MICHIGAN STATE
 U N I VERSITY

L1Calo Fibre-Optic Exchange (FOX)

Contributions from: Yuri Ermoline, Brian Ferguson, Murrough Landon, Philippe Laurens, Reinhard Schwienhorst.

Review 3rd November 2017

Daniel Hayden daniel.hayden@cern.ch

LAr Phase-I Upgrade

- The LHC is foreseen to be upgraded during the shutdown period of December 2018 - February 2021.
- Part of this upgrade will improve the selectivity of EM objects, discrimination power against background emerging from pileup, and the trigger readout of LAr.
- The LAr granularity will be increased by 10 times!

Figure 1: The energy depositions of an electron which carries energy of 70 GeV are illustrated for two cases. (Left) Trigger Tower readout, which sums the energy deposition across the longitudinal layers of the calorimeters in an area of $\Delta \eta \times \Delta \varphi=0.1 \times 0.1$.
(Right) Super Cell readout, which provides information for each calorimeter layer for the full η range of the

What is the FOX?

- Need to link the backend of the LAr (LATOMES/DPS) and Tile (TREX), to the feature extractors (FEX).
- Incoming cables contain many fibres that all need to go to specific and different locations (eFEX, jFEX, gFEX).
- The FOX contains this mapping, ideally with a simple and robust scheme, also considering future upgrades.

Hurdles for FOX

- Figure out a mapping scheme that is simple and robust, while also being able to account for specific features.
- FOX internally divided into LArFOX and TileFOX parts.
- Incoming cable \rightarrow FOX \rightarrow Fibres for specific FEX.
- Consists of $6 \times 2 \mathrm{U}$ boxes ($4 \times$ LArFOX, $2 \times$ TileFOX).
- The naming scheme will be important, as there are thousands of fibres with unique routes from source to destination: Backend \rightarrow FOX-In \rightarrow FOX-Out \rightarrow FEX.
- Must also support automatic construction of firmware configuration files.
- Must be updateable for re-routed links and Phase-II.
- Not possible to fix broken or scratched fibres without intervention. Agreed on 100\% spare policy for gFEX.

FEX Details

- Baseline LAr/TREX \rightarrow FEX link speed is $11.2 \mathrm{~Gb} / \mathrm{s}$.
- eFEX:
- 20 EM supercells equivalent to covering 0.1×0.2.
- 16 HAD towers covering $(0.4)^{2}$.
- jFEX:
- 16 towers covering $(0.4)^{2}$.

- Larger ϕ segmentation in special EMEC \& HEC.
- All FCAL supercells available.
- gFEX:
$-8 \times(0.2)^{2}$ towers covering 0.8×0.4 or 0.4×0.8.
- FCAL transmitted as $4-5 \eta$ rings in 16ϕ wedges.

How many Fibres per Latome go to each FEX? Central Latome Example

Total per Latome: 48
Total available to eFEX: 36
Total available to jFEX: 10
Total available to gFEX: 1 (+1 spare)

We know the total, but need to figure out mapping.

EM to eFEX: Layout

- Cells in Eta are numbered from 1-15 in ~ 0.1 or 0.2 increments in delta(eta), depending on where you are (EMB, EMEC, HEC, FCAL).
- Cells in Phi are lettered from A-P, again in 0.1 or 0.2 increments of delta(phi), depending on where you are in the detector.

- Environment overlaps around FEX cores require fibre copies.

jFEX Coverage

One quadrant shown for each jFEX.
Equivalent to 1/4 Connector. One jFEX covers all Phi.

	jFEX_1C				

EM to gFEX: Layout

- The full calorimeter is covered by one gFEX, so no need for overlaps.
- 1 fibre per Latome in the central region (more in EMEC \& FCAL).

