
CMX Firmware Specifications

Wojtek Fedorko, Pawel Plucinski, Yuri Ermoline

Introduction

There are three FPGA circuits in the CMX design:

 Base function FPGA

 Topo function FPGA

 Support FPGA
This document provides description of functionality and interfaces of the firmware
components of the base FPGA firmware as well as the support FPGA firmware. Topo
FPGA firmware has not yet been addressed however we expect to be able to re-use
modules handling communication over GTX transceivers, readout, CTP
communications, VME configuration and control and TTC/BCID from the base-
FPGA.
Overall design and state of development of individual modules is described. Some
unresolved questions are mentioned in the text.

Overall layout of the base FPGA firmware
A rough diagram of the functional blocks is shown in the diagram below. It is
expected that functionality of backplane data capture and synchronization, data
transmission over MGTs to L1Topo as well as readout, and to the CTP and
crate/system CMX over LVDS links as well as VME communication will be common
to all types of the CMX. Type-specific firmware modules will conform to the common
interfaces with the common modules. Presently work is proceeding on the jet-CMX.
Firmware for board testing and other types will follow.

Figure 1. A rough diagram of the functional blocks of the base function FPGA
firmware.

Clock Domains
In the CMX design there are be 18 clock domains:

 One ‘processor input’ clock domain exists for each of the 16 processor
inputs forwarding 80 MHz clocks.

 Two 320 MHz clock ‘gtx’ domains exist within the gtx_TX module –
each domain is associated to a group of 12 gtx transceivers within
neighbouring 3 ‘quads’. Clock sharing is not possible among more than 3
quads

 ‘System domain’ encompasses clocks generated from the TTC clock
with a well-defined frequency and phase relation to the TTC clock and one
another.

Input module
The function of the input module is to capture the backplane data, time-demultiplex it
and bring it to the system time domain as well as detect parity errors. The inputs of
the module are the FPGA IOBs connected to the backplane transmission lines. Each
processor input provides 24 data bits at 160 Mbps and one clock line at 80 MHz with
edges centred in the data windows. Each of the data and clock inputs are piped
through an IODELAY module which provides a capability to delay the signals by up
to 2.4 ns in up to 31 ‘taps’ of 78 ps. Data is captured and time de-multiplexed to 80
Mbps using the IDDR circuits built into each IOB.
Two schemes for de-multiplexing to 40 Mbps and synchronization are considered:

LVDS RX

Topo_Data_TX

L1 Topo
output

encoder

CMM emulator

Crate System

glink
emulato

LVDS @160Mbps

Backplane
16x24x160Mbps

To CTP
LVDS

@40Mbps

To L1Topo
24 x 6.4Gbps

readout

VME config/control

Common
to all

Type-specific Legend:

TTC Clock

De-multiplex first, then synchronise:
Data is de-multiplexed to 96 bits x 40 Mbps using the forwarded clock. It is then
captured into a system clock domain register. Data becomes available for further
processing 30.4 ns after the arrival of the first word on the most delayed (‘slowest’)
processor input (furthest away in the crate). This latency is the primary disadvantage
of this scheme. Another disadvantage is the necessity of a data framing pattern to be
initially sent so that first two and last two words in the event can be identified. The
advantage of this scheme is relative robustness of the clock domain crossing. The
system clock has a wide margin (~25 ns) to latch the data from the input processor
clock domains. The latency quoted above includes the phase delay between the
clock of the slowest processor input and the system clock. Post Place-and-Route
timing analysis indicates that this delay can be as low as 2 ns. Timing analysis also
indicates that data capture will be robust with data valid window as narrow as 50%
and forwarded clock jitter of up to 1 ns, however under these conditions the
forwarded clock will have to be advanced with respect to the center of the data
window by a small amount (0.5 – 1 ns). Fig. 2 shows a time diagram of the
backplane data arrival, time-demultiplexing and synchronization to the system
domain.

 F
ig

 2
 T

im
in

g
 d

iag
ram

 o
f th

e b
ack

p
lan

e d
ata cap

tu
re, tim

e d
e-m

u
ltip

lex
in

g
 an

d
 sy

n
ch

ro
n
izatio

n
 to

 th
e sy

stem
 d

o
m

ain
 in

 b
eh

av
io

ral sim
u
latio

n
.

