
MAC on the HUB
Y. Ermoline, 13.12.2017

V0.2a

This note describe design steps of the MAC on HUB FPGA to work with Ethernet for IPbus.

Contents:

FPGA and PHY chip .. 2

Tri-Mode Ethernet Media Access Controller (TEMAC) ... 5

MAC design approach ... 6

MAC IP and example design generation ... 6

Modifications to the Example Design files .. 8

Testing Tx path .. 9

Re-do Tx test with PHY not programmed ... 13

Testing Rx path .. 15

Remote Loopback in PHY .. 16

Rx tests with PHY not programmed .. 18

PHY – MAC (RGMII) interface test in local loopback .. 24

FPGA and PHY chip

The UltraScale Virtex device on the Hub Module: XCVU125-1FLVC2104I
The PHY: Micrel KSZ9031RNX http://ww1.microchip.com/downloads/en/DeviceDoc/00002117B.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/00002117B.pdf

For each of its two Ethernet Phys Chips (PHY) the Hub's FPGA will need to instance a MAC that
supports an RGMII connection (along with MDIO/MDC lines) to the PHY. All of these signals to/from
the PHY are currently routed through the 1V8 HP Select I/O Bank 68.

After power-up the KSZ9031RNX is configured to RGMII mode if the MODE [3:0] strap-in pins are set
to one of the RGMII mode capability options.

There is no reset signal to the KSZ9031RNX from FPGA. An ad hoc manual push button was attached
to the PHY chip on the HUB for debugging purposes.

The KSZ9031RNX RGMII port connects to HP I/O pins on the FPGA. The RGMII port consists of 12
signals:
• Transmit Clock to the KSZ9031RNX
• Transmit Control (enable) to the KSZ9031RNX
• Transmit Data 0:3 to the KSZ9031RNX
• Receive Clock from the KSZ9031RNX
• Receive Control (enable) from the KSZ9031RNX
• Receive Data 0:3 from the KSZ9031RNX

The KSZ9031RNX includes a MII Management port. This type of port is also called MDIO
Management Data Input/Output. This port allows higher-level devices to monitor and control the
KSZ9031RNX. This port allows direct access to the IEEE defined MIIM registers, and the vendor
specific registers. This port also allows indirect access to the MMD address space and registers. This
port consists of signals: MDC - the clock and MDIO - the data line.

The Hub Module has two KSZ9031RNX PHY chips. There are 14 jumpers associated with each of
these PHY chips. These jumpers are resistors that bias a pin in one direction or the other and this
value is read when the PHY chip first powers up or is reset.

The KSZ9031RNX has 9 pins (called "Strapping Options") that are read in this way at power up.
Because of space limitations and because there is an obvious why that the Hub Module wants some
of these Strapping Options set, 4 of them have only one jumper to pull that pin in the direction that
is obviously needed for rational operation of the Hub Module.

The PHYADx jumpers set the address of the Management Interface Port on the KSZ9031RNX. The
Management Port PHYAD bits 3 and 4 are internally always set to 0,0. Bits 2, 1 and 0 set to Low.
Therefore, the PHYADx set to 0.

The Hub Module provides easy control of only the Mode_0 and Mode_1 lines. This provides the
following 4 options for the Phys chip (Mode bits listed Mode_3, ..., Mode_0).
 1100 RGMII 1000 Base-T full duplex only
 1101 RGMII 1000 Base-T full or half duplex
 1110 RGMII 10/100/100 all but 1000 half duplex
 1111 RGMII 10/100/1000 full or half duplex
Mode: SET MODE {3..0} = 1100 - RGMII 1000 Base-T full duplex only

Traces length (in mm) between the FPGA RGMII Rx pins and PHY chip pins:

PHYS_U22_RX_CLK__PHYAD2 65.80
PHYS_U22_RX_DV__CLK125_EN 66.60
PHYS_U22_RXD0__MODE0 65.00
PHYS_U22_RXD1__MODE1 64.77
PHYS_U22_RXD2__MODE2 66.04
PHYS_U22_RXD3__MODE3 68.23

Tri-Mode Ethernet Media Access Controller (TEMAC)

The Xilinx Tri-Mode Ethernet MAC core is a parameterizable core:
http://www.xilinx.com/products/intellectual-property/temac.html

