
ICARE Development Guide
-Draft-

Authors:
Laurent GANTEL
Sylvain LAFRASSE

30.03.2018- 17:19

Contents

1 Introduction 3
1.1 ATLAS Overview . 3

1.1.1 Detectors Components . 3
1.1.2 Back-End System . 4

1.2 ATCA Platform . 5
1.2.1 Introduction . 6
1.2.2 IPMI Architecture . 7
1.2.3 IPMI Protocol . 7

1.3 IPMC Board . 7
1.3.1 Introduction . 7
1.3.2 Hardware Overview . 8

1.4 AMC Board . 8
1.4.1 Introduction . 9
1.4.2 Hardware Overview . 9

2 Development Tools 10
2.1 ICARE Firmware . 10

2.1.1 Environment Setup . 10
2.1.2 Working Directories . 11
2.1.3 OpenOCD . 11
2.1.4 ICARE Source Code . 13
2.1.5 Package Development . 13
2.1.6 Firmware Upgrade . 15

2.2 MMC Firmware . 18
2.2.1 Atmel Studio . 19
2.2.2 Software Organization . 19
2.2.3 Firmware Upgrade . 21

3 ICARE Developments 31
3.1 SPI Package . 31

3.1.1 SPI Multi-Master Feature . 31

1

2 CONTENTS

3.1.2 DMA Feature . 34
3.2 CMC Package . 37

3.2.1 Testbench Feature [Deprecated] . 37
3.3 LArC Commands Package . 38

3.3.1 Command Parsing Feature . 38
3.3.2 Adding a New Command . 39

3.4 UART Listener Package . 42
3.4.1 Description . 42
3.4.2 Usage . 42

4 MMC Developments 44
4.1 User Sensors . 44

4.1.1 Sensors list . 44
4.1.2 Alerts and Sensors Thresholds . 45
4.1.3 LATOME Sensors Thresholds . 47
4.1.4 Sensors Data Conversion . 52
4.1.5 SDR Values: Experiments on the Shelf 54

4.2 Task Management . 55
4.2.1 Introduction . 55
4.2.2 Task Control Block . 57
4.2.3 Scheduler . 57

A ICARE �rmware compilation on CERN-SLC6 59

B Hard fault: Retrieve the faulty line 60

C Locally install OpenOCD on CERN-SLC6 61

D Status 63
D.1 ATCA Boards status . 63

E LArC Power Con�guration 64

Chapter 1

Introduction

Contents

1.1 ATLAS Overview . 3

1.1.1 Detectors Components 3

1.1.2 Back-End System . 4

1.2 ATCA Platform . 5

1.2.1 Introduction . 6

1.2.2 IPMI Architecture . 7

1.2.3 IPMI Protocol . 7

1.3 IPMC Board . 7

1.3.1 Introduction . 7

1.3.2 Hardware Overview . 8

1.4 AMC Board . 8

1.4.1 Introduction . 9

1.4.2 Hardware Overview . 9

1.1 ATLAS Overview

1.1.1 Detectors Components

The ATLAS platform is composed of three detectors[1] as shown in Figure 1.1:

• The inner detector, including Pixel and the SCT and TRT trackers, measures the mo-
mentum of each charged particle

3

4 CHAPTER 1. INTRODUCTION

Figure 1.1: ATLAS detectors

• The calorimeters relies on liquid Argon or dedicated tiles to measure the energies
carried by the particles

• The muon spectrometer identi�es and measures the momenta of muons

These detectors are connected to the electronic Front-End. In our case we are interested
in the calorimeter data and responsible for managing the Back-End system, which is located
just after the Front-End.

1.1.2 Back-End System

The back-end system is composed of several blocks processing the data coming from the
Front-End (Figure 1.2). Data consists in Level1-Accept (L1A) signals indicating that a partition
(ie. a region) of the detector detected an interesting level of energy.

The �rst element of the back-end is the Read-Out Driver (ROD). It gets data from the
Front-End Board (FEB), which are controlled by the Trigger Timing Control (TTC) system, itself
controlled by the Central Trigger Processor (CTP).

5 CHAPTER 1. INTRODUCTION

High-Level
Trigger

High-Level
Trigger

ROS
sw

ROBin

ROBin

ROBin

Read-Out
Driver

(ROD)

Read-Out
Driver

(ROD)

Front-End
Buffer

Front-End
Buffer

Front-End
Buffer

TTC
System

TTC
System CTPCTP

P
C
I
e

Read-Out
Links

Back-End

Front-End

Figure 1.2: Back-End system

Data from the FEB are handled by the ROD. It contains:

• an input FPGA used to re-organize data for computing e�ciency
• a Processing Unit (PU) composed of two TMS320C6414 DSP from Texas Instrument
which compute the energy, the form factor and the timing of the energy pikes

• and an output FPGA which re-organizes the data and sends it to the Read-Out System
(ROS) through dedicated Read-Out Link (ROL)

The ROS includes Read-Out Bu�er INput (ROBIN) boards which are responsible for re-
ceiving and bu�ering the event data fragments from the RODs. These boards are connected
on a PCIe bus and communicate with a host called the ROS software. On request from the
High-Level Trigger (HLT), this piece of code transfers the interesting data to the latter which
is a server cluster.

1.2 ATCA Platform

6 CHAPTER 1. INTRODUCTION

Figure 1.3: ATCA platform

1.2.1 Introduction

The management of the boards inside the Advanced Telecom Computer Architecture (ATCA)
shelf is done by an Intelligent Platform Management Controller (IPMC) present on each
board. This module provides the ability to manage the power, the cooling and the inter-
connections needed by the monitored devices. Its role is to monitor events and to log them
into a central repository (System Event Log (SEL)).

An IPMC can monitor ATCA board or ATCA Carrier Board via System Management Bus
(SMBus) which is an I2C-like bus (Figure 1.3). An ATCA Carrier Board includes one or several
Advanced Mezzanine Cards (AMC). Each AMC board is itself monitored by a Module Manage-
ment Controller (MMC) board.

The IPMC board is composed of two 32-bit Cortex-M4 micro-controllers, one implement-
ing the IPMC protocol, the other being available for the users to access the board peripherals
via the additional serial buses. Typically, peripherals are sensors or Ethernet controller.

7 CHAPTER 1. INTRODUCTION

1.2.2 IPMI Architecture

The Intelligent Platform Management Interface (IPMI) speci�cation de�nes how to manage
IPMC platforms built around an Intelligent Platform Management Bus (IPMB). The IPMC con-
trols the SEL, the Sensor Data Records (SDR) repository and the Field Replaceable Unit (FRU)
initialization information.

The SEL induces a hard-coded knowledge of the sensor. To avoid it, the SDR has been
created to allow more �exibility in the event format. Actually, the SDR region contains infor-
mation to link the SDR data with the corresponding FRU.

An initialization agent permits to write default settings on start-up, whereas FRU infor-
mation should be stored into a non-volatile memory (EPROM). Access to this memory must
be possible via JTAG or another way when the IPMB system is down.

1.2.3 IPMI Protocol

The IPMI protocol is based on a Request/Response interface which can be referred as Com-
mands/Responses interface. The Requester and the Responder are de�ned by unique iden-
ti�ers and exchange commands and data on the IPMB.

A command is composed of:

• Network Function Codes (1 byte): 6 bits are used to encode the function, the 2 re-
maining bits are the Logical Unit Number (LUN) �eld which can be used to access a
sub-module managed by the IPMC receiving the message. A function can be of sev-
eral types, e.g. it can concern chassis, bridges, sensor events, applications, �rmwares,
storages, transport or custom functionality extensions.

• Optional data related to the command.

A response is composed of:

• Completion Codes: it can be viewed as a status �ag. It corresponds to the �rst byte of
the response. If the command is not supported or implemented, a special code 0xFF
should be sent. In a normal case where the command is successfully executed, the
code should be 0x00.

• Optional data related to the response

1.3 IPMC Board

1.3.1 Introduction

The purpose of the IPMCmezzanine is to handle the communication between the Shelf Man-
ager and the ATCA board in which it is inserted. It implements the IPMI procotol and provides

8 CHAPTER 1. INTRODUCTION

the user with accesses to sensors serial interfaces such as I2C or SPI. The typical architec-
ture of an ATCA platform is described in Figure 1.3.

An ATCA board can be extended using an optional Rear Transition Module (RTM), or be
used as a Carrier board, embedding AMC boards. The system is also composed of Power
Entry modules to supply power on the ATCA boards and Fan trays in order to maintain a cool
operating temperature.

The Shelf Manager centralizes the information provided by the di�erent ATCA boards and
allows the user to monitor them through a request interface (Webpage or command line).

1.3.2 Hardware Overview

The IPMC board is mainly composed of two Micro-Controller Units (MCUs): the IPMC and the
Input/Output InterFace (IOIF) (Figure 1.4).

The IPMC executed code is strictly dedicated to manage the IPMB protocol and to com-
municate with the Shelf Manager.

On the IOIF, a part of the code running should be user-written, to control sensors avail-
able on the ATCA board. Addition of user code can be done implementing so-calledmodules.
This chip is also used to update the �rmwares of each MCU through Ethernet.

ARM
Cortex-M4
STM32F407

ARM
Cortex-M4
STM32F407

Ethernet I2C I2C SPI

PROM

SPI2

SPI1

UART UART

IOIF
Reset Button

IPMC
Reset Button

IPMC IOIF

Figure 1.4: IPMC Mezzanine

1.4 AMC Board

9 CHAPTER 1. INTRODUCTION

1.4.1 Introduction

An AMC board can be plugged in a ATCA Carrier Board. This carrier board owns itself an IPMI
controller, the IPMC.

The MMC is an IPMI controller designed to be integrated on AMC boards. In our case of
the LAr Trigger prOcessing MEzzanine (LATOME) board (Figure 1.5), the MMC is based on an
ATMEGA128 MCU from Atmel. On one side, the MMC is connected to the IPMB bus. On the
other side, it is connected to another bus to access I2C sensors present on the AMC board,
such as temperature, voltage or current sensors.

Figure 1.5: LATOME board

The development environment of our MMC is composed of the Atmel Studio IDE de-
tailed in Chapter 2.2.1, the LATOME board designed to comply with the AMC format, and a
"LATOMETT" docking board to supply the LATOME with all the required power levels. The
MMC is then programmed via a custom JTAG cable connected to an ATMEL-ICE Debugger.

