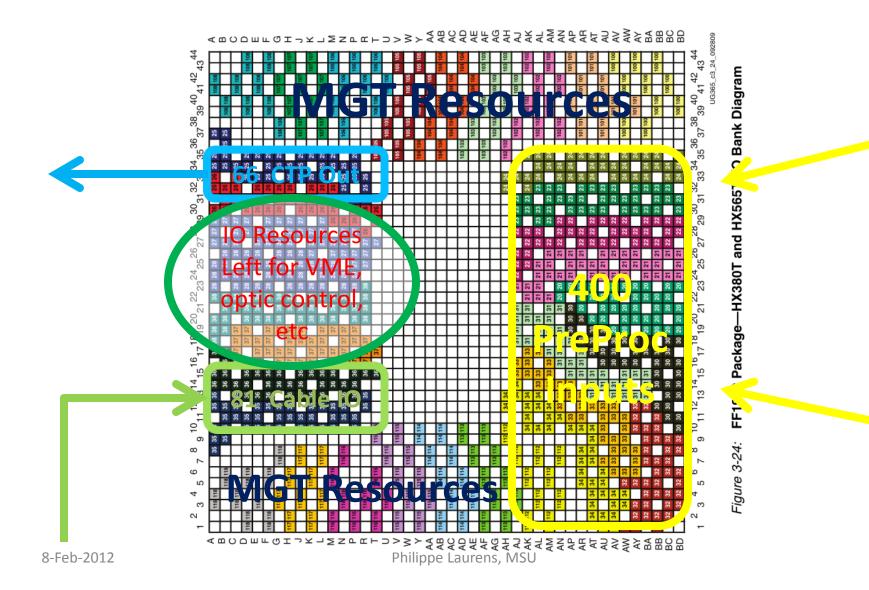


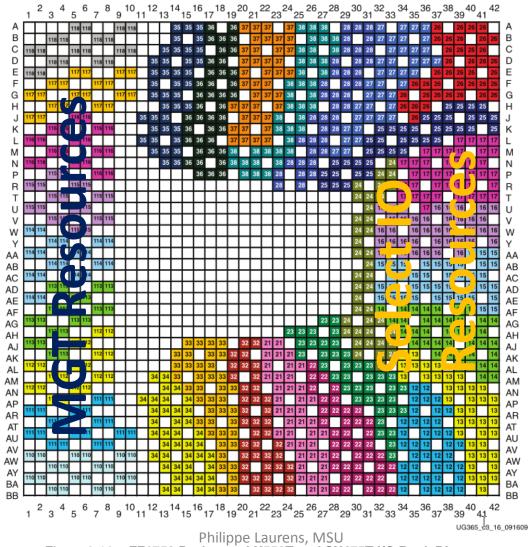
8-Feb-2012



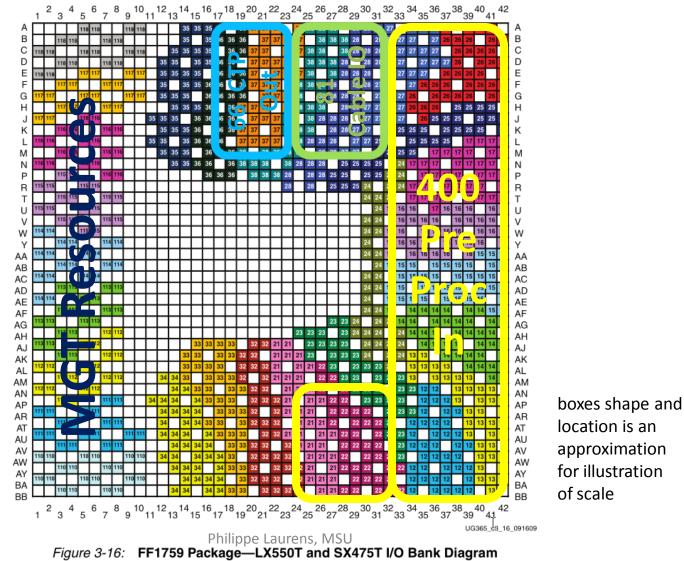

8-Feb-2012

22

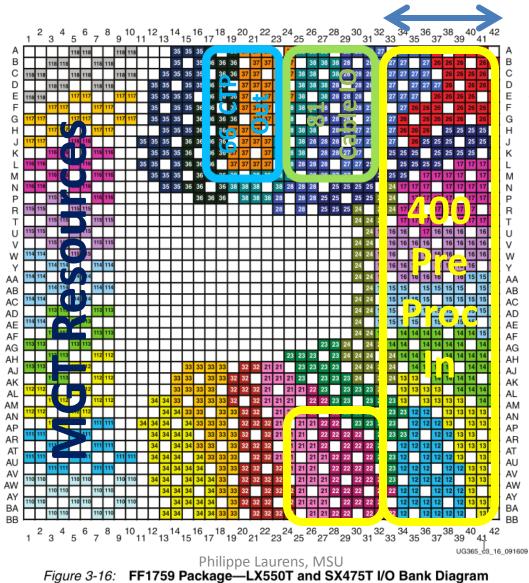

FF1924 → Too tight


FF1923 Package—HX380T and HX565T I/O Bank Diagram 3-24: Figure

FF1923 Better


Another package...?

- Base-CMX doesn't need/use all the available MGT resources of FF1923
- Especially if CMX does not need to operate as TP, there is another interesting package: **FF1759**
 - Fewer MGT resources
 - More Select IO resources
 - Similar Logic Resources
 - Slightly smaller footprint (\rightarrow less trace layers)
 - Cheaper


8-Feb-2012

Philippe Laurens, MSU Figure 3-16: FF1759 Package—LX550T and SX475T I/O Bank Diagram

29

FF1759 Preferred Choice

Fewer rows of pads \Rightarrow 4 or 5 Fewer **Trace Layers**

8-Feb-2012

Resource Comparison

FF1759	FF1924 or	FF1923	
XCCVLX550T	XC6VHX380T	XC6\HX565T	
XCE6VLX550T	XCE6VHX380T	XCE6VHX565T	
85,920	59,760	88,560	1
549,888	382,464	566,784	
687,360	478,080	708,480	Manu
