

Joint L1Calo Meeting

Status of the FEX ATCA Hub Project

Dan Edmunds, Yuri Ermoline Wade Fisher, Philippe Laurens, Pawel Plucinski

09 February 2016

FEX ATCA Hub

ATCA Hub Current Drawing

FEX Hub Module, 09 Feb 2016

ATCA Hub Current Drawing

Final Decision: Backplane Speeds

Backplane link speed options have been reduced

- July 2015: 10.26 Gbps option was eliminated.
- Oct 2015: No use case for 3.2 Gbps foreseen: eliminated.
- Currently supported Hub speeds: 4.8, 6.4, 9.6 Gbps

Zone 2 Fabric Traffic: anticpate different link speeds

- FEX⇒Hub⇒ROD (9.6 Gbps)
- Clock/TTC⇒ROD/FEX (4.8 Gbps)
- Hub1/2⊏>Hub2/1 (4.8 Gbps)

Note: FELIX interface may change slightly in Phase-2, but Lorne has confirmed Phase-1 Tx speeds will be supported.

Final Decision: Optical Signal Routing

Given front-panel space limitations, current design plans to use RTM for optical signal feed-through

- Sharing agreement with ROD has been struck
- No apparent conflicts in the several use cases investigated

Final Decision: GbE Interconnect

Multi-port gigabit Ethernet via bonded 8-channel chips

- Provides sufficient FEX, Hub and outside connections
- Independent networks on each hub maximize FEX Ethernet bandwidth

Design choices

- Front-panel jumpers in initial design retained
 - Choice maximizes board flexibility, see next slide
 - Test-bench/single-Hub usage improved with direct access to ROD, Hub and IPMC
- Option to split to three independent GbE networks per Hub may not be feasible
 - Prototype design has insufficient frontpanel space to host extra ports
 - Exploring internal logic to switch between connection options.

Final Decision: GbE Interconnect

Hub-Module Ethernet Switch Connections

3

FPGA Choice

Finalized decision to migrate from Virtex-7 to Virtex-Ultrascale

- Previous FPGA choice: XC7VX550T/690T (80 MGTs)
- Ultrascale options: XCVU125 (80 MGTs)

Driving considerations

- Can design to the XCVU160
 - Pin compatible with XCVU125
 - Option to fully connect MiniPod channels
 - Cost-neutral with XC7VX1125T (smallest V7 with sufficient MGTs)
- XC7VX550 ⇒ XCVU125: 3x in effective logic
 - Ensure option to emulate ROD-like functionality
 - Opens many doors at Phase-2
- Simplifies Hub routing
 - Ultrascale MGT quads have 2 QPLLs; V7 has 1 QPLL, 1 CPLL
- Long-term support more favorable

Ultrascale Nuances

Next-gen Xilinx chips host new "stacked silicon interconnect" design

- Multiple silicon die (Super Logic Regions, SLR) hosted on a single chip
 - Bonded with image sensor microbump tech, hosting "through-silicon vias"
- SSI chips behave somewhat differently than single-die chips
 - High bandwidth timing and I/O connections need careful consideration

Ultrascale Nuances

Next-gen Xilinx chips host new "stacked silicon interconnect" design

- Multiple silicon die (Super Logic Regions, SLR) hosted on a single chip
 - Bonded with image sensor microbump tech, hosting "through-silicon vias"
 - SSI chips behave somewhat differently than single-die chips
 - High bandwidth timing and I/O connections need careful consideration

Range of best-practices to be found deep in Xilinx literature

- Place clock pin / MMCMs in same SLR as timing critical I/O interfaces (avoid driving timing critical I/O interfaces from a different SLR)
- Clock pin choices should be balanced across upper & lower SLR
- I/O interfaces should not span across SLRs
- Pay attention to data flow across SLRs

	Kintex UltraScale		Virtex UltraScale				Virtex UltraScale+				
Device	KU085	KU115	VU125	VU160	VU190	VU440	VU5P	VU7P	VU9P	VU11P	VU13P
# SLRs	2	2	2	3	3	3	2	2	3	3	4
SLR Width (in regions)	6	6	6	6	6	9	6	6	6	8	8
SLR Height (in regions)	5	5	5	5	5	5	5	5	5	4	4

Table 14: UltraScale and UltraScale+ 3D IC SLR Count and Dimensions

FEX Hub Module, 09 Feb 2016

Original schedule was for January prototype production run.

- Delay in procurement of Ultrascale FPGAs caused 1-2 month delay
 - FPGAs delivered early January
- Complications of Xilinx SSI design have set introduced further setback
 - Reworking of FPGA connections required
 - Aurora lanes cannot be bonded across SLRs
 - Clock-distribution needs to be balanced between SLRs to ensure high-speed timing constraints be met
 - HPIO lines should not be split over SLRs
- Routing currently being reconfigured for SSI best-practices
- High-speed FEX data interfaces to Hub and ROD each need to be touched
 - Minor layout changes anticipated
- Expect prototype production to be delayed O(months)
 - Contingency-loaded schedule places prototype modules on summer timescale.
- Firmware development continues in parallel
- Development on V-7 and Ultrascale dev boards providing good test beds
- Firmware schedule anticipates core and extended functions for Hub modules

The ATCA FEX Hub project is coming along well, but with delays

- Several issues are being resolved, a few remain
 - Move to Ultrascale introduces a second delay, but not critical
 - o Backplane link speed remains to be demonstrated

Firmware effort progressing in parallel

- Experience with both V-7/Ultrascale dev boards promising
 - Development of FW modules for prototype maturing
- Hub prototypes anticipated to be fully vetted with support firmware on timescale of Q3 2016
 - We expect steps to production Hub modules to be minor

Design Changes: IPMC

Not so much a design change as change in understanding

- We require that the IPMC provide geographical information
 - Primary importance: shelf number

This IPMC functionality was previously in question

- This functionality would otherwise have to be established ad hoc
- Stony Brook LAr team has established IPMC-Shelf manager communications
 - Blade power and hot-swap functions appear to be capable
 - Currently no support for mezzanine communication / power management
 - We weren't counting on this in our ROD/Hub design