1.4.2 Hardware Overview

Hardware details about the LATOME board can be found in the LATOME reference manual [2].

Chapter 2

Development Tools

Contents

2.1 ICARE Firmware . 10

2.1.1 Environment Setup . 10

2.1.2 Working Directories . 11

2.1.3 OpenOCD . 11

2.1.4 ICARE Source Code . 13

2.1.5 Package Development 13

2.1.6 Firmware Upgrade . 15

2.2 MMC Firmware . 18

2.2.1 Atmel Studio . 19

2.2.2 Software Organization 19

2.2.3 Firmware Upgrade . 21

2.1 ICARE Firmware

The Intelligent platformmanagement Controller softwARE (ICARE) �rmware is the application
running on top of the IPMC mezzanine. It is compiled both for the IPMC and the IOIF MCUs.

2.1.1 Environment Setup

In addition to the information provided in the next subsections, the setup of the ICARE en-
vironment and its con�guration are described in the document written by Guy Perrot [3]. It
introduces the installation of the tools and drivers for Windows 8.1, and details the com-
mands to get a fresh local copy of the �rmware repository.

10

11 CHAPTER 2. DEVELOPMENT TOOLS

2.1.2 Working Directories

LAPP installation:

When working at Laboratoire d’Annecy de Physique des Particules (LAPP), two folders
need to be mounted in order to retrieve the source code and to be able to build the ICARE
�rmware:

• home1 or home3: this folder contains your user directory. It will be used to work on a
local copy of the �rmware sources

• software_dev : this directory contains the source code and the tools to build the
�rmware

On Linux, if not already done, these folders can be mounted using sshfs. Here are some
aliases that can be pasted into your bash pro�le (replace "‘username"’ by your own user
name):
a l i a s mount_home1= ’ sshfs username@lappsl . in2p3 . f r : / home1 /home1/ ’
a l i a s mount_software = ’ sshfs username@lappsl . in2p3 . f r : / software_dev /software_dev ’

To unmount them, de�ne and use the following aliases:
a l i a s unmount_home1= ’ fusermount −u /home1 ’
a l i a s unmount_software = ’ fusermount −u /software_dev ’

Local installation:

When working outside the LAPP network, the ICARE �rmware can be installed locally us-
ing the auto-extractable archive that can be download on the ICARE website. The installation
procedure can be found at the same location:

http://lappwiki.in2p3.fr/twiki/bin/view/AtlasLapp/Informatique

2.1.3 OpenOCD

In order to load the �rmware on the IPMC board, the following tools are required:

• The ICARE environment previously installed
• The Olimex JTAG programmer with the OpenOCD software

The Olimex JTAG programmer can be used on SLC6, SLC7 or macOS 10.12+ with openocd-
0.9.0 and later. On Windows 10, the Olimex drivers are working from the version 2.3 of the
Zadig software. With previous version of Zadig (e.g. 2.2), one has to use the NGX JTAG interface
instead.

http://lappwiki.in2p3.fr/twiki/bin/view/AtlasLapp/Informatique

12 CHAPTER 2. DEVELOPMENT TOOLS

The OpenOCD tool is available on the Linux machines at LAPP in the directory mentioned
below. The connection with the board can be made using the following commands.

1. First, load the ICARE environment. At this time, the latest release is 00-02-00:
$ source /software_dev/ a t las / pro ject / ICARE/ releases /ICARE−00−02−00/admin/v0r6/cmt/setup . sh

2. Then, go to the OpenOCD directory and connect to the board through the Olimex JTAG
adapter:
$ cd /software_dev/ a t las / pro ject / ICARE/
$ cd . / contr ib /openocd/Linux/openocd−0.9.0−201505190955/ s c r i p t s /
$ openocd −f i n te r face /olimex−arm−usb−ocd−h . c fg −f ta rge t / ipmcv2_1 . c fg

It should display the following output:
[laurent@localhost s c r i p t s] $ openocd −f i n te r face /olimex−arm−usb−ocd−h . c fg −f ta rge t / ipmcv2_1 .

c fg
GNU ARM Ec l ipse 64−b i t s Open On−Chip Debugger 0.9.0−00073−gdd34716−d i r t y (2015−05−19−09:57)
Licensed under GNU GPL v2
For bug reports , read
http :// openocd . org/doc/doxygen/bugs . html

Info : only one transport option ; autoselect ’ j tag ’
adapter speed : 1000 kHz
adapter_nsrst_delay : 100
cortex_m reset_conf ig sysresetreq
Warn : Using DEPRECATED in te r face dr i ve r ’ f t2232 ’
In fo : Consider using the ’ f td i ’ i n te r face dr iver , with conf igurat ion f i l e s in i n te r face / f t d i

/ . . .
In fo : max TCK change to : 30000 kHz
Info : c lock speed 1000 kHz
Info : JTAG tap : ipmc . cpu tap/device found : 0x4ba00477 (mfg : 0x23b , part : 0xba00 , ver : 0x4)
In fo : JTAG tap : ipmc . bs tap/device found : 0x06413041 (mfg : 0x020 , part : 0x6413 , ver : 0x0)
In fo : JTAG tap : cpld . cpld tap/device found : 0x020a20dd (mfg : 0x06e , part : 0x20a2 , ver : 0x0)
In fo : JTAG tap : i o i f . cpu tap/device found : 0x4ba00477 (mfg : 0x23b , part : 0xba00 , ver : 0x4)
In fo : JTAG tap : i o i f . bs tap/device found : 0x06413041 (mfg : 0x020 , part : 0x6413 , ver : 0x0)
In fo : ipmc . cpu : hardware has 6 breakpoints , 4 watchpoints
In fo : i o i f . cpu : hardware has 6 breakpoints , 4 watchpoints

3. Once the connection is done, you can launch a telnet connection to interact with the
MCUs thanks to OpenOCD or GDB commands:
$ te lne t loca lhost 4444

The following output should be displayed:
Try ing : : 1 . . .
t e lne t : connect to address : : 1 : Connection refused
Try ing 1 2 7 . 0 . 0 . 1 . . .
Connected to loca lhost .
Escape character i s ’ ^] ’ .
Open On−Chip Debugger
>

Information about the two MCUs can be printed using the ’targets’ command:

13 CHAPTER 2. DEVELOPMENT TOOLS

> targets
TargetName Type Endian TapName State

−− −−
0 ipmc . cpu cortex_m l i t t l e ipmc . cpu running
1* i o i f . cpu cortex_m l i t t l e i o i f . cpu running
>

2.1.4 ICARE Source Code

When working at LAPP, the �rmware source code can be fetched to a local directory using
the following commands.

First, load the ICARE environment:
$ source /software_dev/ a t las / pro ject / ICARE/ releases /\
ICARE−00−02−00/admin/v0r6/cmt/setup . sh

Create a new local repository folder, for instance ICARE_workarea:
$ cd /home1/<username>/
$ mkdir ATLAS && cd ATLAS
$ cmt create_pro ject ICARE_workarea

Finally in project.cmt, add the following line setting the ICARE version you want to use:
$ nano pro ject . cmt
. . .
Add the fo l lowing l i n e :
use releases ICARE−00−02−00
. . .

Several aliases can be created to ease the load of the ICARE environment:
ICARE a l iases
a l i a s source_icare = ’ source /software_dev/ a t las / pro ject / ICARE/ releases /ICARE−00−02−00/admin/v0r6/cmt/

setup . sh ’
a l i a s cd2openocd = ’ cd /software_dev/ a t las / pro ject / ICARE/ contr ib /openocd/Linux/openocd

−0.9.0−201505190955/ s c r i p t s / ’
a l i a s cd2icare_workarea = ’ cd /home1/username/ATLAS/ICARE_workarea / ’

2.1.5 Package Development

Package compilation:

By default, your local application will use the remote packages tagged in the SVN repository.
If you want to con�gure a package with CMT or even make changes to the source code, you
have to import it in your ICARE work area:
$ cd /home1/username/ATLAS/ICARE_workarea/

14 CHAPTER 2. DEVELOPMENT TOOLS

The version format for a package is vxrypz, with x, y, z being respectively the version, release
and patch numbers. To get the SPI package along with the IMC, type the following command.
It will import the spi and imc packages and will increment the revision version of each pack-
age (’-i r’ option). It is also possible to increment the version (’-i v’) or the patch number (’-i
p’):

$ getpkg −i r spi imc

Once you get the package, you can go to the SPI package CMT directory:
$ cd spi /v0r5/cmt

Use the command "‘make help"’ to get the list of the available commands associated with
this packet. If any, the existing tests can be compiled with the command:
$ make && make test

The binary �les can then be uploaded to the Flash using this command:
$ make f l a sh_sp i_ tes t_ 1 # in the case of the SPI package

Finally, to circumvent manually removing / reinserting the carrier, it is possible to reset the
MCUs using the JTAG interface.
Warning: JTAG programming only works with Carrier v3 or newer.
$ te lne t loca lhost 4444
$ reset i n i t
$ reset run

Sources commitment (SVN only):

Before committing, ensure your local repository URL points to the trunk branche:
$ svn in fo
Path : .
URL : f i l e :/// software_dev/ a t las /repo/ICARE/ spi / trunk
Repository Root : f i l e :/// software_dev/ a t las /repo/ICARE
Repository UUID : 5d6f7848−0351−41c7−bcaa−bd82fec97149
Revis ion : 661
Node Kind : d i rec to ry
Schedule : normal
Last Changed Author : gantel
Last Changed Rev : 657
Last Changed Date : 2017−02−08 1 8 : 1 6 : 2 5 +0100 (Wed, 08 Feb 2017)

Check if new �les need to be added and the status of the modi�ed �les:
$ svn status

To see the modi�cations in a �le, use the following command:

15 CHAPTER 2. DEVELOPMENT TOOLS

$ svn d i f f myFile

You can install and con�gure colordi� to get a fancier output. On Linux SLC6:
$ yum i n s t a l l c o l o r d i f f

Then you can con�gure it as wanted:
$ cp /etc/ co l o r d i f f r c ~/ . c o l o r d i f f r c
$ nano ~/ . c o l o r d i f f r c

Choose the colors you want to apply for each type of output. Then con�gure SVN to use
colordi�:
$ nano ~/ . subversion/ conf ig

This line allows to con�gure the editor:
editor−cmd = sublime_text

This line is to choose the program used to perform the di�:
d i f f−cmd = /usr/bin/ co l o rd i f f