6,200	4,570	6,370	Very
632	768	912	Similar
22,752	27,648	32,832	
18	18	18	
1,200	720	720	_
600	360	360	
864	864	864	
2	4	4	
4	4	4	_
36	48	48	Fewer GTX
$\overline{}$	24	24	Zero GTH
-L1, -1, -2	-1, -2, -3	-1, -2	
-2	-2	-	
-L1, -1	-1, -2	-1	
144.1	119.8	160.7	

	Part Number		
	EasyPath™ FPGA Cost Reduction		
	Solutions ⁽¹⁾		
	Slices ⁽²⁾		
Logic Resources	Logic Cells ⁽³⁾		
	CLB Flip-Flops		
	Maximum Distributed RAM (Kb)		
Memory Resources	Block RAM/FIFO w/ECC (36 Kb each)		
nesources	Total Block RAM (Kb)		
Clock Resources	Mixed-Mode Clock Managers (MMCM)		
I/O Resources ^(4,5)	Maximum Single-Ended I/O		
	Maximum Differential I/O Pairs		
	DSP48E1 Slices		
	PCI Express® Interface Blocks		
Embedded Hard IP Resources ⁽⁶⁾	10/100/1000 Ethernet MAC Blocks		
IF Resources	GTX Low-Power Transceivers		
	GTH High-Speed Transceivers		
	Commercial		
Speed Grades	Extended		
	Industrial		
Configuration	Configuration Memory (Mb)		
-			

Base-CMX Implementation

Question #1:

FPGA choice for implementing the Base-CMX functionality

Recommendation:

Use **LX550T FF1759**

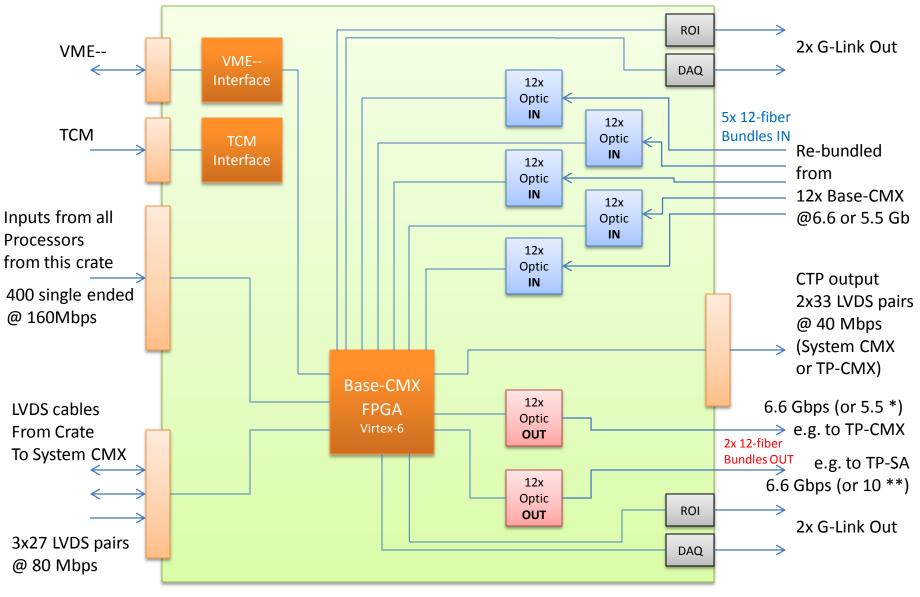
(especially If CMX doesn't need to perform as a TP)

TP-CMX Functionality

Question #2:

Strategies, costs and risks for adding Topological Processing capability to the CMX platform

TP-CMX Functionality


- Add as many optical inputs as possible to receive info from 12x CMX cards
 - requires intermediate fiber re-bundler box to go from 12x12 to 5x or 6x12
 - same box could provide 2x sets of upper/lower outputs without optical split
- Add another 2x GTX outputs for 2 more G-links for TP ROI and DAQ
- Need access to output driver to CTP (not a problem)

- Intrinsic complications when using Virtex 6 GTH resources
 - GTH inputs (2x12 of 5x or 6x) are not capable of 6.6 Gbps operation
 - because internal PLL is narrow range
 - 5.5Gb is compatible with both GTX and GTH
 - need two more power supplies for GTH transceivers
 - higher power (~2x) for GTH (3.6 W per 12) vs GTX (1.9W per 12 at 5.5Gb)

CMX-TP : Single FPGA Solution

- Constraints
 - cannot be FF1759, has to be FF1923
 - 5x12 GTX/GTH inputs (i.e. 4 more than Base-CMX only)

B. CMX Card with TP capability on same FPGA

8-Feb-2012

Philippe Laurens, MSU

* TP-CMX GTH inputs not capable of 6.6 Gbps 36

** 10Gb output to TP-Standalone option to be determined

CMX-TP : Single FPGA Solution

Cons

- forego advantages from FF1759 (ruled out because not enough MGT resources)
- total of >= 88 MGT signal pairs; 50 additional from Base-CMX
 - competes with Base-CMX functionality for real estate & access
 - very crowded near FPGA
 - makes Base-CMX layout more complicated
 - increase risk of electrical interference
- **Ties firmware** for Base-CMX with firmware for TP-CMX
 - makes commissioning/evolution of CMX-TP firmware operationally risky for Base-CMX operation
 - share total available logic resources between these two separate functions

CMX-TP vs Base-CMX

So there is contention... Can this be helped?

