

ATLAS DCS

FSM Integration Guideline

Document Version: 3.0
Document ID: ATL-DQ-ON-0010
Document Date: 01.02.2016
Document Status: In Work

Institutes and Authors:

CERN: A. Barriuso Poy, S. Schlenker

In Work page 1

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

Table of Contents

1. PREFACE .. 3
2. FSM ARCHITECTURE ... 3

2.1. GLOBAL CONTROL STATION .. 3
2.2. SUB-DETECTOR CONTROL STATION ... 3
2.3. LOCAL CONTROL STATION .. 4

3. FSM IMPLEMENTATION .. 5
3.1. RECOMMENDATIONS .. 5
3.2. STATE & STATUS ... 6
3.3. FSM HIERARCHY ... 10

4. FSM NAMING CONVENTION .. 10
4.1. FSM OBJECT NAMES ... 10
4.2. FSM OBJECT & DEVICE TYPE NAMES ... 11
4.3. WINCCOA PANEL NAMES .. 11

5. FSM USER INTERFACE ... 12
5.1. SCREEN LAYOUT ... 12
5.2. OPERATOR INTERFACE DESIGN PROBLEM ... 13
5.3. ACCESS TO THE FWFSMATLAS MODULE .. 14

6. OUTLOOK .. 14
APPENDIX A. FSM HIERARCHY IMPLEMENTATION .. 15

A.1. REQUIREMENTS... 15
A.2. CREATION OF FSM UNIT TYPES ... 16
A.3. CREATION OF THE FSM HIERARCHY TREE ... 21
A.4. USEFUL FUNCTIONS .. 22

APPENDIX B. BUILDING THE OPERATOR INTERFACE.. 24
B.1. PANEL ORGANIZATION .. 24
B.2. INCLUDING YOUR PANELS ... 24
B.3. PANEL CREATION AND COMMON WIDGETS .. 24
B.4. THE 3D-VIEW MODULE .. ERROR! BOOKMARK NOT DEFINED.

APPENDIX C. INTERACTION WITH TDAQ CONTROL .. 27
C.1. WORK IN THE WINCCOA SIDE ... 28
C.2. WORK IN THE FSM SIDE .. 28

APPENDIX D. FWFSMATLAS ... 30
APPENDIX E. REFERENCES .. 31

page 2 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

1. Preface
The ATLAS detector control system will be represented by means of a finite state machine
(FSM) hierarchy which is operated by a DCS operator through an FSM and alarm screen.

2. FSM Architecture
The DCS Back-End system in ATLAS is organized in three functional horizontal layers and
the FSM is the main tool for the implementation of the full control hierarchy (see Figure 1).
The detector is broken down into finite state machine units that are hierarchically controlled
by other FSMs. These units can represent device entities, like a pump or a high-voltage crate,
or logical groups of such devices, like a sub-detector or a gas system. Each unit will react on
changes of the internal status of the individual device or groups of devices it is representing
and allow simplified control, error handling and interaction with other detector components
in the hierarchy.

Figure 1: ATLAS FSM Architecture

 Global Control Station
On the top, there will be a Global Control Station (GCS) which is in charge of the overall
operation of the detector; it provides high level monitoring and control of all sub-detectors,
while data processing and command execution are handled at the lower levels. The GCS may
trigger actions itself or propose to the operator to do so.

 Sub-detector Control Station
The Sub-detector Control Stations (SCSs) form the middle level of the hierarchy. The SCS
allows the full local operation of the sub-detector.
At this level in the hierarchy, the connection with the Data AcQuisition (DAQ) system takes
place in order to ensure that detector operation and physics data taking are synchronized. At
In Work page 3

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

the SCS, the sub-detector is divided into partitions which are based on the DAQ TTC
(Timing, Trigger and Control) zones (see also Figure 1). The synchronization of both systems
is accomplished by means of the DAQ-DCS Communication (DDC) software package. The
FSM plays an important role during the interaction with DAQ. It reports the DCS state of the
TTC zones to DAQ and it executes commands received from DAQ (for more information
see Appendix E).

 Local Control Station
The bottom level of the hierarchy is made up of the Local Control Stations (LCSs), which
handle the low level monitoring and control of instrumentation and services belonging to the
sub-detector. The LCSs execute the commands received from the SCS in the layer above, but
may also trigger predefined actions autonomously if required.
Each LCS is in charge of a certain system within the sub-detector (i.e. HV, cooling, etc). It
is highly recommended to divide all these systems according to common geographic zones
(i.e. quadrants, disks, slices, etc). Thus, the sub-detector can be organized in both, a system
view and a geographical view.
The very bottom level is formed by Device Units (DUs) which link the FSM with WINCCOA
and define the granularity of the system. The information located below these boundaries is
encapsulated and not accessible from the FSM. At this point, one has to find out the structure
of encapsulation which will yield the best system decomposition. In order to choose this
granularity several points have to be taken into account:
1. Too fine granularity (channel level) requires a large number of connections between the

FSM and WINCCOA, which may overload the processors (see Sec. 3.1).
2. Very coarse granularity would accumulate too much information in a single entity,

making it difficult to define its functioning states.
3. The DUs are the smallest entities to which commands can be sent from levels above.
4. Ideally, even in case of evolution of the Front-End, the chosen DUs should be re-usable.

page 4 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

3. FSM Implementation
In this section, the basic concepts of the ATLAS DCS FSM implementation are explained
and some design considerations and recommendations are given along with hints for the
actual implementation of the FSM hierarchy. All necessary steps which have to be performed
to create your own hierarchy are described in detail in Appendix A.

 Recommendations

Performance Issues
During the creation of the hierarchy the final performance has to be taken into account. Thus,
in order to build a safe/robust hierarchy it is recommended not to exceed a certain number of
FSM elements:

• CU - Control Unit (Up to 50 CUs per WINCCOA PC)
o Can be Included, Excluded, etc and Taken in stand-alone mode.
o Corresponds to one smiSM process.

• LU - Logical Unit (Up to 500 LUs per WINCCOA PC)
o To be used at the bottom levels of a tree (just above the DUs).
o Can contain children, but not of type CU
o Can be Enabled/Disabled (can not run in stand-alone).
o Corresponds to an object within a smiSM.

• DU - Device Unit (Up to 1000 DUs per WINCCOA PC)
o Corresponding to a "real" device in WINCCOA.
o Can be Enabled/Disabled (can not run in stand-alone).
o Behaviour defined via WINCCOA scripts (instead of SMI code).

The numbers presented above are recommendations, and, under certain circumstances, they
could be exceeded. However, it is foreseen that any system belonging to a “normal” control
hierarchy will not need to exceed these quantities.