If you are satis�ed with the modi�cations you have done to the package, add the new �les
and commit:
$ svn add myFile
$ svn commit −m " This i s my new f i l e " myFile

Finally, create a tag:
$ cd spi /v0r5
$ svn update
$ svn cp . $SVNROOT/ spi / tags/v0r5 −m "Add Multi−Master mode using hardware NSS"
$ svntags −l v spi
Should be the vers ion that we ju s t commited

2.1.6 Firmware Upgrade

The �rmware upgrade utility is necessary to update the �rmware through Ethernet and
should be compiled with the application. If needed re-compile it but it is already integrated
to the 00-02-00 repository:
$ cd fwUpgrade/v0r1p4/cmt
$ make
$ source setup . sh
$ cd . . / . . / . . / inet /v0r1p2/cmt
$ make
$ make f l a sh_ ine t s r vc

Go to your application directory (demo in this example):
$ cd . . / . . / . . / demo/v0r1/cmt
$ make
$ source setup . sh

16 CHAPTER 2. DEVELOPMENT TOOLS

If accessible, use the JTAG connection to get the IP address:
$ make in fo
#CMT−−−> In fo : Document mcu_info

===========================
IPMC − OTP area information
===========================
OpenOCD server : lappc−at27

MCU ID : 0x193c
PCB version : v2 . 2
Se r i a l Number : 35
−−−−−−−−−−−−−−−−−−−−−−−−−−−

===========================
IO IF − OTP area information
===========================
OpenOCD server : lappc−at27

MCU ID : 0x101 f
PCB version : v2 . 2
Se r i a l Number : 35
MAC address : 00 :22 :8 f : 0 2 : 4 0 : 2 3
IP address : 1 3 4 . 1 5 8 . 9 8 . 1 8 3
−−−−−−−−−−−−−−−−−−−−−−−−−−−

The IP address can also be retrieved sending a clia command to the shelf:
$ c l i a board sendcmd 2e 07 2e a1 00
Pigeon Point Shel f Manager Command Line In te rp re te r

Completion code : 0x0 (0)
Response data : 2E A1 00 00 22 8F 02 40 6E 80 8D CA CB FF FF FF 00 80 8D CA 01 01 01 64

The address is stored in the bytes 10 to 13. For instance 80 8D CA CB becomes 128.141.202.203.

Load the �rmware in the memory, �rst the IPMC binary:
$ fwu −t IPMC −n 1 3 4 . 1 5 8 . 9 8 . 1 8 3 −f . . / arm−gcc47−dbg/bmc_IPMC . bin
+−−+
| ___ ___ _ ___ ___ |
	_ _/ __	/_\	_ \ __	
		(__ / _ \| / _		
	______/_/ __	____		
I n t e l l i g e n t plateform management Cont ro l le r softwARE				
Firmware upgrade u t i l i t y .				
Copyrigth (c) 2014−2015 LAPP/CNRS .				
+−−+

Host : 1 3 4 . 1 5 8 . 9 8 . 1 8 3
Port : 5555
Target MCU : IPMC
Upgrade MCU : NO

Firmware Upgrade image : . . / arm−gcc47−dbg/bmc_IPMC . bin (2 7 2 . 1 KB)

17 CHAPTER 2. DEVELOPMENT TOOLS

Firmware image checksum : 9 f60f71e
Downloading image ’bmc_IPMC . bin ’ . . . OK
Download rate : 2 4 . 3KB/s 00 : 1 1 . 2 1 9
Programming CONFIGURATION f lash memory . . . OK
Programming 278652 bytes in CONFIGURATION f lash memory successfu l .

$ fwu −t IPMC −n 1 3 4 . 1 5 8 . 9 8 . 1 8 3 −u
+−−+
| ___ ___ _ ___ ___ |
	_ _/ __	/_\	_ \ __	
		(__ / _ \| / _		
	______/_/ __	____		
I n t e l l i g e n t plateform management Cont ro l le r softwARE				
Firmware upgrade u t i l i t y .				
Copyrigth (c) 2014−2015 LAPP/CNRS .				
+−−+

Host : 1 3 4 . 1 5 8 . 9 8 . 1 8 3
Port : 5555
Target MCU : IPMC
Upgrade MCU : YES

Send update command . . . OK
Performing upgrade stage (take approximately 20 seconds) .

After waiting approximately 20-50 seconds depending on the size of the binary, repeat the
operation for the IOIF binary:

$ fwu −t IO IF −n 1 3 4 . 1 5 8 . 9 8 . 1 8 3 −f . . / arm−gcc47−dbg/bmc_IOIF . bin
+−−+
| ___ ___ _ ___ ___ |
	_ _/ __	/_\	_ \ __	
		(__ / _ \| / _		
	______/_/ __	____		
I n t e l l i g e n t plateform management Cont ro l le r softwARE				
Firmware upgrade u t i l i t y .				
Copyrigth (c) 2014−2015 LAPP/CNRS .				
+−−+

Host : 1 3 4 . 1 5 8 . 9 8 . 1 8 3
Port : 5555
Target MCU : IO IF
Upgrade MCU : NO

Firmware Upgrade image : . . / arm−gcc47−dbg/bmc_IOIF . bin (2 26 . 9KB)
Firmware image checksum : 036 fc318
Downloading image ’ bmc_IOIF . bin ’ . . . OK
Download rate : 2 3 . 7 KB/s 00:09 .573
Programming CONFIGURATION f lash memory . . . OK
Programming 232388 bytes in CONFIGURATION f lash memory successfu l .

Update the boot memory:

18 CHAPTER 2. DEVELOPMENT TOOLS

$ fwu −t IO IF −n 1 3 4 . 1 5 8 . 9 8 . 1 8 3 −u
+−−+
| ___ ___ _ ___ ___ |
	_ _/ __	/_\	_ \ __	
		(__ / _ \| / _		
	______/_/ __	____		
I n t e l l i g e n t plateform management Cont ro l le r softwARE				
Firmware upgrade u t i l i t y .				
Copyrigth (c) 2014−2015 LAPP/CNRS .				
+−−+

Host : 1 3 4 . 1 5 8 . 9 8 . 1 8 3
Port : 5555
Target MCU : IO IF
Upgrade MCU : YES

Send update command . . . OK
Performing upgrade stage (take approximately 20 seconds) .

After the reboot of the IOIF which also takes 20-50 seconds, the IPMC will automatically
reboot. Use the JTAG to check the new version currently running:
[gantel@lappc−f533 cmt] $ make version
#CMT−−−> In fo : Document mcu_version

===================================
IPMC − Version
===================================
OpenOCD server : lappc−at27

Release ver . : ICARE−00−02−00
Compilator : (GNU) gcc 4 . 7 . 0 [dbg]
Binary image : bmc_IPMC . bin
Bui ld ver . : J u l 21 2017 , 1 6 : 40 : 3 3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

===================================
IO IF − Version
===================================
OpenOCD server : lappc−at27

Release ver . : ICARE−00−02−00
Compilator : (GNU) gcc 4 . 7 . 0 [dbg]
Binary image : bmc_IOIF . bin
Bui ld ver . : J u l 21 2017 , 1 6 : 40 : 3 3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2.2 MMC Firmware

19 CHAPTER 2. DEVELOPMENT TOOLS

2.2.1 Atmel Studio

The Atmel Studio IDE version 7.0 is used to develop on the MMC board which manages power,
temperature, and hot-swap of the ATCA carrier boards. It has been tested on Windows 10
(and on Windows 7 through VirtualBox 5.2.6 under macOS 10.13.2).

http://www.atmel.com/tools/ATMELSTUDIO.aspx

2.2.2 Software Organization

Repositories

The Git repository containing the MMC �rmware can be found at this address:
https://gitlab.cern.ch/atlas-lar-ldpb-firmware/MMC

A develop branch has been added to the repository to host the stabilized features be-
fore merging with a release version. The project can be loaded using the project �le MM-
C/atmega128_mmc.atsln. On-going developments must be pushed into feature or hot�x
branches.
MMC original code coming from CERN is available from a SVN repository at:

https://svnweb.cern.ch/cern/wsvn/ph-ese/be/mmc_v2/

Two main branches are currently maintained:

• develop: contains the intermediate updates← This is the stable development branch.
• master: contains the last stable production version.

To load the .hex �le in the LATOME MMC, an Atmel-ICE debugger is used with a custom
JTAG↔ AVR cable.

Documentation

In addition to this manual, some documentation is available from CERN for the MMC project.
Check SVN repository at:

https://espace.cern.ch/ph-dep-ESE-BE-uTCAEvaluationProject/MMC_project/

default.aspx

http://www.atmel.com/tools/ATMELSTUDIO.aspx
https://gitlab.cern.ch/atlas-lar-ldpb-firmware/MMC
https://svnweb.cern.ch/cern/wsvn/ph-ese/be/mmc_v2/
https://espace.cern.ch/ph-dep-ESE-BE-uTCAEvaluationProject/MMC_project/default.aspx
https://espace.cern.ch/ph-dep-ESE-BE-uTCAEvaluationProject/MMC_project/default.aspx

20 CHAPTER 2. DEVELOPMENT TOOLS

Additions to CERN code

UART support:

An UART has been added to the �rmware code in order to allow an e�cient debugging
of the application. The UART communicates at 9600 bauds (8N1). The system clock used to
compute the baud-rate register value has been �xed to 4MHz instead of 16MHz in the starting
code Release2.

In the main function, the pins on the MCU are initialized and interrupt activated to have
this functionality. You can plug a USB↔ Serial cable, and use a serial terminal to watch
the debug prints (TeraTerm or assimilated). The classic printf() method is available to out-
put messages. But prints to UART are SLOW, having too much could cause timeouts in I2C
exchanges!

$ screen −L /dev/ t t y . usbser ia l−FTHBSX4H 9600 ,cs8 ,−ixon ,− i xo f f ,− i s t r i p

MMC Firmware − Feb 28 2018 1 3 : 4 4 : 5 5
−−
> MMC i n i t [OK]
00:00:03

−−−−−−−−−−−−−−−−
VCC_GXB Voltage : 163 mV
A10_VCC Voltage : 163 mV
VCC_GXB Current : 200 mA
A10_VCC Current : 200 mA
TEMP_FPGA : 1 degC

00:00:06
−−−−−−−−−−−−−−−−
VCC_GXB Voltage : 163 mV
A10_VCC Voltage : 163 mV
VCC_GXB Current : 200 mA
A10_VCC Current : 200 mA
TEMP_FPGA : 1 degC

00:00:07

Timer for sensor:

A common timer for LTC2495 sensors have been added. It is initialized in the MMC main
code, and used in the functions for both software sensors (see .c �les for those sensors).

