

Joint L1Calo Meeting

Status of the FEX ATCA Hub Project

Wade Fisher, Dan Edmunds, Philippe Laurens, Yuri Ermoline

29 January 2015

Outline

Today: Focus on recent evolution of the project

Action items from the Hub PDR

- TTC/Clock interface
- GbEthernet interface
- Signal integrity of fabric interface fan-out to ROD/Hub targets

Planning for prototype Hub production

- Need to identify total number of prototypes
- General call for prototype requests

Level 1 trigger in Phase 1

FEX ATCA Hub

ATCA Hub Preliminary Drawing

ATCA Hub Preliminary Drawing

16-Sep-2014 ⊕ 2 € HUB ROD ROD ROD **FPGA** Optical **FPGA Optical** Mezzanine 1/0 Output TTC Input TTC HUB Clock& Readout FMC **FPGA** Data Data Fanout Fanout **Un-managed** 1 to 2 Hub Module **Gigabit** Sept-2014 Ethernet IPMC Module Switch **Power Supplies** FPGA GTH VAUX SWITCH VDDA33

L1Calo HUB Module

Preliminary Design Review

Preliminary design review (PDR) for Hub took place Oct 1 2014

- Report available at https://edms.cern.ch/document/1415974/0.3
- Spec available at https://edms.cern.ch/nav/P:ATL-D:V0/P:ATL-0000010197:V0/TAB3

PDR was very positive, reflected good alignment of L1Calo group

- Reviewers present from all interfacing systems:
 - e/j/gFEX
 - ROD
 - TTC/FELIX
 - L1Calo/TDAQ/Physics
- The Hub design was approved, with action items
 - No show stoppers, but I will review the main points relevant to recent progress

- 1) Investigate and finalize decision on clock/TTC interface
 - Original plan was to host a TTC-FMC mezzanine on the Hub
 - Pros: Relatively simple, know solution.
 - Cons: not future-proof; TTC-FMCs are scarce; eats a lot of space

ATCA Hub Preliminary Drawing

Since PDR, now plan to not include TTC FMC site on Hub PCB

- Frees up precious floor space for other constraints
 - Important as ROD form factor evolves
- We plan to implement a SFP interface to receive clock signals
 - Receive FELIX/GBT input in full system (& CERN integration test stand)
 - Receive GLIB+TTC FMC input in test stands requiring more than 2 shelves

Outstanding issue: still need to understand more about what we will receive & any related FW

L1Calo HUB Module

- 1) Investigate and finalize decision on clock/TTC interface
 - Original plan was to host a TTC-FMC mezzanine on the Hub
 - Pros: Relatively simple, know solution.
 - Cons: not future-proof; TTC-FMCs are scarce; eats a lot of space
 - Now planning on simple SFP or Mini-Pod receiver
 - Hopefully reduces (eliminates?) need for 2nd prototype run.

**MSU has 4 TTC-FMC cards available. They're scarce, so if you're looking for one just let us know.

- 1) Investigate and finalize decision on clock/TTC interface
 - Original plan was to host a TTC-FMC mezzanine on the Hub
 - Pros: Relatively simple, know solution.
 - Cons: not future-proof; TTC-FMCs are scarce; eats a lot of space
 - Now planning on simple SFP or Mini-Pod receiver
 - Hopefully reduces (eliminates?) need for 2nd prototype run.

- 2) GbEthernet implementation should be streamlined & finalized
 - Larger worry about ability to get required data from manufacturers, potentially forcing us to a more complicated design.

Ethernet Implementation

Implementation of Ethernet interfaces was a potential complication

- Ideally use cheap, unmanaged GbE switches for simplicity (Eg, BCM53128)
 - Detailed specs hidden by IP protections
 - MSU has made progress with Marvel and Broadcom
- Current plan: 3 8-port GbE swiches, with option to link switches

Major concern about access to GbE switch technical specs has been resolved for Broadcom switches.

* I'm happy to supply instructions for accessing to anyone who is interested.

- 1) Investigate and finalize decision on clock/TTC interface
 - Original plan was to host a TTC-FMC mezzanine on the Hub
 - Pros: Relatively simple, know solution.
 - Cons: not future-proof; TTC-FMCs are scarce; eats a lot of space
 - Now planning on simple SFP or Mini-Pod receiver
 - Hopefully reduces (eliminates?) need for 2nd prototype run.
- 2) GbEthernet implementation should be streamlined & finalized
 - Larger worry about ability to get required data from manufacturers, potentially forcing us to a more complicated design.
- 3) Careful studies of high-speed links in Hub-ROD data path should be finalized
 - Several worries here: ROD-Hub interface, FEX data fanout, backplane bandwidth

Hub-ROD Interface: Current Areas of Focus

- ❖ Signal Integrity for 10Gbps fabric interface
 - Requested to push for highest feasible backplane speed
 - Makes 74x high-speed link fanout hard
 - Potential cost impact
 - "Guaranteed success" fanout chip costs ~\$300 (\$24k / board!!)
 - We've agreed on a likely candidate to test: NB7VQ14M
 - » 1:4 fanout, with equalization
 - » Reasonably priced (~\$8/chip)

- Signal Integrity for 10Gbps mezzanine structure
 - Considered to be a high risk aspect of the Hub-ROD architecture
 - Cadence "Sigrity" training in progress
 - Ed can say more about this in his talk

Studying Hub-ROD Signal Traces

Proposed MEG-Array to FPGA GBT Connections

- Traces are optimised as much as possible
- Does not follow the proposed scheme of having readout data on one connector
- Mapping of specific Quads to specific Readout Data (2 FEX Channels per 3 Quads)
 appears to be better done at Hub level
 - More degrees of freedom?