Alarm Handling
Alarms from the WINCCOA alert configurations at the data point level will be displayed
using the framework (FW) Alarm Screen, and are intended to be used for detailed problem
tracking and acknowledgement. It is strongly recommended to have an alert handling
configuration at least for each Data Point (DP) that corresponds to a certain DU.
In addition, a simplified alarm handling mechanism is introduced at the level of the FSM
units – the “STATUS” (see next section) – representing a scaled down version of the
WINCCOA alerts. The STATUS allows for context based signalisation of problems and
error tracking inside the control hierarchy directly on the FSM operator interface. Note that
consequently the alarms of those DPs which are not considered in the hierarchy are thus only
visible on the FW Alarm Screen.

In Work page 5

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

Command Execution
For the final production systems it is envisaged that DCS users will operate the systems only
through the FSM and the FW Alarm Screen.
Thus, the developer must implement the commands to be sent by the operators inside the
FSM units rather than from WINCCOA panels or scripts. This will help to maintain and
understand the different DCS projects and ensure proper execution of actions by a single
process.

FSM Version Consistency
When integrating different FSM trees belonging to different WINCCOA systems check that
the FSM versions are the same. The most recent FSM production version to be used will be
announced on the central ATLAS DCS web page
(https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasDcsPackages) or directly install it from the
central DCS repository disk (/winccoa/fwComponents, see
https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasDcsTestSystem).
If you are upgrading your FSM please always check the release notes before:
http://lhcb-online.web.cern.ch/lhcb-online/ecs/fw/FW_FSM.HTML

Panel Export
It is important to verify that your final operator panels function correctly in different systems
since they will be exported to other distributed projects (i.e. GCS or SCS).
► Most probably the system name will be different in your development project compared

to your production project(s). Check your WINCCOA panels before exporting them to the
GCS.

Simple DU Scripts
When defining the DU types, keep the state configuration scripts as simple as possible. These
scripts are called each time there is a change on the value of the DP associated to the DU.

Unique DIM DNS node
During the development process one can run the dns binary locally. However, when
integrating several FSM running in different computers a unique DNS DIM node or node list
must exist. For final ATLAS, there will be a list of redundant DNS DIM nodes to be used by
all FSM objects (pcatlfsmdns1,pcatlfsmdns2). In the CERN general purpose network,
a dedicated test DNS is available: pcatltestdns.

 State & Status
The “STATE” and “STATUS” are two aspects that work in parallel and provide all the
necessary information about the behaviour of any system at any level in the hierarchy. The
STATE defines the “operational mode of the system” and the STATUS gives more details
about “how well the system is working” (i.e. it warns about the presence of errors). The main
reasons that these two information elements are provided at each level of the hierarchy are
the following:

• Information about the operational mode of a complex system or a group of systems
is not lost when an error occurs. For instance, a HV system is in RAMPING_UP

page 6 In Work

FSM Integration Guidelines

https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasDcsPackages
https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasDcsTestSystem
http://lhcb-online.web.cern.ch/lhcb-online/ecs/fw/FW_FSM.HTML

FSM Integration Guidelines ATLAS DCS
Version: 3.0

state and this process may take several minutes to finish. If in the meantime a slight
error (that permits to continue with the ramping up) occurs, it can be propagated up
by means of the STATUS while keeping the same STATE. In addition, the two
aspects define more accurately the behaviour of each level on the hierarchy.

• Complex systems can be supervised “more in detail”, e.g. an error may be treated
differently depending on the operational mode of the system. As an example,
depending on whether the STATE is ON or OFF, different severities can be
attributed or different actions triggered. See Appendix C.

• The STATUS is somehow similar to the alert screen. Having the display of the
STATUS within the FSM is useful to find out faster the information located in the
WINCCOA panel of the element with an error…..

STATUS
The STATUS names are fixed and all sub-detectors must use these qualifiers. The colours
fulfil the Framework Look-and-Feel convention.

STATUS
OK System working fine.

WARNING Low severity. The system can go on working. To fix in the following working hours.

ERROR High severity. Serious error for the functioning of the system. To be fixed ASAP.

FATAL Very high severity. The system cannot work. Run away!!!

STATE
For consistency, the common control domains (i.e. SCS, HV, LV, Cooling, etc) should have
the same (or similar) states, status, transitions and actions. As a result, we will make life
easier to the future shift operator. Thus, two generic state machines are proposed in order to
homogenize the different control domains.
The first state machine (see Figure 2) corresponds to those control domains that represent
abstract entities, these control domains are:

• Sub-detector Control Station

• DAQ partitions

• Any geographic partition (i.e. a quadrant, a wheel, etc)

• Any environment system
Each sub-detector has 3 mandatory STATES: READY, NOT_READY and SHUTDOWN.
These three states must be propagated to the GCS. In between these states, the sub-detector
is free of defining their own states depending on the requirements within the lower levels of
the hierarchy, i.e. below the TTC partition level. The sequence SHUTDOWN - READY
passes normally through all intermediate states. Two additional states out of the normal
sequence are UNKNOWN and TRANSITION. These states are reachable from any other
state.

In Work page 7

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

Figure 2: State machine for control units (CU), e.g. SCS, partitions, and environment.

The second generic state machine (See Figure 3) corresponds to those control domains that
represent concrete device entities like the HV, LV, gas, cooling, rack, etc. These control
domains have two mandatory end-points ON and OFF. In between these states, there could
be transient states for those systems with slow response (i.e. RAMPING_UP,
RAMPING_DOWN) and as many intermediate states as needed (i.e. ON25, ON50,
STANDBY, etc).

Figure 3: State machine for device units (DUs), e.g. an HV system. Left: Example with
transient states and multiple intermediate states between ON and OFF. Middle: Simple

version lacking transient states and only one intermediate state. Right: Additional optional
states.

The colour coding for the states is the following:

page 8 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

STATE COLOUR CODING
GREEN Static state. The system reached its final operational stage

BLUE Static state. The system did not reached yet its final operational stage

DARK BLUE Static state. The system is in its lowest operational stage

TURQUOISE Static state. The system is in the STANDBY state (safe for LHC unstable beams)

LIGHT BLUE Transient state. Signalizes an ongoing transition between normal states

ORANGE Error state. Used if state is UNKNOWN (e.g. due to loss of communication)

RED Severe Error state. For example TRIPPED in case of a power supply trip.