LATOMES - EM

FCAL1_C	EMEC/HEC EMECHEC_C1	$\begin{gathered} \text { EMEC0 } \\ \text { EMEC0_C1 } \end{gathered}$	$\begin{aligned} & \text { EMB/EMECO } \\ & \text { EMBECO C1 } \end{aligned}$	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_C1 } \end{gathered}$	$\begin{gathered} \text { EMB0 } \\ \text { EMB0_A1 } \end{gathered}$	EMB/EMEC0 EMBECO_A1	$\begin{gathered} \text { EMEC0 } \\ \text { EMEC0_A1 } \end{gathered}$	EMEC/HEC EMECHEC_A1	FCAL1_A
		$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_C1 } \end{gathered}$	EMB/EMEC1 EMBEC1_C1	$\begin{gathered} \text { EMB1 } \\ \text { EMB1_C1 } \end{gathered}$	EMB1 EMB1_A1	EMB/EMEC1 EMBEC1_A1	$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_A1 } \end{gathered}$		
	EMEC/HECEMECHEC_C2	$\begin{gathered} \text { EMEC0 } \\ \text { EMECO_C2 } \end{gathered}$	EMB/EMECO EMBECO_C2	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_C2 } \end{gathered}$	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_A2 } \end{gathered}$	EMB/EMECO EMBECO_A2	$\begin{gathered} \text { EMEC0 } \\ \text { EMEC0_A2 } \end{gathered}$	EMEC/HEC EMECHEC_A2	
		$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_C2 } \end{gathered}$	EMB/EMEC1 EMBEC1_C2	$\begin{gathered} \text { EMB1 } \\ \text { EMB1_C2 } \end{gathered}$	EMB1 EMB1_A2	EMB/EMEC1 EMBEC1_A2	$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_A2 } \end{gathered}$		
	EMEC/HEC EMECHEC_C3	$\begin{gathered} \text { EMECO } \\ \text { EMECO_C3 } \end{gathered}$	$\begin{aligned} & \text { EMB/EMECO } \\ & \text { EMBECO C } \end{aligned}$	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_C3 } \end{gathered}$	$\begin{gathered} \text { EMBO } \\ \text { EMBO_A3 } \end{gathered}$	EMB/EMECO EMBECO_A3	$\begin{gathered} \text { EMECO } \\ \text { EMECO_A3 } \end{gathered}$	EMEC/HEC EMECHEC_A3	
		$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_C3 } \end{gathered}$	EMB/EMEC1 EMBEC1_C3	$\begin{gathered} \text { EMB1 } \\ \text { EMB1_C3 } \end{gathered}$	EMB1 EMB1_A3	EMB/EMEC1 EMBEC1_A3	$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_A3 } \end{gathered}$		
	EMEC/HEC EMECHEC_C4	$\begin{gathered} \text { EMECO } \\ \text { EMECO_C4 } \end{gathered}$	EMB/EMECO EMBECO_C4	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_C4 } \end{gathered}$	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_A4 } \end{gathered}$	EMB/EMECO EMBECO_A4	$\begin{gathered} \text { EMECO } \\ \text { EMECO_A4 } \end{gathered}$	EMEC/HECEMECHEC_A4	
		$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_C4 } \end{gathered}$	EMB/EMEC1 EMBEC1_C4	$\begin{gathered} \text { EMB1 } \\ \text { EMB1_C4 } \end{gathered}$	EMB1 EMB1_A4	EMB/EMEC1 EMBEC1_A4	$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_A4 } \end{gathered}$		
	EMEC/HECEMECHEC_C5	$\begin{gathered} \text { EMEC0 } \\ \text { EMECO_C5 } \end{gathered}$	EMB/EMECO EMBECO_C5	$\begin{gathered} \text { EMB0 } \\ \text { EMB0_C5 } \end{gathered}$	$\begin{aligned} & \text { EMB0 } \\ & \text { EMBO_A5 } \end{aligned}$	EMB/EMECO EMBEC0_A5	$\begin{gathered} \text { EMECO } \\ \text { EMECO_A5 } \end{gathered}$		
		$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_C5 } \end{gathered}$	EMB/EMEC1 EMBEC1_C5	$\begin{gathered} \text { EMB1 } \\ \text { EMB1_C5 } \end{gathered}$	$\begin{aligned} & \text { EMB1 } \\ & \text { EMB1_A5 } \end{aligned}$	EMB/EMEC1 EMBEC1_A5	$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_A5 } \end{gathered}$		
	EMEC/HEC EMECHEC_C6	$\begin{gathered} \text { EMECO } \\ \text { EMECO_C6 } \end{gathered}$	$\begin{aligned} & \text { EMB/EMEC0 } \\ & \text { EMBEC0 C6 } \end{aligned}$	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_C6 } \end{gathered}$	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_A6 } \end{gathered}$	EMB/EMECO	$\begin{gathered} \text { EMECO } \\ \text { EMECO_A6 } \end{gathered}$	$\begin{aligned} & \text { EMEC/HEC } \\ & \text { EMECHEC_A6 } \end{aligned}$	
		$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_C6 } \end{gathered}$	EMB/EMEC1 EMBEC1_C6	$\begin{gathered} \text { EMB1 } \\ \text { EMB1_C6 } \end{gathered}$	EMB1 EMB1_A6	EMB/EMEC1 EMBEC1_A6	$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_A6 } \end{gathered}$		
	$\begin{aligned} & \text { EMEC/HEC } \\ & \text { EMECHEC_C7 } \end{aligned}$	$\begin{gathered} \text { EMECO } \\ \text { EMECO_C7 } \end{gathered}$	$\begin{aligned} & \text { EMB/EMECO } \\ & \text { EMBECO_C7 } \end{aligned}$	$\begin{gathered} \text { EMBO } \\ \text { EMBO_C7 } \end{gathered}$	$\begin{gathered} \text { EMB0 } \\ \text { EMB0_A7 } \end{gathered}$	EMB/EMECO EMBEC0_A7	$\begin{gathered} \text { EMECO } \\ \text { EMECO_A7 } \end{gathered}$	$\begin{aligned} & \text { EMEC/HEC } \\ & \text { EMECHEC_A7 } \end{aligned}$	
		$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_C7 } \end{gathered}$	EMB/EMEC1 EMBEC1_C7	$\begin{gathered} \text { EMB1 } \\ \text { EMB1_C7 } \end{gathered}$	$\begin{aligned} & \text { EMB1 } \\ & \text { EMB1_A7 } \end{aligned}$	EMB/EMEC1 EMBEC1_A7	$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_A7 } \end{gathered}$		
	EMEC/HEC EMECHEC_C8	$\begin{gathered} \text { EMECO } \\ \text { EMECO_C8 } \end{gathered}$	EMB/EMECO EMBECO_C8	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_C8 } \end{gathered}$	$\begin{gathered} \text { EMB0 } \\ \text { EMBO_A8 } \end{gathered}$	$\begin{aligned} & \text { EMB/EMEC0 } \\ & \text { EMBECO_A8 } \end{aligned}$	$\begin{gathered} \text { EMECO } \\ \text { EMECO_A8 } \end{gathered}$	EMEC/HECEMECHEC_A8	
		$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_C8 } \end{gathered}$	EMB/EMEC1 EMBEC1_C8	$\begin{gathered} \text { EMB1 } \\ \text { EMB1_C8 } \end{gathered}$	EMB1 EMB1_A8	EMB/EMEC1 EMBEC1_A8	$\begin{gathered} \text { EMEC1 } \\ \text { EMEC1_A8 } \end{gathered}$		