I2C buses:

A couple of Two Wire Interfaces (TWI) are used as I2C buses:

• One for the communication with IPMC (going outside of LATOME board)
• One for the communication on the board with the sensors

Those I2C buses are wired on LATOME test board (A LATOME board without FPGA) and a

21 CHAPTER 2. DEVELOPMENT TOOLS

Figure 2.1: Power supply in standby state

bus analyzer or a bus injector can be used to debug and analyze data.

Tools used:
http://www.totalphase.com/products/beagle-i2cspi/ (analyzer)
http://www.totalphase.com/products/aardvark-i2cspi/ (injector)

2.2.3 Firmware Upgrade

Update via JTAG

Hardware Setup:

The MMC �rmware can be updated via JTAG using the Atmel IDE and the LATOMETT board:

1. The LATOMETT board must be supplied with 12V power in order to provide at least the
3.3V needed by the MMC (ie. the Management Power). The supplied power could be
higher than 12V to ensure that the regulated power is always correct (Figure 2.1).

2. Insert the LATOME board inside the LATOMETT (Figure 2.2)

3. Plug the Atmel-ICE JTAG programmer into the MMC front panel (Figure 2.3)

4. Connect the USB output of the Atmel-ICE to your computer (The other USB cable is
used to connect the UART interface of the MMC for debugging)

5. Switch the power supply on (Figure 2.4)

http://www.totalphase.com/products/beagle-i2cspi/
http://www.totalphase.com/products/aardvark-i2cspi/

22 CHAPTER 2. DEVELOPMENT TOOLS

Figure 2.2: LATOMETT

Figure 2.3: MMC JTAG front panel Figure 2.4: Power supply ON

23 CHAPTER 2. DEVELOPMENT TOOLS

Figure 2.5: Atmel ICE JTAG programmer

At this point, the Atmel-ICE should show a green LED (Figure 2.5), meaning that the MMC
is correctly powered with the 3.3V derived from the 12V, and successfully detected by the
JTAG programmer.

JTAG Programming:

The �rmware can be �ashed into the MMC using the Atmel IDE:

1. Open the project �le MMC/atmega128_mmc.atsln
2. The fuses of the ATMega MCU of the MMC must be con�gured to get the correct clock
con�guration, specify the memory mapping and be able to use the UART output. In
the Tools menu, select Device Programming, and click on Apply to connect to the AT-
Mega128. Then select the Fuses item (Figure 2.6).

On the bottom of the window, the Fuse Register con�guration should be set to:

• EXTENDED: 0xFF
• HIGH: 0x90
• LOW: 0xC3

3. In the Tools menu, select Device Programming. In the Memories entry tab, select the
ELF �le to upload and click on Program (Figure 2.7). After the �le name has been
selected once, you can use the Start Without Debugging button directly from the
menu bar to �ash the MCU.

24 CHAPTER 2. DEVELOPMENT TOOLS

Figure 2.6: ATMega128 Fuses con�guration

25 CHAPTER 2. DEVELOPMENT TOOLS

Figure 2.7: ATMega128 Programming

26 CHAPTER 2. DEVELOPMENT TOOLS

Firmware Update via HPM

MMC bootloader:

For the LATOME AMC to support the Hardware Platform Management (HPM) protocol, a
compatible bootloader must be implemented in its MMC. The bootloader should check if an
application can be run and start it, otherwise wait for HPM commands to receive and �ash a
new application binary into the MMC memory. Such a bootloader for the ATMega128 can be
found in HPM/atmega128_hpm.atsln.

This Atmel IDE project has been con�gured to load the bootloader at memory address
0xF000 (0x1E000 in the linker script option, as AVR MCU use 16-bits wide words instead of the
8-bits wide words used in the gcc port, thus addresses multiplied by 2). It must feat before
memory address 0xFFFF (Figure 2.8).

Application
(122880 words - 120KB)

Application
(122880 words - 120KB)

0x0000

0xFFFF

0xF000

Bootloader
(4096 words - 8KB)

Figure 2.8: MMC memory Flash organization

The �rst byte of the EEPROM memory at address 0x00 is used to store the bootloader
�ag. If this �ag equals 0xFF, the bootloader directly starts the application at boot. Oth-
erwise, the GREEN and the RED LEDs are set on in order to indicate that the bootloader is
running and waiting for HPM commands from the user.

In addition, the �rst byte of the FRU storage is used by the application to know if it is
necessary to re-write the FRU information into the EEPROMmemory. 0xFF means yes, other
values means no.

27 CHAPTER 2. DEVELOPMENT TOOLS

$ ipmitool

AMC1
@0x72

AMC2
@0x74

AMC3
@0x76

AMC4
@0x78

LAPP-ATCA

FRU #0, #1

IPMC @ 0x92

FRU #2

--shm--

LAN

IPMB-0

CH #0

IPMB-L
CH #7

Shelf-Manager
lapp-sm10

Blade ATCA-6900
lapp-atca01

Figure 2.9: ipmitool command path

Warning: The �rst byte of the FRU is located at the absolute address 0x01 of the EEP-
ROM memory, but is accessed via the write_eeprom_byte() and read_eeprom_byte() func-
tions whose the address argument is systematically incremented by one. This means that
write_eeprom_byte(0x00, 0xFF) writes 0xFF at address 0x01 of the EEPROM and so erases
the �rst byte of the FRU storage.

RMCP commands via ipmitool:

The �rst version of the HPM speci�cation (HPM.1) de�nes the �rmware �le format and
IPMI commands protocol to update �rmware in ATCA management controllers. This protocol
is known as the Remote Management Control Protocol (RMCP). It allows transport of IPMI
messages over LAN.

RMCP is not directly supported by our IPMC, but by the Shelf-Manager itself. A software
called ipmitool is available on Linux to send such RMCP messages.

In our case, ipmitool is available on the (lapp-atca01) embedded PC installed in the shelf.
It allows to send IPMI commands to the Shelf-Manager, forwarding them to the ATCA board
or to an AMC board as depicted in Figure 2.9.

To get management controller (mc) information, an IPMI request can be sent to the Shelf-
Manager via the LAN using the following command:
$ ipmitool −H lapp−sm10 mc info

The same command can be sent to the ATCA board using the bridging option (0x92 is the
target address and 0 is the channel identi�er for IPMB-0):
$ ipmitool −H lapp−sm10 −t 0x92 −b 0 mc info

28 CHAPTER 2. DEVELOPMENT TOOLS

Channels identi�ers can be found using the channel command:
$ ipmitool −H lapp−sm10 channel in fo

To go further, commands can reach one of the AMC boards hosted by an ATCA board, using
the double-bridging options. In Figure 2.9, the address of the AMC viewed by the IPMC (ie.
the ATCA board) is 0x78 and the channel identi�er is 7:
$ ipmitool −H lapp−sm10 −T 0x92 −B 0 −t 0x78 −b 7 mc info

Firmware image generation:

The Atmel IDE generates an executable formatted in HEX. In order to be downloaded to
an management controller via RMCP, it must be converted to binary format, and HPM com-
mands must be inserted before the �rmware image to indicate what the bootloader should
precisely do.

The HPMImgGenerator software has been developed to perform this conversion, to cre-
ate an HPM image called img.hpm from a given .hex �le:
$. / hpmimggenerator atmega128_mmc . hex

MMC Information
* * * * * * * * * * * * * * * * * * *
Mic rocont ro l le r version ([0] 8 b i t s / [1] 32 b i t s) : 0
IANA Manufacturer ID : 0x00A12E
Product ID : 0x1235
Ea r l i e s t major firmware rev . compatible : 1
E a r l i e s t minor firmware rev . compatible : 0
New major firmware : 4
New minor firmware : 1

Firmware upgrade procedure:

1. Get the target capabilities
$ ipmitool −H lapp−sm10 −T 0x92 −B 0 −t 0x78 −b 7 hpm targetcap

PICMG HPM. 1 Upgrade Agent 1 . 0 . 9 :

TARGET UPGRADE CAPABILITIES
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
HPM. 1 version 0
Component 0 presence [y]
Component 1 presence [n]
Component 2 presence [n]
Component 3 presence [n]
Component 4 presence [n]
Component 5 presence [n]
Component 6 presence [n]
Component 7 presence [n]
Upgrade undesirable [n]

29 CHAPTER 2. DEVELOPMENT TOOLS

Aut ro l lback overr ide . . . [n]
IPMC degraded [y]
Defered ac t i va t ion [y]
Serv ice af fected [y]
Manual ro l lback [n]
Automatic ro l lback [n]
Se l f test [n]
Upgrade timeout [3 0 sec]
Se l f test timeout [0 sec]
Rollback timeout [0 sec]
I n a c c e s s i b i l i t y timeout . [60 sec]

2. Check the image compability
$ ipmitool −H lapp−sm10 −T 0x92 −B 0 −t 0x78 −b 7 hpm check img .hpm

PICMG HPM. 1 Upgrade Agent 1 . 0 . 9 :

E r ror ge t t ing component propert ies
compcode=0x83 : Unknown (0 x83)
Get CompRollbackVersion Fa i led for component Id 0

Va l ida t ing firmware image i n t e g r i t y . . . OK
Performing preparation stage . . . OK

Comparing Target & Image F i l e version
−−
| ID | Name | Versions |
| | | Ac t i ve | Backup | F i l e |
−−
|*^ 0|LAPP MMC | 1 .00 00000000 | −−−.−−−−−−−−−− | 4 .01 00000000 |
−−
(*) Component requires Payload Cold Reset
(^) Ind icates component would be upgraded

3. Upgrade the �rmware and activate it
$ ipmitool −H lapp−sm10 −T 0x92 −B 0 −t 0x78 −b 7 hpm upgrade img .hpm act i va te

PICMG HPM. 1 Upgrade Agent 1 . 0 . 9 :

E r ror ge t t ing component propert ies
compcode=0x83 : Unknown (0 x83)
Get CompRollbackVersion Fa i led for component Id 0

Va l ida t ing firmware image i n t e g r i t y . . . OK
Performing preparation stage . . .
Serv ices may be af fected during upgrade . Do you wish to continue ? (y/n) : y
OK

Performing upgrade stage :

−−−
ID	Name	Versions	%		
		Ac t i ve	Backup	F i l e	
−−−−	−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−	−−−−
* 0	LAPP MMC	1 .00 00000000	−−−.−−−−−−−−−−	4 .01 00000000	100%
	Upload Time : 0 1 : 1 1	Image Size : 28288 bytes			
−−−
(*) Component requires Payload Cold Reset

30 CHAPTER 2. DEVELOPMENT TOOLS

Performing ac t i va t ion stage :

Firmware upgrade procedure successfu l

4. Finally, reset the IPMC using the OEM command form the Shelf-Manager, in order to
reload the updated FRU informations from the freshly �ashed MMC.