B
ck

p
ln

D
atC

h
0
 is th

e d
ata (2

4
 b

its at 1
6
0
 M

b
p
s) (‘X

’ in
d
icates d

ata is n
o
t stab

le) fro
m

 th
e p

ro
cesso

r 0
, B

ck
p
lC

lk
8
0
C

h
0
 is th

e 8
0
 M

H
z clo

ck

fo
rw

ard
ed

 w
ith

 th
e d

ata, clk
4
0
 is th

e 4
0
 M

H
z clo

ck
 fro

m
 th

e T
T

C
, b

u
f_

clk
4
0
 is th

e sam
e clo

ck
 reg

en
erated

 b
y
 th

e M
M

C
M

 an
d
 g

lo
b

ally
 b

u
ffered

(u
sed

 as th
e sy

stem
 clo

ck
), o

d
ata_

sig
[0

] is th
e tim

e d
e-m

u
ltip

lex
ed

 d
ata in

 th
e clo

ck
 d

o
m

ain
 o

f th
e fo

rw
ard

ed
 clo

ck
 an

d
 d

ata9
6
[0

] is th
e d

ata

sy
n
ch

ro
n
ized

 to
 th

e sy
stem

 clo
ck

 d
o
m

ain
. W

h
ite v

ertical lin
es in

d
icate 5

 n
s in

terv
als, y

ello
w

 lin
es in

d
icate laten

cy
 fro

m
 arriv

al o
f th

e first w
o
rd

 to

sy
n
ch

ro
n
izatio

n
 to

 sy
stem

 d
o
m

ain
, b

lu
e lin

es in
d
icate v

ario
u
s ev

en
ts in

 th
e seq

u
en

ce as d
escrib

ed
 ab

o
v
e th

e d
iag

ram
.

Data valid window (3 ns)

First word in the event arrives

Phase delay between’slowest’ source
synchronous clock and (recovered and

buffered) system clock (2.8 ns)

Latency between arrival of the first

word and synchronization of the 40

Mbps data to system domain (30.4 ns)

Synchronize first, then de-multiplex:
In this scheme the data from IDDR is captured in the input clock domain register and
then in a system clock domain register (at 80 MHz). Further de-multiplexing to 40
Mbps is possible in the system clock domain. Compared to the ‘de-multiplex first’
scheme the first two words of the event are made available half bunch crossing
earlier for further processing while the last two words have the same latency. The
disadvantage of this scheme is the difficulty of synchronizing the clock domains
within a quite narrow window of 6.25 ns. Given that skew as large as ~2 ns is
possible in clock networks extending through large areas of the FPGA and unknown
jitter of clocks forwarded from the processor modules this may be difficult to achieve.
Note that in this scheme no data framing pattern is necessary since the edges of 80
MHz clock can be identified (as edge 0 and 1) in the system domain using the 40
MHz clock which has a known phase relation to the TTC clock.

Scheme choice and tests:
At present the demultiplex-first scheme has been chosen due to significant
simplification of the further design components (particularly the decoder block) and a
modest penalty on latency.

This scheme has been tested in a scaled-down environment using a ML605 Virtex 6
evaluation kit coupled to a XM105 board. In the test three simulated processor inputs
each carrying four bits have been output on the FPGA’s GPIO’s and looped back via
the FMC interface and XM105 card. The three ‘channels’ are captured in three FPGA
clocking regions mimicking the arrangements of inputs in the final system. Parity
check has been performed in overnight tests and no error found.

Ports:

 buf_clk40 needed in both schemes (globally buffered)

 buf_clk200 needed for IODELAY circuits calibration (globally

buffered)

 P : in mat_var (numactchan-1 downto 0);

Backplane input to FPGA

 ODATA : out arr_4Xword (numactchan-1 downto

0); Output data – time de-multiplexed and synchronised to the system 40

MHz clock domain.