Tri-Mode Ethernet MAC v9.0, LogiCORE IP Product Guide, Vivado Design Suite, PG051 April 6, 2016:
https://www.xilinx.com/support/documentation/ip_documentation/tri_mode_ethernet_mac/v9_0/
pg051-tri-mode-eth-mac.pdf
In 1000 Mbps mode, the TEMAC core can also connect with industry standard PHY devices.
Optional MDIO interface to managed objects in PHY layers (MII Management)

p.69: Designing with the Core: General Design Guidelines: Design Steps
Generate the core using the Vivado® Design Suite. The core is delivered through the Vivado Design
Suite with an HDL example design built around the core, allowing the functionality of the core to be
demonstrated using either a simulation package or in hardware, if placed on a suitable board.

p.214: Example Design

http://www.xilinx.com/products/intellectual-property/temac.html
https://www.xilinx.com/support/documentation/ip_documentation/tri_mode_ethernet_mac/v9_0/pg051-tri-mode-eth-mac.pdf
https://www.xilinx.com/support/documentation/ip_documentation/tri_mode_ethernet_mac/v9_0/pg051-tri-mode-eth-mac.pdf

MAC design approach

The following design approach is based on the suggestion by Ed Flaherty (University of Cambridge):

Step 1: Generate Xilinx MAC Example Design (UltraScale RGMII).
Step 2: Modify the Example Design to HUB board hardware.
Step 3: Generate Tx packets with built-in Simple Frame Generator and capture them in Wireshark.

Step 4: Packet generation logic replaced with simple read fifo (Rx looped back to Tx).

Step 5: Packets sent from server (Ostinato) returned via the loopback proving Rx and Tx paths.
Step 6: Use Wireshark to check returned packets

MAC IP and example design generation

Use Vivado_2017.1, open project, IP catalogue, generate TEMAC IP (AXI4-Lite, 100MHz, MDOI and
no Frame Filter) and open IP Example Design.

The Example Design is found on hubdev PC: /home/hubuser/Xilinx/Design/IPB/mac_ex_ref

This is kept as a reference; one may open it and see the TEMAC IP parameters and all unmodified
design sources. Here is a structure of the project:

Modifications to the Example Design files

mac_example_design.vhd
 - add Safe Configuration ports, set initial value for the IN ports, buffers for clocks
 - change clock from 200MHz differential clock to 125MHz single ended clock
 - remove unused ports, set controls in the design
 - set in component mac_basic_pat_gen MAX_SIZE = MIN_SIZE = packet size = X"040" - 64 bytes
 - install VIO to control enable_pat_gen => gen_tx_data

mac_example_design_clocks.vhd
 - IBUFG; change clock from 200MHz differential clock to 125MHz single ended clock

mac_clk_wiz.vhd
 - change clock from 200MHz differential clock to 125MHz single ended clock
 - Tried to modify mac_clk_wiz.vhd to get ref clock 300.0 MHz instead of 333.333 MHz
 (now it is commented, so clock is still 333.333 MHz)

mac_axi_lite_sm.vhd
 - set PHY_ADDR to zero instead of PHYAD 7 (as on the HUB board)
 - modify state machine: implement remote and local loopback in PHY

mac_support.vhd
Generate and install 32-bit ILA in trimac_fifo_block/trimac_sup_block(mac_support.vhd)
 -- Receiver Interface
 probe0(7 downto 0) => rx_axis_mac_tdata_int,
 probe0(8) => rx_axis_mac_tvalid_int,
 probe0(9) => rx_axis_mac_tlast_int,
 probe0(10) => rx_axis_mac_tuser_int,
 -- Transmitter Interface
 probe0(18 downto 11) => tx_axis_mac_tdata,
 probe0(19) => tx_axis_mac_tvalid,
 probe0(20) => tx_axis_mac_tlast,
 probe0(21) => tx_axis_mac_tuser(0),
 probe0(22) => tx_axis_mac_tready_int,

mac_support_resets.vhd
 Reset circuitry for the IDELAYCTRL reset.
 The IDELAYCTRL must experience a pulse, which is at least 50 ns in duration.
 This is ten clock cycles of the 200MHz ref clk.
 For 333MHz ref clock shoudl be 17 clock cycles ?
 - increas the IDELAYCTRL reset - 20 clock cycles of 333MHz ref clock (~60 ns)

mac_example_design.xdc
 - add ports for the HUB safe configuration
 - change clock from 200MHz differential clock to 125MHz single ended clock

mac_user_phytiming.xdc
 - tried to set different delay and adjust for PCB layout

Testing Tx path

Generate Tx packets with built-in Simple Frame Generator (mac_basic_pat_gen.vhd) and capture
them in Wireshark - FPGA (Frame Generator -> MAC) -> PHY -> Ethernet -> PC (Wireshark).