Chapter 3

ICARE Developments

Contents

3.1 SPI Package . 31

3.1.1 SPI Multi-Master Feature 31

3.1.2 DMA Feature . 34

3.2 CMC Package . 37

3.2.1 Testbench Feature [Deprecated] 37

3.3 LArC Commands Package 38

3.3.1 Command Parsing Feature 38

3.3.2 Adding a New Command 39

3.4 UART Listener Package 42

3.4.1 Description . 42

3.4.2 Usage . 42

3.1 SPI Package

3.1.1 SPI Multi-Master Feature

Objectives

The IPMC and IOIF MCUs communicate via a Serial Peripheral Interface (SPI) link. As message
exchange should not be blocking, both MCUs are de�ned as Master on the bus.

Hence, when a MCU wants to send a message, it takes control over the bus and does not
wait for an answer immediately. If no answer is received after a given timeout, the message
is resent until a maximum number of retries has been reached. In this case, the receiver is

31

32 CHAPTER 3. ICARE DEVELOPMENTS

IPMCIPMC IOIFIOIF

MOSI

SCK

MISO (Frame Start/Stop)

GPIO → NSS

NSS ←GPIO

Figure 3.1: Hardware NSS feature - Multi-Master mode

then considered as disconnected.

The goal of this feature is to provide the IPMC and the IOIF MCUs with a way to auto-
matically manage con�icting accesses on the SPI bus. To do so, relying on the Multi-Master
topology, each MCU uses a GPIO pin con�gured as an output to control the hardware NSS
pin of the other one, that is con�gured as an input pin (See Figure 3.1):

• By default, both MCUs are in Slave mode.
• When one of the MCUs wants to communicate, it goes intoMastermode to temporarily
take control of the bus.

• If its NSS pin is low, it means that the other MCU is already trying to take control of
the bus. In this case, an interrupt is generated, and the MCU goes into MODe Fault
(MODF) state and return to Slave mode.

• Otherwise, when the communication is completed, the Master MCU releases the bus
by setting the Slave MCU’s NSS pin high.

In addition, as the communication is always uni-directional, we only use one wire to
send and receive data (MOSI). The MISO pin is thus used to notify the receiver that a new
frame transmission has begun (’frame start’ on rising edge, and ’frame stop’ on falling edge).

Software Architecture

The SPI library has been remodeled in order to support the Multi-Master mode. The use case
representing the data transmission is depicted in Figure 3.2:

• The user can register two callbacks: one called when a requested transmission has
been completed (Register Tx Done Callback), the other one called when a full data
frame has been received (Register Rx Done Callback).

33 CHAPTER 3. ICARE DEVELOPMENTS

Figure 3.2: SPI Multi-Master mode - Data Transmission Use-Case

• The library manages two internal bu�ers: one used to transmit data, the other for
reception. The TX bu�er is copied from the given user bu�er in the Write Bu�er case.
The RX bu�er is directly used by the library to store incoming data packets. It is pro-
vided to the user in the Rx Done Callback case. The user should then copy the content
of this bu�er on its own, as it is released after exiting the callback.

• Before sending data, the bu�er size and the MODe Fault status are checked (Check
Bu�er Size and Check Bus Con�ict).

The class diagram representing the library API is depicted in the Figure 3.3, showing the
user’s public interface one hand, and the private implementation details on the other hand.

An error callback is also de�ned, to handle communication failures: it provides to the
user with the status of the communication, to decipher whether a message should be re-
transmitted or not.

Tests Suite

A test is de�ned as a scenario involving a transmitter and a receiver. For each test function,
the two cases are described and a feature or event is tested. Tests are executed sequentially.
Because some tests can cause an MCU to be reseted, it is thus necessary to re-synchronize
the MCUs sequences.

34 CHAPTER 3. ICARE DEVELOPMENTS

Figure 3.3: SPI Multi-Master mode - Class Diagram - Library API

The synchronization is done as follow. At the beginning of each test, the IPMC sends its
test number and then waits for the IOIF. The IOIF waits the test number of the IPMC, then
sends its own:

• If (own_nb > other_nb)→ Wait for another number
• If (own_nb < other_nb)→ Skip the test
• If (own_nb == other_nb)→ Run the test

Figure 3.4 depicts the state machines run by each MCU to synchronize the test sequence.

3.1.2 DMA Feature

Objectives

The SPI peripheral can be con�gured to use an internal Direct Memory Access (DMA) engine.
DMA allows to directly transfer data from memory to peripheral registers and vice-versa,
without involving the central processor unit. As shown in Figure 3.5, each DMA engine can
access a given set of peripherals via the AHB bus matrix.

This feature enhances the transfer bandwidth, as the communication is no longuer de-
pendant of the MCU usage.

35 CHAPTER 3. ICARE DEVELOPMENTS

Figure 3.4: SPI Multi-Master mode - Test Synchronization FSM

Software Architecture

For the SPI peripheral, two DMA streams can be set to manage the transfer:

• The stream 2 of DMA2, to silently move incoming data from the SPI RX register to a
bu�er located in memory. Once the transfer is completed, an interruption is raised.

• The stream 3 of DMA2, to directly transfer data from memory to the SPI TX register.
Once the transfer is completed, another interruption is raised.

36 CHAPTER 3. ICARE DEVELOPMENTS

Figure 3.5: STM32F4 DMA Engines [4]

37 CHAPTER 3. ICARE DEVELOPMENTS

3.2 CMC Package

3.2.1 Testbench Feature [Deprecated]

Note: The CMC testbench relies on the IPMB but has not been updated to comply with the
latest version of this libray, thus is not usable in its current state.

The Carrier Manager Controller (CMC) package is a module responsible for ensuring the
communication between the IPMC and the AMC boards. By extension, its role is to ensure
the communication between these AMC boards and the Shelf-Manager. CMC manages the
di�erent state transitions of the AMC boards inserted in any one of the carrier slots.

Software Architecture

The communication between the IPMC and the Shelf-Manager is done via the global IPMB
redundant buses: IPMB-A and IPMB-B.
The communication between the IPMC and AMCs is done through a local IPMB bus: IPMB-L.

When receiving messages from the global IPMB bus at destination of one of the AMCs,
the message is encapsulated in order to later retrieve the original request and to transfer
the answer back to the Shelf-Manager.

Objectives

The CMC testbench aims to test the communication between the Shelf-Manager and the AMC
boards.

The IPMC MCU is running the CMC module and thus, emulate precisely the behavior of
the Carrier Board running the ICARE �rmware.

The IOIF MCU is responsible for allowing the reproduction of the user interactions with
the Carrier and the AMCs, as well as simulating the Shelf-Manager behavior.

The user interactions include actions such as inserting the AMC or toggling the handle
switch, whereas the Shelf-Manager actions includes among other things, activating the FRU
or reading sensors values.

Hardware Architecture

AMC Control Lines as shown in Figure 3.6, are detailed in Table 3.1.

38 CHAPTER 3. ICARE DEVELOPMENTS

IOIF

ARM
Cortex-M4
STM32F407

UART UART

GPIO - J11

MP_Enable_0

PS1#

Enable#0

IPMB_L_Enable_0

PWR_Enable_0

MP_Good_0

PWR_Good_0

MP_Fault_0

PWR_Fault_0

PWR_ORing_0

AMC Control Lines
1

2

3

4

5

6

10

11

9

12

GPIO - J8

MP_Enable_0

PS1#

Enable#0

IPMB_L_Enable_0

PWR_Enable_0

MP_Good_0

PWR_Good_0

MP_Fault_0

PWR_Fault_0

PWR_ORing_0

AMC Control Lines
1

6

7

8

9

2

4

5

3

10

UART

FRU Buffer

SDR Buffer

IPMC

ARM
Cortex-M4
STM32F407

(J11) I²C (J3)

IPMB-LIPMB_L_SCL
<7>

IPMB_L_SDA
<8>

M_ck

M_da

(J3) I²C (J3)

A_ck

A_da

S_ck

S_da

IPMB-A

(J3) I²C (J8)

B_ck

B_da

SCL
RSV<23>

SDA
RSV<21>

IPMB-B

Figure 3.6: CMC Testbench Block Diagram

3.3 LArC Commands Package

3.3.1 Command Parsing Feature

This library de�nes a set of commands that can be executed by the IOIF. These commands
allow the user to enable or disable some �ags and to perform some actions.

Commands can be sent for instance, over the UART or the Ethernet connections. Those
connections, and thus the reception of the commands, should be handled externally by a
dedicated module.