 PAR_ERROR : out std_logic_vector(numactchan-1

downto 0); Parity error detection for each processor input

 rst_rx: in std_logic; Needed if ‘de-multiplex first’ scheme is

used – when asserted puts internal FSM in waiting for a startup pattern

 counter_enable_out: out std_logic_vector(numactchan-

1 downto 0); Needed if ‘de-multiplex first’ scheme is used. If ‘1’ indicates

that FSM (for a given processor input) has detected a pattern.

 del_register: in del_register_type; Holds 5-bit delay

values for all FPGA backplane inputs

 upload_delays: in std_logic; signal synchroneous to the clk40

clock – tells the iodelays to use the delays stored in del_register

Topo_Data_TX module
This module implements 24 GTX transmitters operating at 6.4Gbps line rate each
(5.12 Gbps data rate). In each bunch crossing 3072 bits are transmitted (128 per gtx
TX). Two internal clock domains are necessary, each operating at 320 MHz. The
reference clocks are shared among two groups of three transciever ‘quads’. GTX
transmitters implement 8b/10b encoding with 20 bit internal data width (16 bit user
data width). Two MMCMs are required internally in the module to provide user
interface clocking signal.

Four first-word-fall-through FIFO’s are implemented internally interfacing the system
clock domain (40 MHz) and the two GTX clock domains (320 MHz). The FIFOs have
8:1 write to read width ratio. Note: this design will be changed as the FIFO displays
unacceptable latency (41 ns).

The GTX transmitters are set up to bypass the TX buffer minimizing latency with an
added benefit of phase synchronization of the outputs. Depending on parametrized
switch in the VHDL code the receiver portion of GTX transceivers is powered and
support circuitry instantiated enabling data readout to the top module. Such setup
will enable internal PMA loopback tests of the megabit interfaces even though base
FPGA will not be instrumented with optical gigabit receivers.

Ports:
 In the target system num_GTX_groups=2 and num_GTX_per_group=12

 MGTREFCLK_PAD_N_IN : in

std_logic_vector(num_GTX_groups-1 downto 0);

 MGTREFCLK_PAD_P_IN: in std_logic_vector(num_GTX_groups-

1 downto 0); -reference clock inputs

 GTXTXRESET_IN: in std_logic;

 GTXRXRESET_IN: in std_logic; -transmitter and receiver reset

signals

 GTX_TX_READY_OUT: out std_logic;

 GTX_RX_READY_OUT: out std_logic; - signals specifying that all TX

and RX have completed synchronization and are transmitting

 RXN_IN: in

std_logic_vector((num_GTX_per_group*num_GTX_groups)-1

downto 0);

 RXP_IN: in

std_logic_vector((num_GTX_per_group*num_GTX_groups)-1

downto 0);

 TXN_OUT: out

std_logic_vector((num_GTX_per_group*num_GTX_groups)-1

downto 0);

 TXP_OUT: out

std_logic_vector((num_GTX_per_group*num_GTX_groups)-1

downto 0); -RX and TX pad input and outputs

 clk40: in std_logic; -globally buffered 40 MHz clock

 indata : in std_logic_vector(TX_indata_length-1 downto

0) –input data vector TX_indata_length is 3456 in the target system. Data to

be sent is to be arranged in groups of 18 bits where the lower bits are the data
to be sent and the two upper bits designate if the data to be sent is a K
character.

Status and Tests:
The module is implemented and satisfies timing constraints. In order to satisfy the
timing some care had to be taken in manual placement of the fifo components and
Map and PAR effort level had to be switched to maximum level. Simulation on
behavioral level shows correctness of the design however indicates an unacceptable
latency of the FIFO component. This portion of the design will be modified to reduce
latency. A two-clock FIFO will be implemented where both clocks are running at 320
MHz.

A rudimentary test of the component excluding the FIFO synchronization was
performed in ML605 at lower line rate allowed by -1 speed grade FPGA on the test
board. A single GTX (num_GTX_groups=1 and num_GTX_per_group=1) was
instantiated and a random data pattern was sent and received in PMA loopback
mode. Chipscope was used to confirm the reception of the data pattern however no
design was implemented to test for bit error rate.