The colors are defined within the fwFsmAtlas module.
Finally, below you can find a table with a list of states and associated commands as also
defined in the FSM object type ATLAS_CU within fwFsmAtlas

STATE COMMANDS
READY GOTO_READY
NOT_READY GOTO_SHUTDOWN, GOTO_READY
SHUTDOWN GOTO_ READY
UNKNOWN RECOVER
STANDBY GOTO_STANDBY
ON, ON25, ON50, ON75… GOTO_ON, GOTO_ONxx
OFF GOTO_OFF
TRIPPED RECOVER
LOCKED UNLOCK, LOCK
RUNNING RUN
STARTED START
STOPPED STOP

TRANSIENT STATES COMMANDS

TRANSITION

RAMPING_UP, GOING_TO_ON, … GOTO_ON, GOTO_ON75, GOTO_STANDBY_n

RAMPING_DOWN, GOING_TO_ON,
…

GOTO_OFF, GOTO_ON25, GOTO_STANDBY_n

CALIBRATION CONFIGURE

GETTING_READY GOTO_READY

GETTING_NOT_READY GOTO_NOT_READY

STARTING START

STOPPING STOP

 All state, status and command labels should use upper case letters.

In Work page 9

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

► If you are developing the FSM
behaviour for a DCS system, please
discuss the design (for each CU, LU
or DU) on paper first with the
central DCS team before starting
the technical development process.

 FSM Hierarchy
An FSM hierarchy for a particular
subdetector should be structured as
shown in Figure 4. Several design
considerations must be taken into
account. The first level below any
subdetector top node (corresponding
to the SCS) must contain all Atlas TTC
partitions defined for this subdetector
as control units (CUs). Further below, a number of subsequent layers of control units can be
used to divide the subdetector into several logical parts, either into groups of identical
subsystems or into geographical entities. This depends on considerations regarding control
timing, error handling and configurations aspects. For example, it might be useful to group
all HV systems of a partition to be able to switch them on or off altogether using a single CU.
On the other hand, electrical power distribution might require controlling all systems of a
specific geographical part of the subdetector. Further, the number of CU/LU layers between
the partition and any device layer should be kept as low as possible and never exceed five.
On the lowest level, device units should be grouped such that one CU or LU controls devices
of the same type. In addition, the number of devices per parent unit should be kept below
~100.
An example hierarchy including all FSM unit types is implemented within the fwFsmAtlas
module as a framework component, called AtlasFsmExample (see Appendix A).

4. FSM Naming Convention
All FSM names must use upper case.

 FSM Object Names
FSM object names should follow the conventions below. Note that a child object should
always contain at least the last part of the parent name to allow to recognize parent/child
relations from the name. Attention: The maximum number of characters for an object
name is 32.

• Sub-detector top-most node:
ATL_<sub-detector name>
Ex: ATL_LAR

• The children of the sub-detector top node are the sub-detector’s TTC partitions.
<sub-detector name>_<TTC name>
Ex: LAR_EMECC

TOP

PARTITION1 PARTITION2

...

Figure 4: Example FSM hierarchy.

CU/LU1 CU/LU2

Device1

Device2

Device3

page 10 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

• The children of the sub-detector can be either a geographical division or a system
division.
<sub-detector name>_<TTC name>_<geographic name>
Ex: LAR_EMECC_Q1
<sub-detector name>_<TTC name>_<system name>
Ex: LAR_EMECC_HV

• The next level can again be either a geographical division or a system division.
<sub-detector name>_<TTC name>_<geographic name>_<system name>
Ex: LAR_EMECC_Q1_HV
<sub-detector name>_<TTC name>_<system name>_<geographic name>
Ex: LAR_EMECC_HV_Q1

• The next children will normally be a DU. However, if it is not the case, one could
follow with the same convention:
<sub-detector name>_<TTC name>_<geographic name>_<system name>_<part name>
Ex: LAR_EMECC_Q1_HV_SECTOR1
<sub-detector name>_<TTC name>_<system name>_<geographic name>_<part name>
Ex: LAR_EMECC_HV_Q1_SECTOR1

• The STATUS nodes belonging to a certain node should add the prefix “STATUS_”.
Ex: STATUS_ATL_LAR, STATUS_LAR_EMECC, STATUS_ LAR_EMECC_Q1

 FSM Object & Device Type Names
The fwFsmAtlas component provides different type templates for all FSM types (e.g.
ATLAS_CU) which should be used for the top-level FSM nodes. Below the partition level,
custom FSM types can be used which should follow the following naming scheme:

• Logical Object Types:
<Sub-detector name>[_<partition type>][_<sub-partition type>]
Examples: LAR_HEC_LV, CIC_ENV_HUMIDITY

• Device Unit Types
[<Device base type>_]<sub-detector name>_<sub-system name>
Examples: fwAi_TRT_HVMODULE

For the STATUS FSM object, the predefined types ATLAS_STATUS and
ATLAS_DU_STATUS should be used for CU/LUs and DUs, respectively. Whenever it is
necessary to modify these types, follow the same naming scheme as above and append
_STATUS.

 WINCCOA Panel Names
Each Control Unit (CU), Logical Unit (LU) or Device Unit (DU) can have a WINCCOA
panel associated to it. The name of this panel should be the same as the FSM object.
► Example: if there is a CU with name “TRT_SCS“, then the panel will be called

“TRT_SCS.pnl”.
For each FSM node, it is also foreseen to have an additional secondary panel with the suffix
“_info” (see FSM User Interface).
► Example: if the CU panel is called “TRT_SCS.pnl” the secondary panel will be called

“TRT_SCS_info.pnl”
To follow the convention for the panel names is important for a later integration of all the
ATLAS DCS distributed systems in the shift operator interface.

In Work page 11

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

5. FSM User Interface
This section explains the common FSM Operator Interface (OI) and the basic procedure that
needs to be followed in order to integrate all FSM OI in ATLAS. To make the integration
easier an “fwFsmAtlas” module has been created.
The basic premise for the design of the final OI is that it needs to be operated from a single
window. It is not desired to search information across windows in such a big process control
system like the ATLAS DCS. To improve the human-machine performance all the DCS
information is available in parallel. The idea is to have a single user interface allowing
navigation through all the different levels of the FSM hierarchy (see Figure 1). In order to fit
the big amount of DCS data in a single display, a frame with five constituent parts allowing
for easy navigation has been designed (see Figure 4).

 Screen Layout
The operator screens consist of two individual screens, the FSM and Alarm screen with a
resolution of 1280x1024 each. The FSM screen is represented by a WINCCOA panel with
fixed dimensions covering the whole screen. The panel contains several modules presenting
the behaviour and allowing control of the detector at the different levels of the DCS hierarchy.
FSM Module: The STATE and STATUS of a FSM node and its children is displayed
providing all FSM functionality. This module has a limited size, and, in case of many FSM
children a scroll bar appears.

Figure 5: FSM operator screen components.

FSM Module

Secondary
Module
381x390

Main Module
859x866

Navigation

page 12 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

• Main Module: Its dimensions are 859x866. This is the main panel for the selected
FSM node, this can be a SCS, a HV system, etc. Two dollar parameters are passed
from the FSM Module to Main Panel ($node and $obj).