$\underline{\text { Key }}$	
LArFOX_B	\square
LArFOX_D	\square
LArFOX_A	\square
LArFOX_C	\square
TileFOX_E	\square
TileFOX_F	\square

LATOMES/TREX - Had

$\underline{\text { Key }}$	
LArFOX_B	\square
LArFOX_D	\square
LArFOX_A	\square
LArFOX_C	\square
TileFOX_E	\square
TileFOX_F	\square

Latomes, Fibres, and FEXs

LATOME type	Detector	$\Delta \Phi$	$\|\eta\|$	\# SCS	\# LATOME boards
EMB	EMB	0.393	$0-0.8$	320	32
EMB/EMEC	EMB,EMEC	0.393	$0.8-1.6$	320	32
EMEC	EMEC	0.393	$1.6-2.4$	312	32
EMEC/HEC	EMEC	0.785	$2.4-3.2$	80	16
FCAL1	FCAL Layer 1	6.280	$3.1-4.9$	192	2
FCAL2	FCAL Layers $2 \& 3$	6.280	$3.2-4.9$	192	2

Table 3: Coverage and number of the various LATOME board types.

	Number of Fibers (Unique)				Channels per Fiber		
LATOME type	eFEX	jFEX	gFEX	all	eFEX	jFEX	gFEX
EMB $_{0}$	$30(16)$	$6(2)$	1	$37(19)$	20	16	8
EMB $_{1}$	$20(16)$	$6(2)$	1	$27(19)$	20	16	8
EMB/EMEC $_{0}$	$30(16)$	$6(2)$	1	$37(19)$	20	16	8
EMB/EMEC $_{1}$	$20(16)$	$6(2)$	1	$27(19)$	20	16	8
EMEC $_{0}$	$24(16)$	$5(2)$	1	$30(19)$	$18-20$	16	8
EMEC $_{1}$	$16(16)$	$5(2)$	1	$22(19)$	$18-20$	16	8
EMEC/HEC $^{15(10)}$	$21(9)$	4	$40(23)$	$16-20$	$8-16$	$14-16$	
FCAL1	-	16	5	21	-	12	16
FCAL2	-	16	4	20	-	12	16

Table 4: Output fiber count and content for each of the LATOME types.

FOX Overview

MICHIGAN STATE UNIVERSITY

Preliminary Rack Layout

- Current plan is to use $6 \times 2 \mathrm{U}$-high boxes.
- eFEX may need extra crate - gets tight.
- Minimal latency path: across racks from DPS and to gFEX, via back to jFEX, and via hole between racks to back of eFEX.

Ribbon Type (27)	LArFOX B	LArFOX D	LArFOX A+C	TileFOX E+F	Total (212)
L1	16	16	16	-	48
L2	16	-	-	-	16
L3	-	16	16	-	32
L4	-	-	8	-	8
L5	-	-	2	-	2
X1	-	-	2	-	2
X2	-	2	-	-	2
X3	-	-	4	-	4
X4	-	-	2	-	2
Y1	-	-	12	-	12
Y2	-	-	4	-	4
B1	-	-	4	-	4
B2	-	-	-	8	8
B3	-	-	-	4	4
C1	8	-	-	-	8
C2	-	-	-	6	6
T1	-	-	-	4	4
T2	-	-	-	4	4
T3	-	-	-	4	4
T4	-	-	-	4	4
G1	-	-	-	2	2
G2	-	-	-	4	4
G3	-	-	-	2	2
G4	-	-	-	2	2
J1	-	-	-	8	8
J2	-	-	-	8	8
J3	-	-	-	8	8