Studying Hub-ROD Signal Traces

Hub->ROD: Dual MEG Array 400: Proposed pin usage

SUBJECT TO CHANGE Last Updated: 16-Sep-2014

Col:	Α	В	С	D	Ε	F	G	н	1	J		
Row											Notes	
1	Т	G	Т	V	V	V	V	V	S	S	(1)Differential Signal polarities are arbitrary: there	
2	G	+	G	V	V	٧	٧	V	S	S	may be a case for re-arranging them.	
3	G	-	G	Т	G	Т	S	S	S	S	,	
4	Т	G	+	G	+	G	S	S	S	S	(2) Terminator pins have 50Ω to Ground: not fully	
5	Т	G	-	G	-	G	S	S	S	S	established if better than Grounds	
6	G	+	G	+	G	T	S	S	S	S		
7	G	-	G	-	G	T	S	S	S	S	(3) The Signal pins are available for the other ROD-	
8	T	G	+	G	+	G	S	S	S	S	Hub signals	
9	Т	G	-	G	-	G	S	S	S	S		
10	G	+	G	+	G	T	S	S	S	S	[4] Pins rated at 0.45 A/pin, so 20 OK for 9A: i.e.	
11	G	-	G	-	G	T	S	S	S	S	108 W at 12V. All 12V on one connector?	
12	T	G	+	G	+	G	S	S	S	S		
13	T	G	-	G	-	G	S	S	S	S	[5] M. A. / [1] M. A. A. f	
14	G	+	G	+	G	T	S	S	S	S	[5] Mate/Un-Mate forces for 400 pins are 140/80N	
15	G	-	G	-	G	T G	_	S	_	-		
16	T	G	+	G	+		S	_	S	S	[6] Only have to route Differential Pairs 4 columns	
17	T	G	-	G	-	G	S	S	S	S	back: simpler, less layers?	
18	G	+	G	+	G	T	S			S		
19	G	-	G	-	G	T	S	S	S	S		
20	Ţ	G	+	G	+	G	S	S	S	S		
21	T	G	-	G	-	G	S		_	S		
22	G	+	G	+	G	T	S	S	S	S		
23	G	-	G	-	G	T	S			S		
24	T	G	+	G	+	G	S	S	S	S		
25	T	G	-	G	-	G	S	S	S	S		
26	G	+	G	+	G	T	S	S	S	S		
27	_	-	G	-			_	_	_	S		
28	Ţ	G	+	G	+	G	S	S	S	S		
29	Т		- G		- G	T	S	S	S	S		
30	G	+	_	+			S	S	S	S		
31 32	G	- G	G +	- G	G +	T G	S	S	S	S		
	_	_	_	_	_		S	S	S	S		
33	G	G +	- G	G +	- G	G	S	S	S	S		
34	G		G	-	G	<u>+</u>	S	S	S	S		
35		-		- G	_	G	S	S	S	S		
36	Ţ	G	+	G	+	G	S	S	S	S		
37	G		- 6	T	-	T	S	S	S	$\overline{}$		
38 39	G	+	G	V	G V	V	5 V	5 V	S	S		
	T	-	T	V	V	V	V	V	S	S		
40	-	G	-	V	V	V	V	V	3	3	Total Pins	

Notes				
(1)Differential Signal polarities are arbitrary: there may be a case for re-arranging them.				
(2) Terminator pins have 50Ω to Ground: not fully established if better than Grounds				
(3) The Signal pins are available for the other ROD- Hub signals				
[4] Pins rated at 0.45 A/pin, so 20 OK for 9A: i.e. 108 W at 12V. All 12V on one connector?				

Signal Pairs Grounds **Terminators** 18 12V Power 0 36 Other Signals

Total Pins							
for Signal Pairs	72						
Grounds	114						
Terminators	42						
12V Power	20						
Other Signals	152						
Total Totals	400						

Note: this diagram is in flux, this is not the current picture.

ROD Test/Host Platform

Test platform designed to interface with Xilinx test board (VC709)

Provides a wide range of possible test capabilities

 Study signal link layout and signal splittings

Prototype Module Production

- ❖ MSU is hoping to begin purchasing components for prototype boards
 - And also production boards where it makes sense.
 - Need to know the total number of Hub prototypes
- Current Prototype Plans:
 - Full 2-Hub setups:
 - MSU, CERN (4 total)
 - Single-Hub setups:
 - Rutherford, Brookhaven, Birmingham/Cambridge (3 total)
 - Anyone else? Need to know soon.
- Outstanding question about who pays for test rig modules.
 - Should resolve this in the context of counting # prototypes.

Summary

- The ATCA FEX Hub project is coming along well
 - Several worries have been resolved, a few remain
 - Interactions with L1Calo community very positive, very productive
- PDR complete, design approved
 - Action items are not painful and we're on track addressing them
 - A few have potential impact on project, but nothing implying changes to budget/schedule
- We're continuing forward on prototype design, with the goal of delivery to CERN Sept 2015.