• Secondary Module: Its dimensions are 381x390. The purpose of this is to keep a
main view of a certain sub-detector while studying more in detail a problem that
triggers deeper in the hierarchy. Thus, it is needed to create an additional panel with
a summary of the information presented for each main panel. Two dollar parameters
are passed from the Main Panel to the Secondary Panel ($node and $obj).
Optionally, the secondary module is used to display a 3-dimensional view of the
detector DCS objects.

► A navigator is available, similar to that of web browsers. It has a four buttons:
 Back: The operator goes back to the previously used panel.
 Forward: The operator goes forward to the previous used panel.
 Home: The operator goes to the topmost FSM node.
 Up: The operator goes one level up in the FSM hierarchy.

► Additional navigation possibilities exist. See Appendix B.
In both Main and Secondary module, the developer has full FSM functionality (i.e. one can
send FSM commands, change the partitioning mode, etc.). This also means that within a
certain workspace (i.e. a HV system) information related to any other workspace (i.e.
cooling) could be displayed. Using the navigation functionality the operator can jump from
one workspace to another using any of both, main and secondary modules.
In order to assist developers in the creation of FSM panels with common functionality, a set
of widgets have been created. These widgets permit to display the state and the status, change
the partitioning mode, send FSM commands and navigate between different control domains
(for more details see Appendix B.3).

 Operator Interface Design Problem
As shown in Figure 6, two questions pertinent to interface design arise when creating the
displays for the different work domains.
First one needs to distinguish the relevant way of describing the complexity of a work domain
(content), and then, define the effective way to communicate this information to the operator.

Figure 6: Structure of the interface-design problem

In designing a well-behaved man-machine interface for process control, some guidelines are
added in order to solve the design problem of a general operator interface (consistency,
intuitive approach, reduce chance for typing errors, etc.). These guidelines are listed here:
• The graphics interface must be designed with the operator’s view of the process in mind.
• Functional relationships between sub-systems need to be represented in the display next

to each other (“out of sight, out of mind”). Otherwise operators can treat the sub-systems
as being independent of each other.

In Work page 13

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

• The operators act directly on the display forcing feedback interaction and selection
emphasis.

• The control hierarchy of the displayed information must be isomorphic. As described in
section 1, the different sub-detectors will use a similar architecture.

• Each sub-detector is physically composed by many different systems (HV, gas, etc.).
Thus, the system model contains both, a geographical and a functional representation of
the sub-detectors.

• The demand seems obvious, but the operator must always be able to trust the values
displayed. The usage of plots and time values can help.

• The interface should not be “programmable”, it is kept stable and solid.
• To prevent confusion, the operator interface itself should be as simple as possible.
• The displays must follow cultural standards (i.e. language English, Local Time and

Standard Units).
• Irrelevant information must not be present. Otherwise, operators will have to determine

what information to attend to, and what information to ignore.
• Critical information must be present having constrains between systems explicitly

represented.
• The interface should be designed such as the perceptual saliency of its objects is relative

to its importance.

 Access to the fwFsmAtlas Module
The actual skeletons of the FSM panels are assembled within a framework component
module fwFsmAtlas which is accessible via SVN.
► Installation and usage of the “fwFsmAtlas” component is described in Appendix D.

6. Outlook
In the next versions of this document the following topics will be included:
• The FSM and Access Control.

page 14 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

Appendix A. FSM Hierarchy Implementation
In the following, a step-by-step guide to create a very simple FSM hierarchy for a set of
different devices (see Figure 7) is given. This example hierarchy is contained within the
fwFsmAtlas module as AtlasFsmExample component. Note that this example can serve as a
starting point for the actual implementation of your own hierarchy, i.e. you can copy the
existing FSM unit types and modify them according to your own needs.

The mechanism adopted for modelling the structure of sub-detectors, sub-systems and
hardware components is a hierarchical (tree like) structure. In ATLAS this tree is composed
of two parallel paths, one for the STATE (CUs, DUs or LUs) and one for the STATUS (LU).
A CU represents its own SMI domain while the DUs and LUs are part of the SMI domain of
its parent CU. Each CU and LU in ATLAS must have associated a STATUS defining the
severity of a pending problem if any.

A.1. Requirements
The actual FSM implementation depends on the design requirements, namely, the actual
device representation in WINCCOA which needs to be controlled, and the interface to the
top level Atlas control.

Devices
The example devices are represented by one or several WINCCOA data points (DPs). The
framework FSM actually only allows to define FSM device units, which depend on a single
DP. However, in many cases this is not sufficient since a FSM DU could represent a device
which depends on values of another device, e.g. a HV channel for which the STATE depends
on DP values of an OPC server.
The example devices used here are reflected by a DP of WINCCOA type
AtlasExampleDevice and ExampleOPC (see Figure 8). There are three device instances for
which the FSM will be implemented in a different way to illustrate the recommended
possibilities.

Figure 7: Example Hierarchy of the AtlasFsmExample component.

ATLAS_TOP1

ATLAS_PARTITION1 ATLAS_PARTITION2

ATLAS_CU1 ATLAS_CU2

AtlasExampleDevice1

AtlasExampleDeviceMixed1

AtlasExampleDeviceMixed2

UNKNOWN
NOT_READY

READY

SHUTDOWN

UNKNOWN

OFF

ON

Control
Units

Device
Units

States

TRANSITION

In Work page 15

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

Control Interface
The interface to the top-level control is represented by a FSM CU with the possible STATEs
and STATUS information defined in Section 3.2.

A.2. Creation of FSM Unit Types
The first step of the actual implementation is the definition of FSM unit types for the devices
and the logical control units forming the hierarchy. This can be done using the framework
tool DeviceEditorNavigator (DEN) and applying the naming conventions described in
Section 4.2 for types with different implementation.

Device Unit Types

Property Overview
There are three properties of the DU which
have to be defined: initialization, STATE and
STATUS definitions, and command actions.
The STATEs for the DUs were chosen,
according to the conventions described in
Section 3.2, to be ON, OFF, UNKNOWN, or
TRIPPED. The possible commands are
GOTO_ON, GOTO_OFF and RECOVER.
Upon creation of the device unit type, the three
different functions
1) <TypeName>_initialize(string

domain, string device)

2) <TypeName>_valueChanged(string
domain, string device, [type dpe,
…], string &fwState)

3) <TypeName>_doCommand(string domain, string device, string command)

must be implemented with the DEN. The scripts can be accessed from the button Configure
Device of the device dialog shown in Figure 9. The initialization 1) is only executed on
startup of the FSM. The most critical function in terms of performance is 2) since it is
executed every time a DP element of the device changes which the STATE or STATUS
depends on. The command execution 3) is executed every time an FSM command was issued
to the device unit.

Figure 8: WinCCOA DPs used for the example devices.