The Tx Design is found on hubdev PC: /home/hubuser/Xilinx/Design/IPB/mac_ex_tx

In mac_example_design.vhd:

- Generate and install 4-bit VIO:
 clk => gtx_clk_bufg,
 probe_out1(0) => gen_tx_data, --> to control Tx on/off

- set in component mac_basic_pat_gen MAX_SIZE = MIN_SIZE
 component mac_basic_pat_gen
 generic (
 DEST_ADDR : bit_vector(47 downto 0) := X"da0102030405";
 SRC_ADDR : bit_vector(47 downto 0) := X"5a0102030405";
 --MAX_SIZE : unsigned(11 downto 0) := X"1f4";
 MAX_SIZE : unsigned(11 downto 0) := X"040";
 MIN_SIZE : unsigned(11 downto 0) := X"040";

In mac_support.vhd
 - Generate and install 32-bit ILA in trimac_fifo_block/trimac_sup_block (mac_support.vhd)
 clk => gtx_clk,
 -- Transmitter Interface
 probe0(18 downto 11) => tx_axis_mac_tdata,
 probe0(19) => tx_axis_mac_tvalid,
 probe0(20) => tx_axis_mac_tlast,
 probe0(21) => tx_axis_mac_tuser(0),
 probe0(22) => tx_axis_mac_tready_int,

Generate bit stream, configure FPGA in Hardware Manager and look into ILA in mac_support.vhd:

 - set trigger on rising edge of tx_axis_mac_tvalid

 - control enable_pat_gen => gen_tx_data via VIO

 - packet size = X"040" - 64 bytes, 46 bytes of data from 2e to 01 - 64-(6+6+2+4=18)=46

Login into hubttc, open Wireshark, see packets:

- set in component mac_basic_pat_gen MAX_SIZE = X"045" - to see six different packets:

1st packet: 2e (46 data bytes)

6th packet: 33 (51 data bytes)

- see them in Wireshark:

Conclusion: data can be correctly sent out (Tx) via MAC and PHY

Re-do Tx test with PHY not programmed

The Tx Design is found on hubdev PC: /home/hubuser/Xilinx/Design/IPB/mac_ex_tx_nophy

mac_axi_lite_sm.vhd
 - use unmodified original file from the PC: /home/hubuser/Xilinx/Design/IPB/mac_ex_ref
 - PHYADD=7 -> no PHY programming, as PHYADD set to “0” in the HUB HW

In mac_example_design.vhd:
 - Generate and install 4-bit VIO and 32-bit ILA
 - use ILA on signals from basic_pat_gen_inst : mac_basic_pat_gen

Run after the PHY reset:
Testing Tx, trigger on ILA tx_axis_fifo_tvalid, use VIO gen_tx_data to control
Packet size = X"040" - 64 bytes, 46 bytes of data from 2e to 01 - 64-(6+6+2+4=18)=46
(mac_basic_pat_gen generates 60 bytes, 4 bytes added by MAC?)

Comments on address swap:

In mac_basic_pat_gen:
component mac_basic_pat_gen
 generic (
 DEST_ADDR : bit_vector(47 downto 0) := X"da0102030405";
 SRC_ADDR : bit_vector(47 downto 0) := X"5a0102030405";

mac_axi_pat_gen.vhd generates destination and source addresses as above
DEST_ADDR "da0102030405";
SRC_ADDR "5a0102030405";

mac_address_swap.vhd swap destination and source addresses (if enabled) and on the waveforms:
DEST_ADDR "5a0102030405";
SRC_ADDR "da0102030405";

Wireshark:

Testing Rx path

To test Rx path, the Ostinato program on PC is used to generate packets. The Ostinato stream
(vc709.ostm) is on the hubttc PC in the directory: hubuser/vc709