Encoder (jet type)
This module is not yet implemented. The role of this module is to transform array of
TOBs provided by the decoder as well as the BCID information provided by the TTC
module and encode this information in the vector provided to the transmitter module.
Very little logic is expected in this module – mostly signal renaming and
synchronization of TTC signal into the same register as the TOB data, however data
format and protocol for CMX-L1Topo data transmission needs to be specified.
Development is proceeding on the jet type

Decoder (jet type)
The main function of the CMX decoder (see Figure 1) is to fetch the data from the
input module, to process it and provide two data streams for the ‘CMM emulator’ and
L1Topo Encoder. The output data consists of the trigger objects (TOBs) multiplicities
and parity bits for the ‘CMM emulator’ and an array of the trigger objects for the
L1Topo output block. Based on the data analysis, the CMX decoder has to send up
to 24 trigger objects to the L1Topo. In addition, in order to reduce the data volume
and decrease the time needed to sort the data only non-empty trigger objects are
provided. The input data for the decoder consists of 16 channels x 96 bits at 40MHz.
Two ‘de-multiplexing to 40Mbps and synchronization’ schemes are possible to
implement and in this version, ‘de-multiplex first, then synchronise’ method is being
used. The time needed to provide the trigger output is estimated to be only one
40MHz clock cycle.

Ports:

 CLK40MHz : in needed to process the ‘CMM emulator’ output data.

 CLK160MHz : in needed to process the L1Topo output data.

 RESET : in std_logic; reset signal.

 CTRL_FLG : in std_logic; control flag, not used at the moment

 THRESHOLD : in THRESHOLD_TYPE(numactchan-1 downto 0);

 Threshold sets

 IDATA : in arr_4Xword (numactchan-1 downto 0);

 Input data

 OVERFLOW : out std_logic; overflow bit

 TOB_MULT_OUT : out TOB_MULT_TYPE(numactchan-1 downto 0);

 CMM emulator output

 TOB_ARRAY_OUT: out TOB_ARRAY_TYPE(max_tobs-1 downto 0);

 L1Topo output

CMM emulator (jet type)
The real-time output of the CMX decoder is sent to the ”CMM emulator” which
consists of two part that perform crate and system level merging, respectively, at 40
MHz. The function of the “CMM emulator” is to receive the trigger objects
multiplicities, process it and transmit it to the Central Trigger Processor (CTP).
Readout to the DAQ and RoI RODs is carried out by a pair of emulated G-link
protocol (Figure 3) in Virtex 6, using GTX transmitters clocked at 960 Mbits/s. The G-
link protocol was successfully implemented and tested in Virtex 6. The scope tests of
the optical output executed with ML605 board, so called “an eye diagram” (Figure 4)
proved that there is no problem to emulate the G-link protocol in Virtex 6. The rise
and fall time was measured below 240 ps which is enough to fulfill the G-link protocol
requirements. In order to adopt the ”CMM emulator” to the Virtex 6, the following
parts were implemented: the G-link protocol and GTX serializer. And, two parts
updated: the clock manager (MMCM is currently being used) and a new block RAM
in the readout fifo/memory. The design was fully simulated with ISIM (Figure 5).

Figure 3. The general idea of emulated G-link protocol in Virtex 6.

Figure 4. The scope tests of the optical output (an eye diagram) is presented. The
rise and fall time is below 240ps.

Figure 5. The ‘CMM emulator’ (crate level) simulation results. The random input data
were used to feed the algorithm and the output data was carefully analyzed, no
errors found.

Support FPGA firmware
The implementation of the Support FPGA firmware is based on the firmware for the
current CMM design, which is composed of the following hardware parts:

 non-volatile VME CPLD (XCR3384XL-10FT256C) which contains some basic
registers in a case of a malfunction in the FPGA configuration process,

 non-volatile ACE CPLD (same type as VME) which provides access to the
CMM XILINX System ACE controller,

 TTC FPGA (XCV100E-6FG256C), which provides an access to the CMM TTC
daughter card.

For the CMX, these 2 CPLDs and the TTC FPGA are merged in a single FPGA
Spartan-3AN (XC3S400AN-FG400). This FPGA has an internal flash memory for the
initial configuration after power-on. The internal flash memory can be re-loaded via
the JTAG interface.