Figure 9: Device type dialog.

page 16 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

For each of the three functions implement a wrapper function inside a ctrl library. The library
is recommended to have the following path and naming for a given sub-detector or system
name XYZ:
ATLAS_DCS_XYZ/scripts/libs/xyzFsm/xyz<TypeName>Fsm.ctl

Implementation for Single DP Device
For a device which is represented only by one DP with several DP elements (here type
AtlasExampleDevice), the implementation of the corresponding DU type
AtlasExampleDeviceDu is straight forward:

#uses “xyzFsm/xyzAtlasExampleDeviceFsm.ctl”

AtlasExampleDeviceDu_initialize(string domain, string device)
{
 xyzAtlasExampleDeviceFsm_initialize(domain, device);
}

AtlasExampleDeviceDu_valueChanged(string domain, string device, float value1, float value2,
bool flag, string &fwState)
{
 xyzAtlasExampleDeviceDuFsm_valueChanged(domain, device, value1, value2, flag, fwState);
}

AtlasExampleDeviceDu_doCommand(string domain, string device, string command)
{
 xyzAtlasExampleDeviceDuFsm_doCommand(domain, device, command);
}

Within the library xyzAtlasExampleDeviceDuFsm.ctl the functions are implemented:

xyzAtlasExampleDeviceDuFsm_initialize(string domain, string device)
{
 // do any intialization of device here
}

xyzAtlasExampleDeviceDuFsm_valueChanged(string domain, string device, float value1, float
value2, bool flag, string &fwState)
{
 string targetStatus = "OK";

 if (flag) {
 fwState = "TRIPPED";
 }
 else if (value1 <= -0.5 || value2 <= -0.5) fwState = "UNKNOWN";
 else if (value1 <= 0.5) {
 fwState = "OFF";
 }
 else if (value1 < 10.) fwState = "RAMPING";
 else fwState = "ON";

 if (value2 > 2.) targetStatus = "FATAL";
 else if (value2 > 1.) targetStatus = "ERROR";
 else if (value2 > 0.5) targetStatus = "WARNING";

 fwFsmAtlas_setStatus(domain, device, targetStatus);
}

xyzAtlasExampleDeviceDuFsm_doCommand(string domain, string device, string command)
{
 action(domain+”::”+device+” starting command ”+command);
 if (command == "GOTO_OFF") {
 dpSetWait(device+".switch:_original.._value", false);
 fwDU_startTimeout(30, domain, device, "UNKNOWN", "OFF");
 }
 if (command == "GOTO_ON") {
 dpSetWait(device+".switch:_original.._value", true);
 fwDU_startTimeout(30, domain, device, "UNKNOWN", "ON");
 }
 if (command == "RECOVER") {
 // do any recovery here

In Work page 17

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

 fwDU_startTimeout(30, domain, device, "UNKNOWN", "OFF");
 }
}

Here, the DPE .value1 and .flag determine the STATE and .value2 influences the STATUS.
Note that the full implementation can not be done with the “SIMPLE CONFIG” wizard since
it does support neither the STATUS nor several DPEs.

STATE and STATUS Dependence on Several DPs
A complication arises in the case where the STATE and STATUS of the device include
another DP, here a DPE AtlasExampleDevice1OPC.ping. The usage of the valueChanged()
function is no longer possible for this DU (here AtlasExampleDeviceMixedDU) since it is
only executed on changes within the DP AtlasExampleDevice1. The implementation must be
changed in a way that the function valueChanged() has to be left empty, and replaced by
another callback function which is then connected in the initialization stage using a
dpConnect() call:

xyzAtlasExampleDeviceMixedDuFsm_initialize(string domain, string device)
{
 // do any initialization of device here
 dyn_string nameComponents = strsplit(device, '/');
 string ping = nameComponents[dynlen(nameComponents)]+"OPC.ping:_online.._value";
 string value1 = device+".value1";
 string value2 = device+".value2";
 string flag = device+".flag";

 string nodeName = fwFsmAtlas_getNodeDPEName(domain, device);
 dpConnect("AtlasExampleDeviceMixedDU_callback", nodeName, value1, value2, flag, ping);
}

xyzAtlasExampleDeviceMixedDuFsm_callback(string nodeName, string tnode, string dpe1, float
value1, string dpe2, float value2, string flagDPE, bool flag, string pingDPE, bool ping)
{
 string domain, device;
 fwFsmAtlas_getNodeNameComponents(nodeName, domain, device);

 // determine State
 //
 string state = "impossible"; // should be impossible
 if (!ping) state = "UNKNOWN";
 else if (flag) state = "TRIPPED";
 else if (value1 <= 0.) state = "OFF";
 else if (value1 < 10.) state = "RAMPING";
 else state = "ON";

 fwFsmAtlas_setDUState(domain, device, state);

 // determine Status
 //
 string targetStatus = "OK";

 if (value2 > 2.) targetStatus = "FATAL";
 else if (value2 > 1.) targetStatus = "ERROR";
 else if (value2 > 0.5) targetStatus = "WARNING";

 fwFsmAtlas_setStatus(domain, device, targetStatus);
}

In this case, the valueChanged() part of the DU type implementation can be left empty:

AtlasExampleDeviceMixedDU_valueChanged(string domain, string device, float value1, string
&fwState)
{}

The command execution is not affected. Note two important limitations:

page 18 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

• the name of the 2nd DP is derived from the device name since the mechanism has to work
generically for all devices of this type

• the callback function has to include an FSM-internal DP in order to be able to derive the
domain and device names since WINCCOA does not allow to pass constant parameters
in a dpConnect() call.

Usage of Alert States instead of Value Changes
The valueChanged or custom callback function described above is called on every change of
each considered DPE value. If only certain ranges of the value correspond to an actual change
of the STATE or STATUS of the device, it if highly recommended to connect the callback
function to the actual alert states of the value DPE. For example, having defined an alert
configuration with the alert text corresponding to the STATUS, i.e. OK, WARNING etc., the
script from the previous section would then look as follows:

xyzAtlasExampleDeviceMixedDuAlternativeFsm_initialize(string domain, string device)
{
 dyn_string nameComponents = strsplit(device, '/');
 string ping = nameComponents[dynlen(nameComponents)]+"OPC.ping:_online.._value";
 string value1 = device+".value1";
 string alert = device+".value2:alert_hdl.._act_text";
 string flag = device+".flag";
 string nodeName = fwFsmAtlas_getNodeDPEName(domain, device);
 dpConnect("AtlasExampleDeviceMixedDUAlternative_callback", nodeName, value1, alert, flag,
ping);
}

xyzAtlasExampleDeviceMixedDUAlternativeFsm_callback(string nodeName, string tnode, string
dpe1, float value1, string alertDPE, string alert, string flagDPE, bool flag, string
pingDPE, bool ping)
{
 string domain, device;
 fwFsmAtlas_getNodeNameComponents(nodeName, domain, device);

 // determine and set State
 ...