The library exports a list of commands (See Listing 3.1) and three methods to manipulate
the �ags:

• LArCCmd_enable(cmd) which enables a command �ag
• LArCCmd_disable(cmd) which disables a command �ag
• LArCCmd_enabled(cmd) which returns the status of a command �ag

39 CHAPTER 3. ICARE DEVELOPMENTS

Pin I/O Description
PS1# In Indicates that the AMC module is inserted in the carrier
Enable#0 Out Indicates to the AMC module that it is fully inserted in the carrier
IPMB_L_Enable_0 Out Connect AMC to the IPMB-L bus
MP_Enable_0 Out Activate the Management Power (MP) - (3.3V to AMC)
PWR_Enable_0 Out Activate the module Payload Power (PP) (+12V to AMC)
MP_Good_0 In Asserted when the MP voltage is within the required levels
PWR_Good_0 In Asserted when the PP voltage is within the required levels
MP_Fault_0 In Asserted when the MP current reaches the limit
PWR_Fault_0 In Asserted when the PP current reaches the limit
PWR_Oring_0 Out Optional – for 12V redundancy

Table 3.1: AMC Control Lines

3.3.2 Adding a New Command

A new command can be added through the following steps:

1. In larcCommands.h, de�ne a new command identi�er:

Listing 3.1: "LArC Commands List"
/* *
* @brief LArC Commands l i s t
* @note FINAL_LARCCMD_NB_CMD SHOULD ALWAYS BE l i s t e d at the end of the enum and
* other values SHOULD NOT BE e x p l i c i t e l y defined expect the f i r s t one which
* SHOULD BE equal to 0 .
*/
typedef enum {
LARCCMD_FPGA_ENABLE = 0 , /* *> Enable/Disable FPGA read/wr i te */
LARCCMD_FPGA_HANDSHAKE , /* *> Enable/Disable handshake l i n e */
LARCCMD_FPGA_LOOPTEST , /* *> Enable/Disable loopback tes t ing LVDS to IPMC */
LARCCMD_DBG_SENSORS , /* *> Enable/Disable sensors pr in t ing */
LARCCMD_FPGA_WRITE , /* *> Enable/Disable sending sensors to FPGA */
LARCCMD_NEW_COMMAND,
FINAL_LARCCMD_NB_CMD /* *> The number of elements contained in the enum */

} LArCCommands_e ;

2. In larcCommandslib.c, de�ne your �ag if necessary:
/* Pr i va te var iab les −−−*/

/* * @brief Defaul t FPGA read/wr i te enabled (type ’ F ’ to disable) */
s t a t i c bool FPGA_ENABLE = true ;

. . .

/* * @brief Defaul t (t rue) d isable sending sensors to FPGA (type ’w ’ to enable) */
s t a t i c bool FPGA_Write = true ;

/** @brief My new �ag */
static bool New_Flag = false;

40 CHAPTER 3. ICARE DEVELOPMENTS

3. Then de�ne the hookup functions for this �ag:
/* Pr i va te funct ions −−−*/

/* * @brief FPGA Enable enable hookup funct ion */
s t a t i c void FPGA_ENABLE_enable (void) { FPGA_ENABLE = true ; }
/* * @brief FPGA Enable disable hookup funct ion */
s t a t i c void FPGA_ENABLE_disable (void) { FPGA_ENABLE = fa l se ; }
/* * @brief FPGA Enable enabled hookup funct ion */
s t a t i c bool FPGA_ENABLE_enabled (void) { return FPGA_ENABLE ; }

. . .

/** @brief New Flag enable hookup function */
static void New_Flag_enable(void) New_Flag = true;
/** @brief New Flag disable hookup function */
static void New_Flag_disable(void) New_Flag = false;
/** @brief New Flag enabled hookup function */
static bool New_Flag_enabled(void) return New_Flag;

/* * @brief Commands hooks */
s t a t i c LArCCmdHookFunctions_t LArCCmdArray [FINAL_LARCCMD_NB_CMD] = {
// FPGA Enable command
{ . fnEnable = FPGA_ENABLE_enable , . fnDisable = FPGA_ENABLE_disable , . fnEnabled =

FPGA_ENABLE_enabled } ,
// FPGA Handshake command
{ . fnEnable = FPGA_handshake_enable , . fnDisable = FPGA_handshake_disable , . fnEnabled =

FPGA_handshake_enabled } ,
// FPGA Loop Test command
{ . fnEnable = FPGA_looptest_enable , . fnDisable = FPGA_looptest_disable , . fnEnabled =

FPGA_looptest_enabled } ,
// Debug Sensors command
{ . fnEnable = DBG_Sensors_enable , . fnDisable = DBG_Sensors_disable , . fnEnabled =

DBG_Sensors_enabled } ,
// FPGA Write command
{ . fnEnable = FPGA_Write_enable , . fnDisable = FPGA_Write_disable , . fnEnabled =

FPGA_Write_enabled } ,
// New Flag command
.fnEnable = New_Flag_enable, .fnDisable = New_Flag_disable, .fnEnabled = New_Flag_enabled,

} ;

4. Finally, add the �ag processing into the parsing method:
bool LArCCmd_parse_console_input (i n t c) {
extern void IMC_DumpStats (void) ;
bool bRtn = true ;

switch (c) {
case ’0 ’ :
GPIOClear (GPIO_USER_IO_19) ; // se l e c t a l t boot f lash
break ;

. . .

case ’n’:
LArCCmd_enable(LARCCMD_NEW_COMMAND); // Enable FPGA write
break;

case ’N’:
LArCCmd_disable(LARCCMD_NEW_COMMAND); // Disable FPGA Write
break;

default :
bRtn = fa l se ;

41 CHAPTER 3. ICARE DEVELOPMENTS

p r i n t f ("Unknown command entered ’%c ’\n" , c) ;
break ;

}

return bRtn ;
}

42 CHAPTER 3. ICARE DEVELOPMENTS

3.4 UART Listener Package

3.4.1 Description

This library allows any module to get noti�ed about characters coming from the UART port.
Each time a character is received, the library executes the callback methods registered by
the di�erent modules interested by those data (Figure 3.7).

<<library>>

uartListener

<<library>>

usart <<module>>

larcConsole

<<module>>

ipmcConsole
<<Task>>

UartListenerTask

● If UARTReady()
● getchar()
● execute_callbacks

● RegisterCallback(
larcConsoleListener

);

● RegisterCallback(
ipmcConsoleListener

);

<<Function>>
RegisterCallback

<<Callback>>
larcConsoleListener

<<Callback>>
ipmcConsoleListener

<<library>>

larcCommands

<<Function>>
larcParseConsoleInput

Figure 3.7: UART Listener diagram

3.4.2 Usage

If a module wants to get the content of the UART commands entered by the user, it can
register a callback to the UartListener library. This can be done for instance in the module’s
initialization function (Listing 3.2).

Listing 3.2: "UART Listener callback registration"
/* *
* @brief Module i n i t i a l i z a t i o n
*/
s t a t i c bool la rcUar tConso le_ In i t (void) {
// I n i t i a l i z e the Uar tL i s tener l i b r a r y i f not already done
i f (! U a r t L i s t e ne r _ i s I n i t i a l i z ed ()) {
Ua r t L i s t ene r_ In i t () ;

43 CHAPTER 3. ICARE DEVELOPMENTS

}

// Regis ter the l i s t e n e r fo r the UART console
return UartL i s tener_Reg is terCa l lback (larcConsoleL istener , NULL) ;

}

larcConsoleListener is a user-de�ned function conforming to the protoype de�ned in
Listring 3.3.

Listing 3.3: "UART Listener registration callback prototype"
/* *
* @brief Cal lback funct ion type
*
* @param character The character rece ived on the UART
* @param pvArg A pr i va te argument for the user
*/
typedef void (* Uar tL i s tener_Ca l lback_t) (i n t character , void * pvArg) ;

To stop receiving information from the UART Listener, just unregister the callback, for
example in the module’s cleaning function as shown in Listing 3.4.

Listing 3.4: "UART Listener callback unregistration"
/* *
* @brief Module cleanup
*/
s t a t i c bool larcUartConsole_Clean (void) {
// Unregis ter the l i s t e n e r for the UART console
return UartL is tener_Unreg is terCa l lback (larcConsoleL is tener) ;

// Cleanup the Uar tL i s tener l i b r a r y i f i t i s i n i t i a l i z e d and that there i s no more cal lback
reg i s te red

i f (U a r t L i s t e ne r _ i s I n i t i a l i z ed () && UartL i s tener_ isL is tEmpty ()) {
UartL istener_Clean () ;

}
}

Chapter 4

MMC Developments

Contents

4.1 User Sensors . 44

4.1.1 Sensors list . 44

4.1.2 Alerts and Sensors Thresholds 45

4.1.3 LATOME Sensors Thresholds 47

4.1.4 Sensors Data Conversion 52

4.1.5 SDR Values: Experiments on the Shelf 54

4.2 Task Management . 55

4.2.1 Introduction . 55

4.2.2 Task Control Block . 57

4.2.3 Scheduler . 57

4.1 User Sensors

Our MMC user-code contains the FRU/SDR information for the LATOME board. It also maps
the di�erent sensors monitoring the board.

4.1.1 Sensors list

Sensors.h contains the list of sensors (and sub-sensors) of the LATOME board, with their
names, I2C addresses (and sub-addresses), conversion values and speci�c thresholds.

The Sensor folder contains the �les for each di�erent sensors (initialization, reading
part). Those �les have beenmadewith the tool given by theMMC software, and implemented

44

45 CHAPTER 4. MMC DEVELOPMENTS

in the project. There are 2 di�erent hardware sensors, managed by 3 di�erent software
components:

• LM95234: Temperature sensor
• LTC2495: Current sensor
• LTC2495: Voltage sensor

LTC2495 is used either as a current or a voltage sensor. It requires an I2C request to
initialize the conversion (160ms with normal con�guration). So a speci�c con�guration has
been made to handle this issue using a structure with bu�ered values in LTC2495_common.h
for both current and voltage use-case. This allows sending a frame to initialize the conver-
sion, to after read the same channel. This occurs when trying to update the value, and it
updates them one after another. In all other cases bu�ered values are returned.

4.1.2 Alerts and Sensors Thresholds

Sensor’s values are monitored regarding their upper and lower thresholds. The ATCA speci�-
cation de�nes three thresholds for both upper and lower values. Those thresholds are used
in an hysteresis way, that de�nes the assertion and de-assertion of the di�erent alerts as
illustrated in Figure 4.1.

Figure 4.1: Alert Hysteresis System [5]

46 CHAPTER 4. MMC DEVELOPMENTS

Figure 4.2: Shelf Manager Minor Alert [6]

-> IPMI non-critical orMinor alert: a warningmeaning things are somewhat out of normal
range, but not really a "problem" yet:

• upper-non-critical (Upper-NC)
• lower-non-critical (Lower-NC)

In this case, the Shelf Manager only progressively increases the fan level regarding the tem-
perature value (Figure 4.2).

-> IPMI critical or Major alert: things are still in valid operating range, but are getting
close to the edge; unit still operating within vendor-speci�ed tolerances:

• upper-critical (Upper-C)
• lower-critical (Lower-C)

In this case, the Shelf Manager sets the fan level at its maximum (15), then decreases it pro-
gressively regarding the temperature value (Figure 4.3).

-> IPMI non-recoverable or Critical alert: unit no longer operatingwithin vendor-speci�ed
tolerances:

47 CHAPTER 4. MMC DEVELOPMENTS

Figure 4.3: Shelf Manager Major Alert [6]

• upper-non-recoverable (Upper-NR)
• lower-non-recoverable (Lower-NR)

In this case, the Shelf Manager sets the fan level at its maximum level, ie. 15 (Figure 4.4), and
can power-down the board if it has been con�gured to do it (PEF global action).