CMX-TP vs Base-CMX

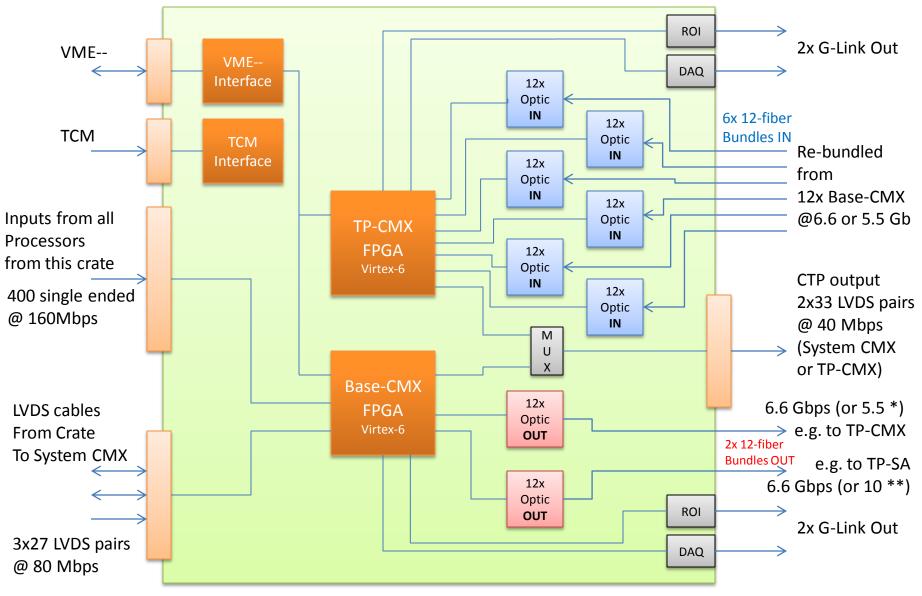
Observations

- Base-CMX and TP are totally separate functions
 - logically, don't share inputs or outputs (unlike Crate vs System)
 - operationally in separate latency time segments
 - only share VME bus, TTC, ...
- TP-CMX needs access to CTP output, but we can simply not choose a System CMX to operate as a TP-CMX
- Still not clear if TP-CMX functionality is ultimately needed or desired (as backup) and/or used
- Still not clear how and when we would know for sure that CMX-TP will be used or not
- Merging Base-CMX ant TP-CMX firmware in one design and one bitstream still seems unwise
 - We even originally proposed to use a separate CMX in a separate crate

CMX-TP : Dual FPGA Solution

Add a second FPGA for just TP-CMX functionality

- Pick optimal FF1924 package with most MGT resources for TP-CMX
- Keep optimal FF1759 package for Base-CMX
- Hivision of tasks & risks between FPGAs