Fibre Mapping

TileFOX Coverage (One quadrant)

-0.8
0.0
0.8

EM Central (B)

TileFOX Coverage (One quadrant)

Not including HEC overlap (+1 fibre for each jFEX to include)

TREX Had jFEX

Detector Location Notation

L_{ϕ}	EMB and EMEC($\left.\mathrm{I}_{\eta}<12\right)$	EMEC($\left.\mathrm{I}_{\eta} \geq 12\right)$	$\mathrm{HEC}\left(\mathrm{I}_{\eta}<12\right)$	$\mathrm{HEC}\left(\mathrm{I}_{\eta} \geq 12\right)$	FCAL	I_{η}	EMB	EMEC	HEC	FCAL
A	0.000-0.098	0.000-0.196	0.000-0.098	0.000-0.196	0.000-0.393	1	0.0-0.1	1.4-1.5	-	3.2-3.6
B	0.098-0.196	0.196-0.393	0.098-0.196	0.196-0.393	0.393-0.785	2	0.1-0.2	1.5-1.6	1.5-1.6	3.6-4.0
C	0.196-0.295	0.393-0.589	0.196-0.295	0.393-0.589	0.785-1.178	3	0.2-0.3	1.6-1.7	1.6-1.7	4.0-4.4
D	0.295-0.393	0.589-0.785	0.295-0.393	0.589-0.785	1.178-1.570	4	0.3-0.4	1.7-1.8	1.7-1.8	4.4-4.9
E	0.393-0.491	0.785-0.982	0.393-0.491	0.785-0.982	1.570-1.963	5	0.4-0.5	1.8-1.9	1.8-1.9	-
F	0.491-0.589	0.982-1.178	0.491-0.589	0.982-1.178	1.963-2.356	6	0.5-0.6	1.9-2.0	1.9-2.0	-
G	0.589-0.687	1.178-1.374	0.589-0.687	1.178-1.374	2.356-2.748	7	0.6-0.7	2.0-2.1	2.0-2.1	-
H	0.687-0.785	1.374-1.570	0.687-0.785	1.374-1.570	2.748-3.140	8	0.7-0.8	2.1-2.2	2.1-2.2	-
I	0.785-0.884	-	0.785-0.884	-	3.140-3.533	8	0.7-0.8	2.1-2.2	2.2-2.3	
J	0.884-0.982	-	0.884-0.982	-	3.533-3.926	0	0.8	2.2-2.3	2.2-2.3	-
K	0.982-1.080	-	0.982-1.080	-	3.926-4.318	10	0.9-1.0	2.3-2.4	2.3-2.4	-
L	1.080-1.178	-	1.080-1.178	-	4.318-4.710	11	1.0-1.1	2.4-2.5	2.4-2.5	-
M	1.178-1.276	-	1.178-1.276	-	4.710-5.103	12	1.1-1.2	2.5-2.7	2.5-2.7	-
N	1.276-1.374	-	1.276-1.374	-	5.103-5.496	13	1.2-1.3	2.7-2.9	2.7-2.9	-
O	1.374-1.473	-	1.374-1.473	-	5.496-5.888	14	1.3-1.4	2.9-3.1	2.9-3.1	-
P	1.473-1.570	-	1.473-1.570	-	5.888-6.280	15	1.4-1.5	3.1-3.2	3.1-3.2	-

Illustrative (Old) Mapping Example

1,2	3	4	5
$7,8,13,14$	9,15	10,16	11,17
$19,20,25,26$	21,27	22,28	23,29
31,32	33	34	35

EMB/EMEC0	EMB0	EMB0
EMB/EMECl	EMB1	$E M B 1$
$B L$	$C R$	AL

Fibre	Type	Location
1	EFEX	8A 7A
2	EFEX	8A 7A
3	EFEX	6A 5A
4	EFEX	4A 3A
5	EFEX	2A 1A
6	EFEX	None
7	EFEX	8B 7B
8	EFEX	8B 7B
9	EFEX	6B 5B
10	EFEX	4B 3B
11	EFEX	2B 1B
12	EFEX	None
13	EFEX	8B 7B
14	EFEX	8B7B
15	EFEX	6B 5B
16	EFEX	4B 3B
17	EFEX	2B 1B
18	EFEX	None
19	EFEX	8C 7C
20	EFEX	8C 7C
21	EFEX	6 C 5 C
22	EFEX	4C 3C
23	EFEX	2C 1C
24	EFEX	None
25	EFEX	8C 7C
26	EFEX	8C 7C
27	EFEX	6C 5C
28	EFEX	4C 3C
29	EFEX	2C 1C
30	EFEX	None
31	EFEX	8D 7D
32	EFEX	8D 7D
33	EFEX	6D 5D
34	EFEX	4D 3D
35	EFEX	2D 1D
36	EFEX	None