When an alert occurs, the shelf manager can also negotiate new power-load values if
this case is handled by the board. However, in all cases the upper level (for instance a
human supervisor) is noti�ed, and it is up to the supervisor to clear the alert, take the right
decisions and operate in the most convenient way.

4.1.3 LATOME Sensors Thresholds

The list of the sensors available on the LATOME board is shown in Table 4.1. They are sorted
into three categories:

1. High-Priority (HP) sensors: all used in the production version, and always enabled.
2. Low-Priority (LP) sensors: can also be used in the production version - but to limit
memory usage, they are only enabled if required in the con�guration at compile-time.

48 CHAPTER 4. MMC DEVELOPMENTS

Figure 4.4: Shelf Manager Critical Alert [6]

3. Test (TEST) sensors: added on demand at compile-time whenmemory usage and IPMB
congestion is not a constraint (ie. when debugging few LATOME boards in the shelf).

Those sensors and their respective thresholds are described in a header �le in the MMC
�rmware repository (./MMC/user/sdr/). There is one header �le per LATOME version (V1 or
V2) and per production version (HP, LP or TEST). Those �les can be generated using the pro-
vided IPMI_ThresholdsGenerator Python tool.

This Python script lies in Tools/Sensor_Con�gs/IPMI_ThresholdsGenerator in the Git repos-
itory. Each sensor’s name and threshold values are listed in IPMI_SensorList.py (See Figure
4.5). The main program is located in src/IPMI_ThresholdsGenerator.py. Generated �les can
be found in the ’generated’ directory.

The temperature �ags are detailed in Table 4.2.

LATOME V1 Thresholds

Table 4.3 depicts the use of the di�erent voltage channels of the LTC2495 and their respective
threshold values.

49 CHAPTER 4. MMC DEVELOPMENTS

$
p

yt
h

o
n

 IP
M

I_
T

h
re

sh
o

ld
sG

en
e

ra
to

r.
p

y

>
 A

ll
fi

le
s

s
u

cc
es

sf
u

lly
 g

en
er

at
ed

 in
to

 '.
./g

en
er

at
e

d
' f

o
ld

e
r

 I
P

M
I_

T
h

re
sh

o
ld

sG
en

er
at

o
r.

p
y

 I
P

M
I_

S
en

so
rL

is
t.

p
y

D
ef

in
e

se
n

so
rs

 a
n

d

th
re

sh
o

ld
s

G
en

er
at

e
C

 h
ea

d
er

 f
il

es

C
o

p
y

h
ea

d
er

 f
il

es
 f

ro
m

‘g

en
er

at
ed

’ i
n

to
 ‘

sd
r’

d

ir
ec

to
ry

1

2

3

la
to

m
e_

v
1_

p
ro

d
_

h
p

_s
e

n
so

rs
.h

la
to

m
e_

v
1_

p
ro

d
_

lp
_

se
n

s
o

rs
.h

la
to

m
e_

v
1_

te
st

_s
en

so
rs

.h

la
to

m
e_

v
2_

p
ro

d
_

h
p

_s
e

n
so

rs
.h

la
to

m
e_

v
2_

p
ro

d
_

lp
_

se
n

s
o

rs
.h

la
to

m
e_

v
2_

te
st

_s
en

so
rs

.h

Fi
gu
re
4.
5:
IP
M
IT
hr
es
ho
ld
s
Ge
ne
ra
to
r

50 CHAPTER 4. MMC DEVELOPMENTS

Sensor Priority Description
Temperature (°C)

TEMP_FPGA HP FPGA temperature
TEMP_UPOD_LEFT TEST Left µPOD temperature
TEMP_UPOD_RIGHT TEST Right µPOD temperature
TEMP_VCC_DC_DC LP DC/DC Converter temperature

Voltage (V)
VCC_GXB Voltage HP VCC GXB voltage
A10_VCC Voltage HP Arria10 VCC voltage
P3V3 Voltage TEST 3.3V

VCC_RAM Voltage TEST VCC RAM voltage
P1V5 Voltage TEST 1.5V
P1V8 Voltage TEST 1.8V
P2V5 Voltage TEST 2.5V

VCCA_PLL Voltage TEST VCCA PLL voltage
Current (A)

VCC_GXB Current HP VCC GXB current
A10_VCC Current HP Arria10 VCC current
P3V3 Current LP 3.3V current

VCC_RAM Current LP Arria10 VCC RAM current
P1V5 Current TEST 1.5V current
P1V8 Current TEST 1.8V current
P2V5 Current LP 2.5V current

VCCA_PLL Current LP VCCA PLL current

Table 4.1: LATOME Sensors List

Lower Upper
Temperature Name Register

NR C NC NC C NR
TEMP_FPGA Temp 1 MSB unsigned 0 1 2 75 80 85
TEMP_UPOD_LEFT Temp 2 MSB unsigned 0 1 2 50 55 60
TEMP_UPOD_RIGHT Temp 3 MSB unsigned 0 1 2 55 60 65
TEMP_VCC_DC_DC Temp 4 MSB unsigned 0 1 2 50 55 60

Table 4.2: LATOME V1 Temperature thresholds (in °C)

The COM pin is connected to 1.8V and not 3.3
2
(the schematic is outdated on this point).

Table 4.4 depicts the use of the di�erent current channels (di�erential voltage) of the LTC2495
and their respective minimum and maximum values:

51 CHAPTER 4. MMC DEVELOPMENTS

Lower Nominal Upper
Voltage Name Channel

NR C NC NC C NR
VCC_GXB Voltage CH1 0.90 0.95 1.00 1.03 1.20 1.30 1.35
A10_VCC Voltage CH3 0.85 0.90 0.92 0.95 1.10 1.15 1.20
P3V3 Voltage CH5 3.05 3.15 3.20 3.30 3.40 3.45 3.50
VCC_RAM Voltage CH7 0.85 0.90 0.92 0.95 0.98 1.00 1.05
P1V5 Voltage CH9 1.32 1.37 1.42 1.50 1.58 1.63 1.68
P1V8 Voltage CH11 1.61 1.66 1.71 1.80 1.89 1.94 1.99
P2V5 Voltage CH13 2.27 2.32 2.37 2.50 2.62 2.67 2.72
VCCA_PLL Voltage CH15 1.61 1.66 1.71 1.80 1.89 1.94 1.99

Table 4.3: LATOME V1 Voltage thresholds (in V)

Lower Upper
Current Name Channels

NR C NC NC C NR
VCC_GXB Current CH0 - CH1 0 0.5 1 12 15 18
A10_VCC Current CH2 - CH3 0 1 3 20 25 28
P3V3 Current CH4 - CH5 0 0.1 0.5 2 3 4
VCC_RAM Current CH6 - CH7 0 0.1 0.5 2 3 4
P1V5 Current CH8 - CH9 0 0.1 0.5 2 3 4
P1V8 Current CH10 - CH11 0 0.1 0.5 2 3 4
P2V5 Current CH12 - CH13 0 0.1 0.5 5 7 8
A10_VCCA_PLL Current CH14 - CH15 0 0.1 0.5 5 7 8

Table 4.4: LATOME V1 Current thresholds (in A)

LATOME V2 Thresholds

Table 4.5 depicts the use of the di�erent voltage channels of the LTC2495 and their respective
threshold values.

The COM pin is connected to 1.8V and not 3.3
2
(the schematic is outdated on this point).

Table 4.6 depicts the use of the di�erent current channels (di�erential voltage) of the LTC2495
and their respective minimum and maximum values:

The temperature �ags are detailed in Table 4.7.

52 CHAPTER 4. MMC DEVELOPMENTS

Lower Nominal Upper
Voltage Name Channel

NR C NC NC C NR
VCC_GXB Voltage CH1 0.90 0.95 1.00 1.03 1.20 1.30 1.35
A10_VCC Voltage CH3 0.80 0.85 0.87 0.90 1.05 1.10 1.15
P3V3 Voltage CH5 3.05 3.15 3.20 3.30 3.40 3.45 3.50
VCC_RAM Voltage CH7 0.80 0.85 0.87 0.90 0.93 0.95 1.00
P1V5 Voltage CH9 1.32 1.37 1.42 1.50 1.58 1.63 1.68
P1V8 Voltage CH11 1.61 1.66 1.71 1.80 1.89 1.94 1.99
P2V5 Voltage CH13 2.27 2.32 2.37 2.50 2.62 2.67 2.72
VCCA_PLL Voltage CH15 1.61 1.66 1.71 1.80 1.89 1.94 1.99

Table 4.5: LATOME V2 Voltage thresholds (in V)

Lower Upper
Current Name Channels

NR C NC NC C NR
VCC_GXB Current CH0 - CH1 0 0.5 1 12 15 18
A10_VCC Current CH2 - CH3 0 1 3 20 25 28
P3V3 Current CH4 - CH5 0 0.1 0.5 2 3 4
VCC_RAM Current CH6 - CH7 0 0.1 0.5 2 3 4
P1V5 Current CH8 - CH9 0 0.1 0.5 2 3 4
P1V8 Current CH10 - CH11 0 0.1 0.5 2 3 4
P2V5 Current CH12 - CH13 0 0.1 0.5 5 7 8
VCCA_PLL Current CH14 - CH15 0 0.1 0.5 5 7 8

Table 4.6: LATOME V2 Current thresholds (in A)

Lower Upper
Temperature Name Register

NR C NC NC C NR
TEMP_FPGA Temp 1 MSB unsigned 0 1 2 75 80 85
TEMP_UPOD_LEFT Temp 2 MSB unsigned 0 1 2 50 55 60
TEMP_UPOD_RIGHT Temp 3 MSB unsigned 0 1 2 55 60 65
TEMP_VCC_DC_DC Temp 4 MSB unsigned 0 1 2 50 55 60

Table 4.7: LATOME V2 Temperature thresholds (in °C)

4.1.4 Sensors Data Conversion

Data related to the board’s sensors are stored into the SDR. For example, a temperature
sensor will have an entry in this database. In this entry, we will �nd information about the

53 CHAPTER 4. MMC DEVELOPMENTS

sensor, ie. its name, the data format and also the value of the sensor. This value is encoded
on 8-bits. As a sensor resolution is generally greater than 8-bits (ie. 11-bits, 12-bits or even
16-bits), a formula is de�ned in the speci�cation to retrieve the real value of the sensor from
the reduced 8-bits value:

y = (M ∗ x+B ∗ 10Bexp) ∗ 10Rexp

Our goal is to select a range and the function parameters which would permit us to loose
the minimum of information during the conversion from N-bits to 8-bits, and to come out
with a consistent value that �ts the application requirements (ie. the events that we want
to monitore must be expressed within the 8-bits reduced sensor range).