The Support FPGA firmware at the time being is a compilation of 3 VHDL firmware
codes from original CMM design.

Test
The VHDL code for 2 CPLDs and the TTC FPGA of CMM are merged in a single
Support FPGA design and implemented in smaller Spartan-3AN FPGA -
XC3S200AN-FTG256, the result is: slices used 286/1792(15%) and pins used
165/195(84%).

VME address map
The CMM VME-- map is described in the CMM specification, and in the
vme_cmm.vhd package. The current VME-- address ranges allocate 0x80000 bytes
for each CMM (512k), of which less then half is currently used:

 CMM0 (slot 3): 0x700000-0x77FFFE

 CMM1 (slot 20): 0x780000-0x7FFFFE

The top of used VME address space in the CMM is 0x7171FE, therefore addresses
starting from 0x717200 can be used in CMX.

The CMX VME memory map will try to keep as much as possible the location of all
CMM registers and bits inside the registers. In a case, where new hardware design
will need new registers, LUTs, FIFOs or RAMs, they will be implemented in a spare
VME address space.

For large memories, instead of direct mapping of the CMX to the VME-- memory
address space, an indirect addressing might be used - a moveable window, where a
register on the CMX defines the base address of this window. This would allow the
many megabytes of CMX to be accessed through a smaller VME-- address space.
Provided the window is big enough to encompass any of the single blocks of RAM
this solution would not be expected to slow access significantly.

VME interface

The following 2-byte registers are implemented in the Support FPGA:
00000 RO ModuleIdA Module ID Register A
00002 RO ModuleIdB Module ID Register B
00004 RW ControlModeReg Control Mode Register
00006 RW ControlPulseReg Control Pulse Register
00008 RO StatusReg Status Register
0000A RO FifoStatusReg FIFO Status Register
00054 RO I2cid I2C FPGA firmware version
00056 RO VmeId VME CPLD firmware version
00058 RO SystemAceVMEIf System Ace VME Interface CPLD firmware
version
0005C RW CanAccessA CAN Access Register A
0005E RW CanAccessB CAN Access Register B
001FA RW TtcI2Cid TtcI2cId Register
00200 RAM ia_ttc_dqram I2C FPGA RAM for testing the TTC
00300 RW ia_ace_ctrl
00302 RW ia_ace_d_msb
00304 RW ia_ace_rst
00306 RO ia_ace_out
00308 RO ia_ace_stat

APPENDIX: Data types in base FPGA firmware

SUBTYPE T_SLV5 is std_logic_vector(4 downto 0);

SUBTYPE T_SLV9 is std_logic_vector(8 downto 0);

SUBTYPE T_SLV10 is std_logic_vector(9 downto 0);

SUBTYPE T_SLV25 is std_logic_vector(24 downto 0);

SUBTYPE T_SLV640 is std_logic_vector(639 downto 0);

TYPE JeTOB is record

 Et1: T_SLV9;

 Et2: T_SLV10;

 eta: T_SLV5;

 phi: T_SLV5;

end record;

type TOB_ARRAY_TYPE is array (integer range <>) of JetTOB;

type THRESHOLD_TYPE is array(integer range <>) of T_SLV640;

type TOB_MULT_type is array(integer range <>) of T_SLV25;

TYPE mat_var is array (integer range <>) of

std_logic_vector(numbitsinchan downto 0);

TYPE arr_word is ARRAY (integer range <>) of STD_LOGIC_VECTOR

(numbitsinchan-1 downto 0);

TYPE arr_wordData is ARRAY (integer range <>) of

STD_LOGIC_VECTOR (numbitsinchan-2 downto 0);

TYPE arr_4Xword is ARRAY (integer range <>) of

STD_LOGIC_VECTOR ((numbitsinchan*4)-1 downto 0);

TYPE arr_2Xword is ARRAY (integer range <>) of

STD_LOGIC_VECTOR ((numbitsinchan*2)-1 downto 0);

TYPE del_register_type is ARRAY (numactchan - 1 downto

0,numbitsinchan downto 0) of STD_LOGIC_VECTOR (4 downto 0);