Illustrative (Old) Mapping Example

Fibre	Type	Location							
37	JFEX	1A 2A	3A 4A	1B 2B	3B 4B	1C 2C	3C 4C	1D 2D	3D 4D
38	JFEX	1A 2A	3A 4A	1B 2B	3B 4B	1C 2C	3C 4C	1D 2D	3D 4D
39	JFEX	1A 2A	3A 4A	1B 2B	3B 4B	1C 2C	3C 4C	1D 2D	3D 4D
40	JFEX	None None							
41	JFEX	5A 6A	7A 8A	5B 6B	7B 8B	5C 6C	7C 8C	5D 6D	7D 8D
42	JFEX	5A 6A	7A 8A	5B 6B	7B 8B	5C 6C	7C 8C	5D 6D	7D 8D
43	JFEX	5A 6A	7A 8A	5B 6B	7B 8B	5C 6C	7C 8C	5D 6D	7D 8D
44	JFEX	None None							
45	JFEX	None None							
46	JFEX	None None							

Last two rows of "none" to fill space.

Illustrative (Old) Mapping Example

Fibre	Type	Location															
47	GFEX	1A 2A	3A 4A	1B 2B	3B 4B	1C 2C	3C 4C	1D 2D	3D 4D	5A 6A	7A 8A	5B 6B	7B 8B	5C 6C	7C 8C	5D 6D	7D 8D
48	GFEX	1A 2A	3A 4A	1B 2B	3B 4B	1 C 2 C	3C 4C	1D 2D	3D 4D	5A 6A	7A 8A	5B6B	7B 8B	5C 6C	7C 8C	5D 6D	7D 8D

Illustrative (Old) Mapping Example

Figure 1: Diagram of ribbon assembly type L1

Fibre	Cellı	Cell2	Tvpe	Side	Octant	L1 In	L1 Out
1	9A	10A	EMBEC0	A	1	A1	D1
2	9A	10A	EMBEC0	A	1	A2	D2
3	11A	12A	EMBEC0	A	1	A3	D3
4	13A	14A	EMBEC0	A	1	A4	D4
5	15A	2A	EMBEC0	A	1	A5	D5
6	None	None	EMBEC0	A	1	A6	D6
7	9B	10B	EMBEC0	A	1	A7	D7
8	9B	10B	EMBEC0	A	1	A8	D8
9	11B	12B	EMBEC0	A	1	A9	D9
10	13B	14B	EMBEC0	A	1	A10	D10
11	15B	2B	EMBEC0	A	1	A11	D11
12	None	None	EMBEC0	A	1	A12	D12
13	9B	10B	EMBEC0	A	1	A13	C1
14	9B	10B	EMBEC0	A	1	A14	C2
15	11B	12B	EMBEC0	A	1	A15	C3
16	13B	14B	EMBEC0	A	1	A16	C4
17	15B	2B	EMBEC0	A	1	A17	C5
18	None	None	EMBEC0	A	1	A18	C6
19	9 C	10C	EMBEC0	A	1	A19	D13
20	9 C	10C	EMBEC0	A	1	A20	D14
21	11 C	12C	EMBEC0	A	1	A21	D15
22	13C	14 C	EMBEC0	A	1	A22	D16
23	15 C	2 C	EMBEC0	A	1	A23	D17
24	None	None	EMBEC0	A	1	A24	D18
25	9 C	10C	EMBEC0	A	1	A25	C7
26	9 C	10 C	EMBEC0	A	1	A26	C8
27	11C	12 C	EMBEC0	A	1	A27	C9
28	13 C	14 C	EMBEC0	A	1	A28	C10
29	15 C	2 C	EMBEC0	A	1	A29	C11
30	None	None	EMBEC0	A	1	A30	C12
31	9D	10D	EMBEC0	A	1	A31	C13
32	9D	10D	EMBEC0	A	1	A32	C14
33	11D	12D	EMBEC0	A	1	A33	C15
34	13D	14D	EMBEC0	A	1	A34	C16
35	15D	2D	EMBEC0	A	1	A35	C17
136	None	None	EMBEC0	A	1	A36	C18