Remote Loopback in PHY
Micrel KSZ9031RNX http://ww1.microchip.com/downloads/en/DeviceDoc/00002117B.pdf p. 25:
3.13.2 REMOTE (ANALOG) LOOPBACK
This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and
receive data paths between KSZ9031RNX and its link partner, and is supported for 1000BASE-T full-duplex mode only.
The loopback data path is shown in Figure 3-6.
1. The Gigabit PHY link partner transmits frames to KSZ9031RNX.
2. Frames are wrapped around inside KSZ9031RNX.
3. KSZ9031RNX transmits frames back to the Gigabit PHY link partner.

http://ww1.microchip.com/downloads/en/DeviceDoc/00002117B.pdf

The following programming steps and register settings are used for remote loopback mode.
1. Set Register 0h,
- Bits [6, 13] = 10 // Select 1000 Mbps speed
- Bit [12] = 0 // Disable auto-negotiation
- Bit [8] = 1 // Select full-duplex mode
Or just auto-negotiate and link up at 1000BASE-T full-duplex mode with the link partner.
2. Set Register 11h,
- Bit [8] = 1 // Enable remote loopback mode

The Remote Loopback Design on hubdev: /home/hubuser/Xilinx/Design/IPB/mac_ex_rem_loop

In mac_example_design.vhd:
axi_lite_controller : mac_axi_lite_sm
 - phy_loopback => '1', -- in YE enable loopback
basic_pat_gen_inst : mac_basic_pat_gen
 - enable_pat_gen => '0', -- YE '0' - no Tx (disabled)

In mac_axi_lite_sm.vhd
 - set PHY_ADDR to zero instead of PHYAD 7 (as on the HUB board)
 - modify state machine: implement remote and local loopback in PHY (new states and regs)
 - add new reg constant PHY_RMT_LPB in mac_axi_lite_sm.vhd
 - modify states: MDIO_RESTART and MDIO_LOOPBACK
 - enable relote loopback code part and disable local loopback code part

Test remote loopback - shall see the Ostinato frames in Wireshark: works - sending 5 packet from
Ostinato, Wireshark see 10 packets (5 packeta are sent by Ostinato and the other 5 packets is the
ones send back by the PHY in the remote loopback mode).

Conclusion: data correctly received by PHY from Ostinato and send back by PHY (in remote loopback
mode) to Wireshark.

Rx tests with PHY not programmed

Use Design: /home/hubuser/Xilinx/Design/IPB/mac_ex_tx_nophy
 - disable Tx : hw_vio_1: enable_pat_gen => '0',
 - change trigger on ILA from tx_axis_fifo_tvalid to rx_axis_fifo_tvalid,
 - send packets from Ostinato (stream – vc709.ostm)
 - do not see any in ILA Rx
If the frame is errored, that frame is dropped by the receive FIFO mac_rx_client_fifo.vhd

Use Design: /home/hubuser/Xilinx/Design/IPB/mac_ex_rx_nophy
Receive FIFO mac_rx_client_fifo.vhd too complicated, make design with simple FIFO:
Replace mac_rx_client_fifo by simple rx_fifo in mac_ten_100_1g_eth_fifo, keep mac_tx_client_fifo
 - send packets from Ostinato
 - trigger on ILA rx_axis_fifo_tvalid,
 - do not see any in ILA Rx

Modify mac_ten_100_1g_eth_fifo - connect Tx to Rx by simple FIFO (to understand a pattern
checker, no connections to the MAC) mac_rx_client_fifo and mac_tx_client_fifo are not used
 - send packets from mac_basic_pat_gen – from mac_axi_pat_gen.vhd
 - use VIO to control sending packets, check data and swap address:
 probe_out0(0) => enable_address_swap,
 probe_out1(0) => gen_tx_data,
 probe_out2(0) => chk_tx_data,
 probe_out3(0) => reset_error (in mac_example_design_resets set reset_error => reset_error)
 - trigger on ILA tx_axis_fifo_tvalid (or rx_axis_fifo_tvalid):
 - see Tx transmitted packets at the Rx output of the simple FIFO rx_fifo (why should be not?)