 // determine Status
 //
 string targetStatus = "OK";

 targetStatus = alert;
 fwFsmAtlas_setStatus(domain, device, targetStatus);
}

Instead of using the alert_hdl.._act_text one can of course use other alert config
attributes, such as alert_hdl.._act_state_color.

STATUS Object Type for Devices
A logical object type has to be defined which implements the STATUS for device units. It is
installed as type ATLAS_DU_STATUS together with the AtlasFsmExample component.

Control Unit Types

High-Level CUs
The top level and the partition CUs must use the simple set of states READY, NOT_READY,
SHUTDOWN, UNKNOWN and the corresponding commands GOTO_READY,
GOTO_SHUTDOWN, RECOVER. Their states directly depend on the states of their
children within the hierarchy which is implemented using the DEN generating SMI-logic

In Work page 19

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

scripts (“when-conditions”). If you don’t inherit your CU type from the supplied ATLAS_CU
type, please carefully check the state conditions. Note some pitfalls here:
• If the FSM of a CU child is contained in a distributed system it may not run and will be in

DEAD state. This special state must be included in the logic of the parent CU type, i.e.
the CU STATE should be set to UNKNOWN.

• In the hierarchy, every CU will have at least one child which is of type ATLAS_STATUS
such that any when-condition which check for “ALL FwChildren” will also consider the
STATE of the STATUS object (OK, WARNING, ERROR or FATAL). This means that
statements like
when ALL FwChildren in_state READY then ...

will not have the desired effect since there is no READY state of the STATUS object.
Instead a statement like
when ALL children of type ATLAS_CU in_state READY then ...

should be used.
The actions defined for each individual state have to be implemented using the DEN, either
by using the wizard or editing the action script directly. For CUs, only command propagation
to its children is allowed.

Device-Level CUs
CUs which have devices as children must use a different CU type since the STATEs of the
DUs don’t match the STATEs of the controlling CU, resulting in different when-conditions.
As above, take care of the DEAD state if the CU and its children reside on different
WINCCOA systems and remember that the STATUS objects are children of the CU.

STATUS Object Type for Control Units
As for the STATUS object for devices, a logical object type ATLAS_STATUS is installed
with the AtlasFsmExample component for use as STATUS object for CUs. It lacks the
possibility to set the STATUS of the CU from outside the object. That means that the
STATUS of CUs can only change if there is a change STATUS of any child.

Setting the STATUS Depending on the STATE
In some cases the severity of a problem can depend directly on the operational mode of a
different system. For example depending on whether the STATE of a HV device is ON or
OFF, different severities can be attributed to a problem related with a cooling system. Let’s
assume the example shown in Figure 10.

Figure 10: Interdependence of STATUS and STATE of different units.

if if

COOLING: ERROR COOLING: FATAL

HV STATE
?

COOLING: failure!

HV: OFF HV: ON

page 20 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

To implement this dependence STATUS-STATE, the STATE of the HV CU/DU can be
queried in the callback script corresponding to the COOLING DU. In order to check the HV
STATE the developer can use one of the following functions:

• fwCU_getState(string node, string &state): if the HV state is obtained from a CU.

• fwCU_getObjState(string node, string obj, string &state): if the HV state is
obtained from a LU or a DU inside a CU domain.

A.3. Creation of the FSM Hierarchy Tree
To actually create the hierarchy shown in Figure 7 with instances of the object types
discussed in the last section, the recommended method is to write a tree creation script. Use
the function fwFsmAtlas_createNode() to create an individual object. It will create the
associated STATUS object automatically:
// fwFsmAtlas_createNode(parent, name, type, label="", panelName = "",
objectFlag=1, isReference=false, system = "", checkExists = false)
//
// parent: name of the parent object
// name: name of the object, if it is a reference use
"domain::object"
// objectFlag: 0 - LU, 1 - CU, 2 - DU
// isReference: the object to be added is a reference
// system: for cross-system references: system name where the
referenced object is located
// checkExists: if node is already existing, do not create it

Example for the creation of a sub-detector tree with one partition contaning one sub-system
and one sub-system device:
fwFsmAtlas_createNode(“FSM”, “ATL_XYZ”, “ATLAS_CU”, “ATLAS_XYZ”, 1,
false, “”, true);

fwFsmAtlas_createNode(“ATL_XYZ”, “XYZ_PARTITION1”, “ATLAS_CU”,
“XYZ_PARTITION1”, 1, false, “”, true);

fwFsmAtlas_createNode(“XYZ_PARTITION1”, “PARTITION1_HV”,
“ATLAS_CU_DEVICE”, “PARTITION_HV”, 0, false, “”, true);

fwFsmAtlas_createNode(“PARTITION1_HV”,
“AtlasExample/AtlasExampleDevice1”, “AtlasExampleDevice”,
“AtlasExampleDevice”, 2, false, “”, true);

In case you want to create a small test tree you can use the DEN to create it and perform the
following steps (not recommended):

Control Units
1. Add an object of type ATLAS_CU as child of the root-node of your system and name it

ATLAS_TOP1:
[In the FSM panel of the DEN select and right-click on the topmost node]
⇒ Add… ⇒ Objects ⇒ Add New Object ⇒ [Choose type, enter name] ⇒ check
as Control Unit].

2. Repeat step 1. for ATLAS_PARTITION1 and 2 as children of ATLAS_TOP1 (right-
click on ATLAS_TOP1), and for ATLAS_CU1 and 2 as children of
ATLAS_PARTITION1.

In Work page 21

FSM Integration Guidelines

http://clara.home.cern.ch/clara/fw/FwFSMv24r1/fwCU/fwCU_getState.html%23DOC.DOCU%23DOC.DOCU
http://clara.home.cern.ch/clara/fw/FwFSMv24r1/fwCU/fwCU_getObjState.html%23DOC.DOCU%23DOC.DOCU

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

Device Units
The devices must exist in the hardware or logical view of the DEN in order to create a DU
instance. If this is not the case, refer to the framework documentation on how to create a fw
device type.
3. Add all devices of their types as children of ATLAS_CU1:

[In the FSM panel of the DEN select and right-click on ATLAS_CU1] ⇒ Add…
⇒ Devices ⇒ Add Device(s) from Logical/Hardware View ⇒ [Choose type
e.g. AtlasExampleDeviceDU, select devices to add] ⇒ ↵, leave as Control
Unit unchecked].