CMX-TP : Dual FPGA Solution

Pros

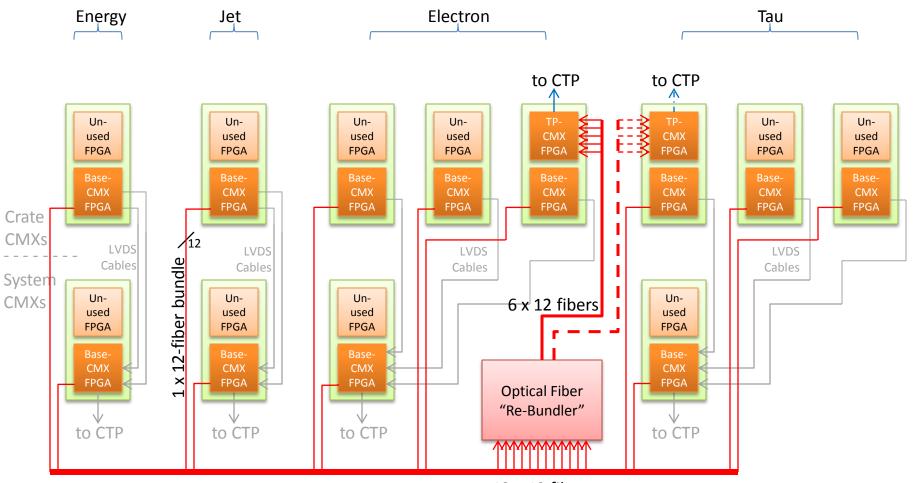
- Easier commissioning, easier operation, easier firmware mgmt and upgrade
- One more 12-fiber input bundle for TP-CMX (6x12 instead of 5x for FF1923)
- Leverage advantages of FF1959 package precluded in single FPGA solution
- Divide routing challenges
 - backplane processor and cable inputs located in one area
 - Majority of high frequency requirements of MGT resources in other area
 - Expected to translate into more flexibility, shorter traces
 - lower chances for electrical interferences
- Separate MGT transmitters from receivers
- → Prevent TP-CMX "luxury" from interfering with Base-CMX "necessity"
- ...and if decision on Standalone TP needs to be further delayed
 - could abandon TP-CMX part of layout during design phase without impact on Base-CMX
 - rip out or leave unpopulated
- Also could abandon TP-CMX before production assembly
 - not populate TP-CMX location on production boards
 - modify layout if needed or try and prepare for it (cf. modified solution below)

C. CMX Card with TP capability on separate FPGA

8-Feb-2012

Philippe Laurens, MSU

* TP-CMX GTH inputs not capable of 6.6 Gbps 42


** 10Gb output to TP-Standalone option to be determined

CMX-TP : Dual FPGA Solution

cons

- Two FPGAs means more expensive
 - ~1.5x in FPGA cost (FF1924+FF1759 instead of FF1923)
 - or ~2x in FPGA cost (FF1924+FF1923 instead of FF1923)
 - cf. table later on...

4. One (or more) CMX TP receiving Zero-Suppressed Inputs

12 x 12 fibers

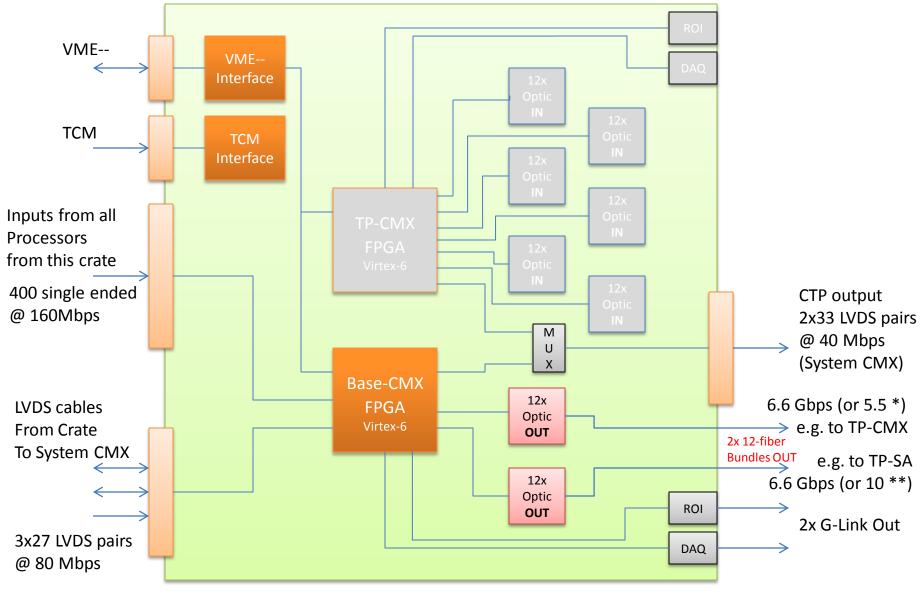
Dual FPGA solution = more expensive

Can this be helped?