Illustrative (Old) Mapping Example

[^0]Figure 1: Diagram of ribbon assembly type L1

Fibre	Cellı	Cell2	Tvpe	Side	Octant	L1 In	L1 Out
1	9E	10E	EMBEC1	A	1	B1	C19
2	9E	10E	EMBEC1	A	1	B2	C20
3	11E	12E	EMBEC1	A	1	B3	C21
4	13E	14 E	EMBEC1	A	1	B4	C22
5	15E	2E	EMBEC1	A	1	B5	C23
6	None	None	EMBEC1	A	1	B6	C24
7	9F	10F	EMBEC1	A	1	B7	C25
8	9F	10F	EMBEC1	A	1	B8	C26
9	11F	12F	EMBEC1	A	1	B9	C27
10	13F	14F	EMBEC1	A	1	B10	C28
11	15F	2 F	EMBEC1	A	1	B11	C29
12	None	None	EMBEC1	A	1	B12	C30
13	None	None	EMBEC1	A	1	B13	C31
14	None	None	EMBEC1	A	1	B14	C32
15	None	None	EMBEC1	A	1	B15	C33
16	None	None	EMBEC1	A	1	B16	C34
17	None	None	EMBEC1	A	1	B17	C35
18	None	None	EMBEC1	A	1	B18	C36
19	9G	10G	EMBEC1	A	1	B19	C37
20	9G	10G	EMBEC1	A	1	B20	C38
21	11G	12G	EMBEC1	A	1	B21	C39
22	13G	14G	EMBEC1	A	1	B22	C40
23	15G	2G	EMBEC1	A	1	B23	C41
24	None	None	EMBEC1	A	1	B24	C42
25	None	None	EMBEC1	A	1	B25	D19
26	None	None	EMBEC1	A	1	B26	D20
27	None	None	EMBEC1	A	1	B27	D21
28	None	None	EMBEC1	A	1	B28	D22
29	None	None	EMBEC1	A	1	B29	D23
30	None	None	EMBEC1	A	1	B30	D24
31	9 H	10H	EMBEC1	A	1	B31	C43
32	9 H	10 H	EMBEC1	A	1	B32	C44
33	11H	12 H	EMBEC1	A	1	B33	C45
34	13H	14 H	EMBEC1	A	1	B34	C46
35	15H	2 H	EMBEC1	A	1	B35	C47
-36-1/	None	None	EMBEC1	A	1	B36	C48

Complete Ribbon Mapping
 All 27 Ribbon Types
 [EDMS Document]

Fibre FEX LATOME Side Octant L1 In L1 Out Cell1 Cell2 Cell3 Cell Cell Cell Cell Cell Cell9 Cell10 Cell11 Cell 12 Cell13 Cell14 Cell15 Cell16 Cell17 Cell18 Cell19 Cell20 Cell21 Cell22

FOX Box Internal Detail

LArFOX_A and LArFOX_C Panel Schematic (Example: C, can be replaced with A)

$\frac{0}{\bar{O}}$																					
\bar{D}																					

Intermediate

LArFOX_B Panel Schematic

Key Input from LATOME/TREX	
Input from	
FOX Box	\square
Output to	
FOX Box	\square
Output to	\square
FEX	\square
Intermediate	\square
Unused	\square
Window	图

LArFOX_D Panel Schematic

	$\underset{\substack{\text { Ence } \\ \text { O.Ci }}}{ }$	$\begin{gathered} \text { Enec } \\ 0.0 \\ 0.0 \\ 48 \end{gathered}$	$\begin{aligned} & \text { שunce } \\ & \text { onc } \\ & 43 \end{aligned}$	$\begin{gathered} \text { Euce } \\ \substack{\text { anc } \\ 48} \\ \hline 6 \end{gathered}$	$\begin{gathered} \text { Ence } \\ \text { oncc } \\ 48 \\ 48 \end{gathered}$	$\begin{gathered} \text { enced } \\ \\ 48 \\ 48 \end{gathered}$	$\begin{gathered} \text { שuncic } \\ \text { oci } \\ 4 \end{gathered}$	$\substack{\text { funce } \\ \text { anc } \\ \text { ab } \\ 48}$	$\text { mefer }_{\text {mex }}$		$\substack{\text { trebox } \\ \text { 24 } \\ 24}$		mebex 24 24		$\begin{gathered} \text { meerex } \\ \frac{24}{2} \\ \hline \end{gathered}$	${ }_{\text {mex }}^{\text {mex }}$	$\underset{\substack{\text { mace } \\ \text { OAC }}}{ }$		$\substack { \text { Emec } \\ \begin{subarray}{c}{0,0 \\ \text { as } \\ 48{ \text { Emec } \\ \begin{subarray} { c } { 0 , 0 \\ \text { as } \\ 4 8 } } \\{\hline} \end{subarray}$		$\begin{gathered} \text { fance } \\ \substack{04 E} \\ 4 \end{gathered}$		$\begin{gathered} \text { munc } \\ \substack{\text { ancian } \\ 4} \end{gathered}$	
ㄴ			$\begin{gathered} \text { ance } \\ \substack{1 \\ 490} \\ 4 \end{gathered}$		$\begin{gathered} \text { Eunce } \\ \\ 48 \end{gathered}$	$\begin{gathered} \text { Huck } \\ \substack{C 6 \\ \hline 68 \\ 48} \end{gathered}$	$\begin{gathered} \text { enco } \\ \substack{109} \\ \hline \end{gathered}$			$\begin{aligned} & \text { Terefo } \\ & 24 \end{aligned}$	$\begin{array}{\|c} \substack{\text { mefe } \\ 24 \\ 24} \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c} \substack{2 x} \end{array}$	TileFOX F 24	$\begin{gathered} \text { medex } \\ 27 \end{gathered}$	$\begin{aligned} & \text { Theorex } \\ & 24 \end{aligned}$	$\begin{gathered} \text { Tefer } \\ 24 \end{gathered}$	$\begin{gathered} \text { EMEC } \\ \substack{\text { Hec } \\ \text { 4B }} \\ \hline \end{gathered}$	$\begin{gathered} \text { Huce } \\ \substack{100 \\ 48} \\ 48 \end{gathered}$	$\underset{\substack{\text { func } \\ \\ 4 B}}{ }$	$\begin{gathered} \text { Eace } \\ \\ 4 A \end{gathered}$	$\begin{gathered} \text { EMEC } \\ \substack{\text { Mec } \\ 4 B} \\ 4 \end{gathered}$			(tact