Check pattern checker operation:
Description: A simple pattern checker - expects the same data pattern as generated by the pat_gen
with the same DA/SA order (it is expected that the frames will pass through two address swap
blocks, in our case there is only one). The checker will capture the error and hold until reset.
 - disable address_swap, enable chk_tx_data, enable gen_tx_data: no frame error
 - disable gen_tx_data, enable_address_swap, enable chk_tx_data, enable gen_tx_data: frame error
(see capture below with the frame error set to ‘1’).

Frame error can be reset by setting to ‘1’ reset_error in VIO, then re-run the trigger.

Use Design: /home/hubuser/Xilinx/Design/IPB/mac_ex_rx_2fifo_nophy
Use previous design mac_ex_rx_nophy and modify mac_ten_100_1g_eth_fifo – instantiate two
simple FIFOs in place of mac_rx_client_fifo and mac_tx_client_fifo

First test – send packets with mac_basic_pat_gen:
 - disable address_swap, trigger on ILA tx_axis_fifo_tvalid
 - see in Wireshark:

Second test: send 5 packets from Ostinato (stream – vc709.ostm)

This is sent packets as seen by Wireshark:

 - disable gen_tx_data and address_swap
 - trigger on ILA rx_axis_fifo_tvalid,
 - see (wrong) packet at the ILA Rx fifo output and the same packet sent by mac_basic_pat_gen to
the Tx fifo input (below: full packet, the start and the end of packet):

However, no packets are sent back by MAC+PHY to Wireshark that means the packet layout is not
correct.

Send another 5 packets from Ostinato, see 2 return packets in Wireshark:

This is packet which is sent by Ostinato:

This sent packet is not correctly received at the end of the Rx fifo from PHY+MAC, instead the wrong
packet it received, and then it send by MAC+PHY to Wireshark (this is packet received by Wireshark
from the HUB (FPGA Tx -> MAC -> PHY -> Wireshark):

This received by Wireshark packet is exactly what is sent by the FPGA Tx (the MAC+PHY transmitter
path works correctly, as it was already seen):

From the remote loopback test (see above) one may conclude that the data from Ostinato are
correctly received by the PHY, so data packets are corrupted on the Rx path somewhere between
the PHY and the MAC or in the MAC.

Upgraded project to Vivado 2017.3.

PHY – MAC (RGMII) interface test in local loopback

Next test will be the local loopback – data are generated by the mac_basic_pat_gen, sent to the
MAC via TX fifo and then sent to the PHY which is programmed into local loopback mode to return
the packets back to the MAC.

Micrel KSZ9031RNX http://ww1.microchip.com/downloads/en/DeviceDoc/00002117B.pdf p. 25:
3.13.1 LOCAL (DIGITAL) LOOPBACK
This loopback mode checks the RGMII transmit and receive data paths between KSZ9031RNX and external
MAC, and is supported for all three speeds (10/100/1000 Mbps) at full-duplex.
The loopback data path is shown in Figure 3-5.
1. RGMII MAC transmits frames to KSZ9031RNX.
2. Frames are wrapped around inside KSZ9031RNX.
3. KSZ9031RNX transmits frames back to RGMII MAC.

The following programming steps and register settings are used for local loopback mode.
For 1000 Mbps loopback,
1. Set Register 0h,
- Bit [14] = 1 // Enable local loopback mode
- Bits [6, 13] = 10 // Select 1000 Mbps speed
- Bit [12] = 0 // Disable auto-negotiation
- Bit [8] = 1 // Select full-duplex mode
2. Set Register 9h,
- Bit [12] = 1 // Enable master-slave manual configuration
- Bit [11] = 0 // Select slave configuration (required for loopback mode)

The Remote Loopback Design on hubdev: /home/hubuser/Xilinx/Design/IPB/mac_ex_loc_loop

Use previous design mac_ex_rx_2fifo_nophy with 2 simple fifos

In mac_example_design.vhd:
axi_lite_controller : mac_axi_lite_sm
 - phy_loopback => '1', -- in YE enable loopback

Use file mac_axi_lite_sm.vhd from mac_ex_rem_loop design:
In mac_axi_lite_sm.vhd
 - set PHY_ADDR to zero instead of PHYAD 7 (as on the HUB board)
 - modify state machine:
 - enable local loopback code part and disable remote loopback code part

http://ww1.microchip.com/downloads/en/DeviceDoc/00002117B.pdf