Modified Dual FPGA Solution

- TP functionality **only used on one** (or few) CMX boards
 - TP-CMX FPGA thus unused in all but few of the boards
- Initial goal was to have all cards be the same...
 - but wasteful/expensive for dual FPGA CMX
- → Build two flavors of CMX cards
 - A few (2-4) with both FPGAs
 - The bulk with just the Base-CMX FPGA
- Could be exact same layout or close derivative
 - **NOT** a separate design, and plan for this option from start
 - Intent is that same circuit board can be assembled into either specie
 - Share some of the assembly setup costs (less parts in one)
 - Layout review option between prototype and production

Modified Dual FPGA Solution

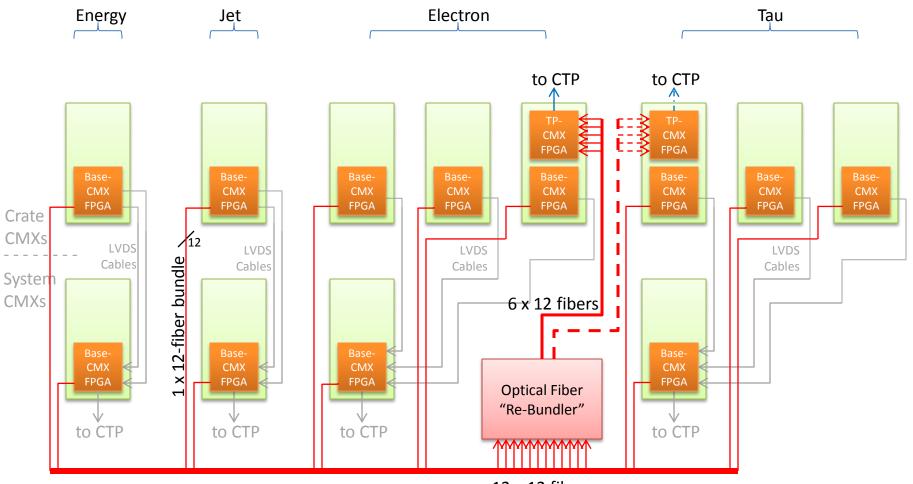

• Pros

- keep all advantages of Dual FPGA solution
- Avoid cost escalation of expensive second FPGA unused on bulk of cards

• Cons

- Breaks l1calo "tradition" of all identical boards
- Some aspects of operation/mgmt will need tailoring
- Two types of boards, but one is superset of other

C-prime. CMX Card with TP capability unused/unpopulated


8-Feb-2012

Philippe Laurens, MSU

* TP-CMX GTH inputs not capable of 6.6 Gbps 48

** 10Gb output to TP-Standalone option to be determined

4-prime. One (or more) CMX TP receiving Zero-Suppressed Inputs

12 x 12 fibers

Cost Estimate for FPGAs

	Option	FPGA Base	Packg Base	FPGA TP	Packg TP	FPGA(s) Q=1 **	Total Q=15	Total Q=4+11
1	Base CMX, 6Gb out, no TP	LX550T	FF1759			\$5.5k	\$83k	
2	Single FPGA, Base 6Gb out, TP 5Gb in	HX565T	FF1923			\$8.5k	\$128k	
3	Dual FPGA, Base 6Gb out, TP 5Gb in	LX550T	FF1759	HX565T	FF1924	\$14k	\$210k	
4	#3, build 2-4 with TP, 11-13 without TP							\$117k

•(**) DigiKey Q=1 price from website, rounded up. May get quantity and/or research discount. Waiting on quotes from AVnet.
•6Gb out: need >6.4Gb on 12 fibers to send raw data + link control protocol + payload signaling protocol. GTX specified up to 6.6 Gb.
•5Gb in: shortened label for maximum rate that a Base-CMX GTX output can send to a TP-CMX GTH input (5.59 Gb in specs).
•HX565T could be replaced with HX380T, with less logic resources, but higher speed grade available (+10%), for +\$3k each

TP-CMX Functionality

Question #2:

Strategies, costs and risks for adding Topological Processing capability to the CMX platform

Recommendation: Dual FPGA solution Base-CMX use LX550T FF1759 TP-CMX use LX565T FF1924 Build majority of CMX without TP-CMX FPGA

Appendix

10Gbps output to Standalone TP

10Gb motivation

from TP point of view

- Send more data (but not clear what)
- Or use less fibers
- Or reduce latency by a fraction of beam crossing

• from CMX point of view

- Why not if GTH resource is present and able
- Optical transmitter capable of 2.5-10Gb anyway
- a layout capable of >10Gb should be capable of <10Gb

8-Feb-2012

10Gb output to Standalone TP

- Frequency up by factor ~2
 - higher requirements on transmission lines
 - higher attenuation
 - trace length even more closely matched
 - smaller scale of imperfections that matters (e.g. vias, bends)
 - \rightarrow more complicated layout work
- 10Gb outputs not compatible with TP-CMX 6.6Gb inputs (5.5 Gb ok)
 - may matter if GTH output replaces one of the 2x12 GTX outputs
- Need additional low jitter external oscillator for each frequency
- Higher current draw for GTH transmitter
 - ~4.25 W per 12-lane GTH at 10Gb (cf. ds152/p16) or 4.3W from XPE spreadsheet
 - vs. ~1.5W per 12-lane GTX at 3Gb (cf. ds152/p9) or 1.9W at 5.5Gb 2.1W at 6.6Gb
- → Change of scope with significant impact on our engineering resources and which will take away from insuring that the Base-CMX functionality will be delivered and work on time.

Additional impact on each option

1. Base-CMX only

- Base-CMX FPGA cannot be FF1759; has to be FF1923
 - more layers
 - 2x additional power supplies for GTH (1.1 and 1.8V)
 - additional oscillator
 - more expensive

2. TP-CMX: single FPGA solution

no difference in FPGA choice (already FF1923)

3&4. TP-CMX: dual FPGA solution

- no difference in TP-CMX FPGA choice
- Base-CMX FPGA cannot be FF1759; has to be FF1923
 - Cf. above

8-Feb-2012

FPGA Cost increase for 10Gb option

	Option	FPGA Base	Packg Base	FPGA TP	Packg TP	FPGA(s) Q=1	Total Q=15	Total Q=4+11	Delta 10Gb
1	Base CMX, 6Gb out	LX550T	FF1759			\$5.5k	\$83k		
1b	Base CMX, some 10Gb out	HX565T	FF1923			\$8.5k	\$128k		+\$45k
2	Single FPGA, Base 6Gb out, TP 5Gb in	HX565T	FF1923			\$8.5k	\$128k		
2b	Single FPGA, Base 10Gb out, TP 5Gb in	HX565T	FF1923			\$8.5k	\$128k		\$0k
3	Dual FPGA, Base 6Gb out, TP 5Gb in	LX550T	FF1759	HX565T	FF1924	\$14k	\$210k		
3b	Dual FPGA, Base 10Gb out, TP 5Gb in	LX550T	FF1923	HX565T	FF1924	\$17k	\$255k		+\$45k
4	#3, build 2-4 with TP, 11-13 without TP							\$117k	
4b	#3b, build 2-4 with TP, 11-13 without TP							\$161k	+\$45k

10Gb out: maximum frequency of an Avago AFBR-810B SNAP12-style transmitter; or a bit more for Avago miniPOD

10Gb output to Standalone TP

Recommendation:

More stringent layout requirements

- Adding risks to Base-CMX timely delivery
- Zero benefit for CMX, unclear benefit for TP
- Significant cost increase
- → Abandon 10Gb output idea

CMX Project's Goals for this meeting

We would like a short term outcome of this meeting to be:

- 1. "Yes/No" on continue designing for CMX-TP
 - And agreement on approach
- 2. Agreement on FPGA choice
- 3. Agreement on 10Gb output option