STATUS Units
4. Add a logical object of type ATLAS_STATUS as a child of

each CU:
[In the FSM panel of the DEN select and right-
click on the CU, e.g. ATLAS_TOP1] ⇒ Add… ⇒
Objects ⇒ Add New Objects ⇒ [Choose type
ATLAS_STATUS, enter name STATUS_<CU name>] ⇒
↵, leave as Control Unit unchecked].

See Figure 11 for the last dialog to confirm.
5. Add a logical object of type ATLAS_DU_STATUS for

each DU as a child of the CU which is the parent of the
respective DU, here as a child of ATLAS_CU1. Perform
the same steps as in 4. but with the different type and the
name of the DU instead of the CU name.

6. Add references of the STATUS objects to all
STATUS objects one level above in the
hierarchy, e.g. add a reference of
STATUS_ATLAS_CU1 and 2 as a child of
STATUS_ATLAS_PARTITION1:
[In the FSM panel of the DEN select
and right-click on the parent STATUS
object, e.g. STATUS_ATLAS_PARTITION1
⇒ Add… ⇒ Objects ⇒ Add Objects(s)
from FSM View ⇒ [Choose type
ATLAS_STATUS, select object to add]
⇒ ↵, leave as Control Unit
unchecked].

References to the STATUS objects of the
DUs have to be childs of the parent CU
STATUS object as well, i.e. childs of
STATUS_ATLAS_CU1 in the example.

The final hierarchy as it should appear in the
DEN is shown in Figure 12.

A.4. Useful Functions

Figure 11: Adding the
STATUS object. The

checkbox “as Control Unit”
must remain unchecked.

Figure 12: Example hierarchy as it
appears in the DeviceEditorNavigator.

page 22 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

fwFsmAtlas_startTimeout: This function should be used for each command in the
device unit action script. With this function, a time-out trigger is inserted in order to limit the
time to switch from one state to another. Further it is possible to switch to the “UNKNOWN”
state in case the target state or any new state change does not occur within a given delay.
if (command == "RAMP_UP")
{

/* fwFsmAtlas_startTimeout(delay,domain,device,errorState,targetState); */
fwDU_startTimeout(10,domain,device,"UNKNOWN","ON");

}

fwDU_getAlarmLimits: The Alert handling thresholds of a certain DP can be re-used to
define the Device Unit thresholds. This function should be only used for those small numbers
of DPs which change the alert handling configuration during operation. The use of this
function in the DU script significantly decreases performance.
FwElmbAi_valueChanged(string domain, string device, float value, string &fwState)
{

dyn_float limits;
fwDU_getAlarmLimits(device, "value", limits);

 if (value < limits[1])
 fwState = "OK";
 else if ((limits[1] <= value) && (value < limits[2]))
 fwState = "WARNING";
 else
 fwState = "ERROR";
}

fwFsmAtlas_openPanel: This function permits to open any panel associated to a certain
object in the FSM hierarchy (For more information see Appendix B).
fwFsmAtlas_openPanel(string node, string obj, string topObj, bool isMainPanel)

fwCU_connectObjState: During the preparation of the User Interface panels, if one is
interested in knowing the STATE and STATUS from a certain node one can use this function.
More functions in: http://lhcb-online.web.cern.ch/lhcb-online/ecs/fw/FW_FSM.HTML
► User support is only provided for functions documented in the web page.

In Work page 23

FSM Integration Guidelines

http://clara.home.cern.ch/clara/fw/FwFSMv23r3/fwDU/fwDU_getAlarmLimits.html%23DOC.DOCU%23DOC.DOCU
http://clara.home.cern.ch/clara/fw/FwFSMv23r3/fwDU/fwDU_getAlarmLimits.html%23DOC.DOCU%23DOC.DOCU
http://lhcb-online.web.cern.ch/lhcb-online/ecs/fw/FW_FSM.HTML

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

Appendix B. Building the Operator Interface

B.1. Panel Organization
All main panels and secondary panels associated with a certain FSM node must follow the
naming convention (see WINCCOA Panel Names).
When organizing your FSM panels in your own system and exporting them to other
distributed systems you must include them in two folders called:

• “panels/fwAtlasMainPanels”: panels to be displayed in the main module.

• “panels/fwAtlasSecondaryPanels”: panels to be displayed in the secondary module.
This process needs first to be done locally on the system during debugging. Later the final
production panels will be exported to the ATLAS central repository.

B.2. Including your panels
At this point your main and secondary panels have been created taking into account:

• The standards panel dimensions.

• FSM panels naming convention.

• Organization of panels into folders.
To include your panels into the common ATLAS Operator Interface (see Figure 4) the
following steps have to be done.

1. To attach a main panel to a certain FSM node one must follow the normal
procedure. In Editor mode, select a node, right click → Settings → Chose
inside the folder “FSMmainPanels” the panel that corresponds to the selected
node (if the naming convention has been followed the name should be the
same, see Figure 13).

Figure 13: Setting a main panel to a FSM node.

2. The secondary panels are opened from the FSM module relying on the naming
convention. The secondary panels use the same name as the main panels
adding the suffix “_info”.

B.3. Panel Creation and Common Widgets
page 24 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

The look & feel aspect becomes of primary importance when integrating the different sub-
detectors. Figure 14 shows an example panel integrated into the FSM operator screen.

In order to facilitate the work to the developer and the understanding of the panels by the
final operators in shift a set of reference panels (widgets) has been created which can be
found in the path: panels/objects/fwFsmAtlas. The individual widgets are documented in the
following.

Object Link Button
Can be used to navigate to an arbitrary FSM object on left-
click. Right-click navigates to the target in the secondary
module.

File: objects/fsmAtlas/fwObjLinkButton.pnl

Dollar parameters:

$label string label shown on the button
$target string target FSM object, <domain>::<object>
$width int width of the button in # of pixels

Figure 14: Example of a panel layout.

In Work page 25

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

Control Unit Widget
Similar to the control field within the FSM module. The
label has the same functions as the Object Link Button.
File:
 objects/fsmAtlas/fwFsmAtlas_cu.pnl
Dollar parameters:

$label string label shown on the button
$domain string domain name of the FSM object
$obj string object name of the FSM object

Device Unit Widget
Same as the Control Unit Widget but without control lock and vertically
arranged. The label has the same functions as the Object Link Button.