Input from
LATOME/TREX
Input from
FOX Box [

Output to
FOX Box 0

Output to

Intermediate
Unused

Window

TileFOX_E and TileFOX_F Panel Schematic (Example: E, can be replaced with F)

			$\begin{gathered} \text { raxex } \\ \substack{c \\ 6} \end{gathered}$	rex rex rex 48 4			$\begin{gathered} \text { funco } \\ \text { moid } \\ \hline 00 \end{gathered}$		$\substack { \text { cup } \\ \begin{subarray}{c}{\text { mum }{ \text { cup } \\ \begin{subarray} { c } { \text { mum } } } \end{subarray}$		(eat	(tax	$\underbrace{\text { cex }}_{\substack{\text { max } \\ \text { gex } \\ 48}}$			(ex
ㄴ			$\begin{gathered} \text { rex } \\ \substack{\text { rex } \\ \\ 4 \\ 48} \end{gathered}$	$\begin{aligned} & \substack { \operatorname{traxex} \\ \begin{subarray}{c}{x{ \operatorname { t r a x e x } \\ \begin{subarray} { c } { x } } \\ {4} \end{aligned}$		cen	(enco		(eve	(ene		$\underbrace{}_{\substack{\text { max } \\ \text { grax } \\ \text { fex } \\ 48}}$				(ence

Input from ㅁ Output to
FOX Box
 FEX

Intermediate Unused

Window

Output Fibre Order

MTP Connector

eFEX Layout, Connectors, and Naming.

eFEX_C_1	eFEX_B_1	eFEX_A_1
eFEX_C_2	eFEX_B_2	eFEX_A_2
eFEX_C_3	eFEX_B_3	eFEX_A_3
eFEX_C_4	eFEX_B_4	eFEX_A_4
eFEX_C_5	eFEX_B_5	eFEX_A_5
eFEX_C_6	eFEX_B_6	eFEX_A_6
eFEX_C_7	eFEX_B_7	eFEX_A_7
eFEX_C_8	eFEX_B_8	eFEX_A_8

Connector Coverage			
O D $\frac{1}{2}$ 0 0	Central	Central	O D $\frac{1}{0}$ 0 0
Hadronic			

Connector Naming eFEX_C and eFEX_B

EM

1	3,7
	4,8
2	5
	6

1	13	25	37
2,4	14,16	26,28	38,40
3,5	15,17	27,29	39,41
6	18	30	42
7	19	31	43
8	20	32	44
9	21	33	45
10	22	34	46

1	13	25	37
2,4	14,16	26,28	38,40
3,5	15,17	27,29	39,41
6	18	30	42
7	19	31	43
8	20	32	44
9	21	33	45
10	22	34	46

eFEX C Output Ordering

Had

7	1,5	3,6	13,17	1,5	15,18	25,29	27,30
8	2	4	14	2	16	26	28

Spare = Dark Fibre

C	A	B	C
D (Had)			

EM \begin{tabular}{|c|}

\hline | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,4 |
| 3,5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |$|$| 1 | 13 | 25 | 37 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2,4 | 14,16 | 26,28 | 38,40 | |
| 3,5 | 15,17 | 27,29 | 39,41 | |
| 6 | 18 | 30 | 42 | |
| 7 | 19 | 31 | 43 | |
| 8 | 20 | 32 | 44 | |
| 9 | 21 | 33 | 45 | |
| 10 | 22 | 34 | 46 | |
| | 13 | 13 | 25 | 37 |
| 2,4 | 14,16 | 26,28 | 38,40 | |
| 3,5 | 15,17 | 27,29 | 39,41 | |
| 6 | 18 | 30 | 42 | |
| 7 | 19 | 31 | 43 | |
| 8 | 20 | 32 | 44 | |
| 9 | 21 | 33 | 45 | |
| 10 | 22 | 34 | 46 | |

\hline

$|$

\hline 37

\hline 38,40

\hline 39,41

\hline 42

\hline 43

\hline 44

\hline 45

\hline 46

\hline
\end{tabular}

eFEX B Output Ordering

C	A	B	C
D (Had)			

jFEX Layout, Connectors, and Naming:

jFEX_1C Con1	jFEX_2C Con1	jFEX_3C Con1	jFEX_3A Con1	jFEX_2A Con1	jFEX_1A Con1
$\begin{gathered} \text { jFEX_1C } \\ \text { Con? } \end{gathered}$	jFEX_2C Con2	$\begin{gathered} \text { jFEX_3C } \\ \text { Con2 } \end{gathered}$	$\begin{gathered} \text { jFEX_3A } \\ \text { Con? } \end{gathered}$	$\begin{gathered} \text { jFEX_2A } \\ \text { Con2 } \end{gathered}$	$\begin{gathered} \text { jFEX_1A } \\ \text { Con2 } \end{gathered}$
jFEX_1C Con3	jFEX_2C Con3	jFEX_3C Con3	jFEX_3A Con3	jFEX_2A Con3	jFEX_1A Con3
jFEX_1C Con4	jFEX_2C Con4	jFEX_3C Con4	jFEX_3A Con4	jFEX_2A Con4	jFEX_1A Con4

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

$\mathrm{J} 1(1 \mathrm{C} / 1 \mathrm{~A})$
Output
Ordering

51-72 Spare
Spare = Dark Fibre

1	2	3	4	5	6
$7 M$	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

J2 (2C/2A) Output Ordering

51-72 Spare
Spare = Dark Fibre

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

J3 (3C/3A)
 Output Ordering

Had | 49 | 25 | 27 | 29 | 31 | 33 | 35 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 26 | 28 | 30 | 32 | 34 | 36 |
| 50 | 37 | 39 | 41 | 43 | 45 | 47 |
| | 38 | 40 | 42 | 44 | 46 | 48 |

51-72 Spare
Spare = Dark Fibre

gFEX Layout, Connectors, and Naming.

	EM	EM	
$\frac{\text { EM+Had }}{+ \text { FCAL }}$	$\begin{gathered} \text { Con gFEX1 } \\ -2.4<\eta<0.0 \end{gathered}$	Con gFEX2 $0.0<\eta<2.4$	$\underline{\text { EM }+ \text { Had }}$
Con	- $4<\eta<0.0$	$0.0<\eta<2.4$	Con
gFEX5	Had	Had	gFEX6
$\eta<-2.5$	Con gFEX3	Con gFEX4	$\eta>2.5$

Only one gFEX, so name the connectors.

1	9	17
2	10	18
3	11	19
4	12	20
5	13	21
6	14	22
7	15	23
8	16	24
25	33	41
26	34	42
27	35	43
28	36	44
29	37	45
30	38	46
31	39	47
32	40	48

gFEX_1/2 (EM) G3-Type

Part 1 (24w)

Part 2 (24w)
gFEX_3/4 (Had) G4-Type

Part $1(24 w)$
17-24: Spare

Part 2 (24w)
41-48: Spare

Output
Ordering

FOX Box and Assembly Mechanical Details

MICHIGAN STATE UNIVERSITY

Testing and Validation

- Assembly/Ribbon Mapping.
- On Paper: DONE. Checks logical mapping of each ribbon type.
- Automatic: IN PROGRESS. Test program to build the FOX virtually, test every mapping connection of every ribbon from beginning to end.
- Physical Subset: NOT STARTED. Order small set of ribbons to have a limited pass-through of the FOX, test mapping and light loss.
- Final: NOT STARTED. Once full order + spares arrive, test at least one of each ribbon-type, as well as per box / total pass through.
- Light loss, connectivity, etc.
- Done at Physical Subset, and Final stages.
- Mechanical boxes.
- Ribbon mock-ups used initially to design box parameters.
- Physical Subset used to confirm box design.
- Design/Building at MSU allows for changes to be made as needed.

Timeline

- Mid-October: Initial Cost Estimate for Full system from Sylex.
- Early November: First metal box (LArFOX B) produced at MSU. L1Calo Review, to get approval to order subset of assemblies for physical tests.
- December: All metal boxes produced at MSU (LArFOX A/C, LArFOX D, TileFOX E/F). Narrow pass through for all boxes arrives at MSU, i.e. an adequate subset (and spares) of assemblies to test mapping and light loss tests.
- End of January: Assembly and Tests done at MSU (as described above).
- February: Show results in L1Calo Meeting / PRR, and seek approval to order all remaining components from Sylex.
- March-April: Components arrive at CERN.
- April-May: Assembly and testing at CERN, i.e. octopus cables connected to test all mapping paths, some light loss tests of the whole system, possibly even connection to some real latome and FEXs on the surface for full test. At this point, official task completed.
- Afterwards: Provide "7th" box for Surface Test Facility to use, containing a simple set of ribbons that go from a Latome to a variety of FEXs.
- Fall-Back time allowed in the schedule: 3 months.

[^0]: MSU