File: objects/fsmAtlas/fwFsmAtlas_rack.pnl
Dollar parameters:

$label string label shown on the button
$domain string domain name of the FSM object
$obj string object name of the FSM object
$shortenStatus int default: 0, set 1 if short form of STATUS should be
used, e.g. “W” instead of “WARNING”
$width int width in # of pixels

Parameter-Value Widget
Widget to display arbitrary parameter/value pair connecting to a
specific DPE. Hovering over the parameter name shows the name
of the DPE as tooltip. If alert handling is defined and active for the
DPE, the value background is set to the current alert color, and the
tooltip shows the alert text. A right-click on the value opens the
value trend in a small child window.
File: objects/fsmAtlas/parameter.pnl

 objects/fsmAtlas/parameter_small.pnl
Dollar parameters:

$parameter string parameter label
$dpe string full DPE name, remark: don’t forget system name!
$format string WINCCOA format string, e.g. “[3.2f,,,]” for a float with 2
decimals, see WINCCOA documentation
$unit string optional unit name
$color string text color for parameter label
$width int width of the value area in # of pixels

page 26 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

Appendix C. Interaction with TDAQ Control
Interaction between the Detector Control System and TDAQ is arranged with the assumption
that the latter is the master while the former is slave. The TDAQ control applications are
capable to send commands for DCS and acquire their results. On other hand, DCS is able to
inform TDAQ about the states preventing normal data taking also asynchronously of
commands.
In the following, the standard procedure in order to set-up the FSM for an interaction with
TDAQ is explained.
At a certain level, the sub-detectors are split into TTC partitions (see Figure 1). The purpose
of this partitioning is to allow, the master DAQ, to operate the DCS depending in its own
partitions.
It is foreseen that the number of DDC controllers running for a sub-detector should
correspond one-to-one to the number of TTC partitions of that sub-detector. Similarly, should
exist one FSM domain per TTC partition, and one DDC DU per FSM domain (see Figure
21). Thus, within each TTC domain there is one Device Unit interacting with a certain DDC
controller.

(1 TTC partition) x (1 DDC controller) x (1 TTC FSM domain) x (1 DDC DU)

Figure 15: One DDC DU within each TTC FSM domain

During the installation of the “fwFsmAtlas” package, a DP Type as well as a Device Unit
Type, both called FwFsmAtlasDDC, is created (see Figure 22). The main duties of this
Device Unit are:

1. Reporting the DCS state. Asynchronously it must report to TDAQ any occurrence of

conditions preventing the data taking. The granularity is the TTC partition. Thus, the
DDC Device Unit checks the state of its TTC domain and sets a flag (DPE:
“notDataTaking”) that reports the state of the detector for a certain TTC partition.
The standard FSM states for a TTC partition are:

 READY : TTC partition ready for data taking
 STANDBY/NOT_READY/SHUTDOWN: TTC partition not ready for data

taking.

In Work page 27

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

► Note: Be consistent when propagating the states upwards in the hierarchy to the TTC
level. If the DCS is not READY, it means that the whole TTC partition is not ready for
data taking!!!

2. TDAQ Command Execution. TDAQ can operate the DCS executing transition
commands by means of the FSM. The set of FSM commands to be issued by TDAQ are
meant to be pretty general (i.e. “PREPARE_FOR_RUN”).
When a command is triggered (DPE: “trigger”) from the TDAQ, the DDC Device Unit
reads a set of parameters and it sends the selected command to the selected node. The
parameters (DPE: “fsmParametrs”) are filled by TDAQ in the following format:
FSM_domain|FSM_command|time_out

being the “FSM_domain” and the “FSM_command” mandatory fields.
► In case the command is sent to a single DU (which should not be the normal case) the

device object must be specified in the DPE “parameters”.
The response (DPE: “response”) to the command execution depends on the timeout:

 If the timeout value is 0, the response is set to a good state automatically.
 In case of an existing timeout, the response is set within the timeout interval to

either a good or bad state. The response depends on the transition caused by the
command execution.

Figure 16: FwFsmAtlasDDC

C.1. Work in the WINCCOA side
The developer has to create a data point of type “FwFsmAtlasDDC” for each TTC partition
(DDC controller). The DDC controller, together with the FSM DU, will be in charge of R/W
of this data point.

C.2. Work in the FSM side

page 28 In Work

FSM Integration Guidelines

FSM Integration Guidelines ATLAS DCS
Version: 3.0

The only work to do in the FSM side is to insert the DU previously created in its
corresponding TTC FSM domain. The DU unit type is already edited with the functionality
explained above. Thus, if this functionality is enough for the sub-detector no extra work
needs to be done.

A detailed description of the design and actual implementation of the DAQ-DCS
communication can be found in [1] and [2].

Figure 17: Adding the DDC device unit.

In Work page 29

FSM Integration Guidelines

ATLAS DCS FSM Integration Guidelines
 Version: 3.0

Appendix D. fwFsmAtlas
The fwFsmAtlas component is released with the common versioning scheme fwFsmAtlas-
<major#>-<minor#>-<patch#>. Each release will correspond to a tag with the same name
(e.g. fwFsmAtlas-1-2-3) of the module inside the atlasdcs SVN repository
(SVNROOT=svn.cern.ch/reps/atlasdcs). Recent releases can be found under
https://twiki.cern.ch/twiki/bin/view/Atlas/DcsSoftware#ATLAS_Finite_State_Machine.
You can check out a release directly from SVN or install it directly from the Point1 repository
at /det/dcs/fwComponents/fwFsmAtlas-?.?.?.

page 30 In Work

FSM Integration Guidelines

https://twiki.cern.ch/twiki/bin/view/Atlas/DcsSoftware%23ATLAS_Finite_State_Machine

FSM Integration Guidelines ATLAS DCS
Version: 3.0

Appendix E. References
[1] ATLAS DAQ – DCS Communication Software. User’s Guide
 https://edms.cern.ch/file/684955//DDC_UG.pdf
[2] Subdetector Controls Interaction with TDAQ Controls

In Work page 31

FSM Integration Guidelines

	1. Preface
	2. FSM Architecture
	2.1. Global Control Station
	2.2. Sub-detector Control Station
	2.3. Local Control Station

	3. FSM Implementation
	3.1. Recommendations
	Performance Issues
	Alarm Handling
	Command Execution
	FSM Version Consistency
	Panel Export
	Simple DU Scripts
	Unique DIM DNS node

	3.2. State & Status
	STATUS
	STATE

	3.3. FSM Hierarchy

	4. FSM Naming Convention
	4.1. FSM Object Names
	4.2. FSM Object & Device Type Names
	4.3. WINCCOA Panel Names

	5. FSM User Interface
	5.1. Screen Layout
	5.2. Operator Interface Design Problem
	5.3. Access to the fwFsmAtlas Module

	6. Outlook
	Devices
	Control Interface
	Device Unit Types
	Property Overview
	Implementation for Single DP Device
	STATE and STATUS Dependence on Several DPs
	Usage of Alert States instead of Value Changes
	STATUS Object Type for Devices

	Control Unit Types
	High-Level CUs
	Device-Level CUs
	STATUS Object Type for Control Units

	Setting the STATUS Depending on the STATE
	Control Units
	Device Units
	STATUS Units

	Object Link Button
	Control Unit Widget
	Device Unit Widget
	Parameter-Value Widget