1. Temperature sensor
Device: LM95234

In order to convert the 11-bits value of the temperature sensor to an 8-bits value, we
need to de�ne a reduced range and to specify the format and formula parameters
allowing to retrieve the real value of the sensor. In our case we only keep the 8 MSB
bits:

• Range: 0 °C→ 255 °C
• Step: +1.0 °C
• Format: unsigned 8-bits
• From the 11-bits unsigned conversion result, we keep the bits [12:5]
• Formula parameters:

– M = 1
– B = 0
– Bexp = 0
– Rexp = 0

2. Voltage sensor
Device: LTC2495

In order to convert the 16-bits value of the voltage sensor to an 8-bits value, we need
to de�ne a reduced range and to specify the format and formula parameters allowing
to retrieve the real value of the sensor.
In this case, as the conversion result is expressed in 2’s complement, we have to keep
the MSB bit representing the sign of the voltage value:

• Range: 0,150 V→ 3.450 V
• Step: +0.013 V
• Format: 2’s complement 8-bits
• From the 24-bits conversion result, we keep the bits [22:15]

54 CHAPTER 4. MMC DEVELOPMENTS

• Formula parameters:
– M = 13
– B = 15
– Bexp = 1
– Rexp = -3

3. Current sensor
Device: LTC2495

In order to convert the 16-bits value of the current sensor to an 8-bits value, we need
to de�ne a reduced range and to specify the format and formula parameters allowing
to retrieve the real value of the sensor.
In this case, as the conversion result is expressed in 2’s complement andwe supposed
that the value should be positive. We have to convert it into an unsigned value and
to keep the signi�cant bits that contains the sensor value:

• Range: 0 A→ 51.0 A
• Step: +0.200 A
• Format: 2’s complement 8-bits
• From the 16-bits register values, we keep the bits [10:3] ([15:8] in the conversion
result)

• Formula parameters:
– M = 200
– B = 0
– Bexp = 0
– Rexp = -3

4. 12V Payload
The 12V payload is measured by the internal ADC of the ATMega128 on the port PF0.
The formula parameters to compute the payload value is the following:

• M =
Vref

resolution
∗ (Rtop+Rbottom)

Rtop
= 3,3

256
∗ (49,9+150)

49,9
= 52 ∗ 10−3(= 0x34)

• B = 0
• Bexp = 0
• Rexp = -3

Vref is the reference voltage of the board. 256 is the ADC resolution (10-bits truncated
to 8-bits – we keep only the MSBs). The PF0 port is connected to the 12V via a voltage
divider in which the top resistor equals 150 ohm, and the bottom one 49.9 ohm.

4.1.5 SDR Values: Experiments on the Shelf

The previously de�ned SDR parameters have been tested on the LATOME board (V1) plugged
in the ATCA shelf. The SDR values computed by the shelf are compared with the expected

55 CHAPTER 4. MMC DEVELOPMENTS

LATOME V1 Full LATOME V2 Bare
Sensor Expected value SDR value Expected value SDR value

Temperature (°C)
TEMP_FPGA 45.0 49.0 27.0 27.0

TEMP_UPOD_LEFT 40.0 40.0 27.0 26.0
TEMP_UPOD_RIGHT 40.0 43.0 27.0 27.0
TEMP_VCC_DC_DC 35.0 38.0 27.0 31.0

Voltage (V)
VCC_GXB Voltage 1.030 1.060 1.030 1.047
A10_VCC Voltage 0.950 0.969 0.900 0.891
P3V3 Voltage 3.300 3.309 3.300 3.309

VCC_RAM Voltage 0.950 0.956 0.900 0.904
P1V5 Voltage 1.500 1.502 1.500 1.502
P1V8 Voltage 1.800 1.801 1.800 1.801
P2V5 Voltage 2.500 2.477 2.500 2.490

VCCA_PLL Voltage 1.800 1.788 1.800 1.801
Current (A)

VCC_GXB Current 1.000 1.500 0.600 0.500
A10_VCC Current 5.000 6.100 0.000 0.100
P3V3 Current 0.000 0.100 0.000 0.100

VCC_RAM Current 0.000 0.100 0.000 0.100
P1V5 Current 0.000 0.100 0.000 0.100
P1V8 Current 0.000 0.100 0.000 0.100
P2V5 Current 1.500 1.500 0.300 0.300

VCCA_PLL Current 1.200 1.200 0.000 0.100

Table 4.8: Expected and measured SDR values

ones in Table 4.8.

4.2 Task Management

4.2.1 Introduction

Task management feature has been added to allow the user to de�ne priorities between the
di�erent sensors and to fairly share the processor time between every sensor’s read pro-
cess and the other user’s tasks, such as display (print sensors values or elapsed time) and
monitoring (eg. payload power and DC/DC monitoring).

56 CHAPTER 4. MMC DEVELOPMENTS

Before launching the tasks, the MMC goes
through an initialization phase where
it sets up all the I/O, interrupts and
di�erent structures needed to manage
the FRU and SDR repositories.

It also initializes a simple scheduler
which will execute the tasks, as well as
the di�erent sensors reading and their
associated tasks, in addition to the timer
used in the main loop of the application.
The initialization process is detailed in
Figure 4.6.

MMC Initialization Process

Disable WatchdogDisable Watchdog

Init. MMCInit. MMC

● Init. I/O
● Init. I/O

● Init. A2D (ADC)
● Init. A2D (ADC)

● Init. I2C
● Init. I2C

● Enable Interrupts
● Enable Interrupts

● Force App. Start (HPM bootloader)
● Force App. Start (HPM bootloader)

● Init. FRU/SDR
● Init. FRU/SDR

● Init. Scheduler / Sensors / Tasks
● Init. Scheduler / Sensors / Tasks

● Init. E-Keying / IPMI / Hotswap
● Init. E-Keying / IPMI / Hotswap

● Turn off red LED
● Turn off red LED

● Set 100ms timer callback
● Set 100ms timer callback

Enable WatchdogEnable Watchdog

Init. timerInit. timer

Figure 4.6: MMC initialization

In themain loop of the application, the watchdog is frequently reseted to avoid timeouts
and this part of the loop is done as soon as possible (Figure 4.7).

The other part is executed every 100 milliseconds (ms). It starts by checking if IPMI re-
sponses has been received. If not and that the timeout for a given request is expired, the
application can choose to send this request again. Then it checks the hotswap status, ie.
the state of handle switch. Then the scheduler is activated to run the ready tasks. Finally, as
the sensors values have been updated by their tasks, it checks if particular events should
be sent. For instance, a major alert can be sent if a temperature sensor goes higher than the
pre-de�ned threshold.

Di�erent tasks have been de�ned:

• one per sensor, to read its last value (’LM95234 Task’ to read a temperature sensor,
’LTC2495 Voltage Task’ for a voltage sensor and ’LTC2495 Current Task’ for a current
sensor)

• Sensor Monitoring Task to display the sensors values
• Clock Task to display the elapsed time since last reboot (uptime)
• UART Listener Task to get UART commands from user

57 CHAPTER 4. MMC DEVELOPMENTS

MMC Initialization ProcessMMC Initialization Process

Main Loop

● Reset Watchdog
● Reset Watchdog

● Check IPMI Requests
● Check IPMI Requests

● Manage Payload
● Manage Payload

● Every 100ms (timer flag)
● Every 100ms (timer flag)

 Check IPMI Responses
 Check IPMI Responses

 Manage Hotswap
 Manage Hotswap

 Run Tasks (scheduler)
 Run Tasks (scheduler)

 Manage Sensor Events
 Manage Sensor Events

LTC2495
Voltage Task

LTC2495
Voltage Task

LTC2495
Current Task

LTC2495
Current Task

LM95234
Task

LM95234
Task

Clock
Task

Clock
Task

UART Listener
Task

UART Listener
Task

Sensor
Monitoring Task

Sensor
Monitoring Task

Figure 4.7: MMC main loop

4.2.2 Task Control Block

A task is de�ned by a Task Control Block (TCB), as detailed in Figure 4.8.

This structure contains among other things, a pointer to the function to be processed,
the period of the task and user data to be transmitted as the context of the task.

4.2.3 Scheduler

A simple scheduler oversees the execution of all the tasks. It manages the TCBs, and permits
to insert or remove tasks in the application.

Tasks are executed when they are ready, comparing their period with the current sched-
uler tick value. Ready tasks are executed in a sequential order. The scheduler simply iterates
over the TCBs list, starting from handle number 0.

58 CHAPTER 4. MMC DEVELOPMENTS

handle

p_function

period

state

data

next

● Unique task identifier

● Function executed by the task

● Task period in hundreds of milliseconds

● Task state (PENDING or READY)

● User data

● Pointer to the next TCB

Figure 4.8: Task TCB

Appendix A

ICARE �rmware compilation on CERN-SLC6

When compiling the ICARE framework ($make build), install 32-bit libraries on CERN-SLC6 to
overcome the following issues:

• Error: /lib/ld-linux.so.2: bad ELF interpreter
$ yum i n s t a l l g l i b c . i686

• Error: libz.so.1: cannot open shared object �le
$ yum i n s t a l l z l i b . i686

Two other libraries could be necessary to compile some package (for instance the SPI
package):
$ yum i n s t a l l l i b X 1 1 . i686
$ yum i n s t a l l l ibtermcap . i686

59

Appendix B

Hard fault: Retrieve the faulty line

Retrieve the faulting line in case of hard fault, using the Link Register (LR) value:

$ arm−none−eabi−addr2l ine −e ine t s r vc_ IO I F . e l f 0x0800a481

60

Appendix C

Locally install OpenOCD on CERN-SLC6

With the latest version of ICARE, OpenOCD is already available in the contrib directory. How-
ever, if you want to install it aside, you can follow these instructions:

$ wget https : // downloads . sourceforge . net/ pro ject /openocd/openocd/0.9 .0/
openocd−0.9 .0 . ta r . bz2

$ cd Downloads
$ tar x j v f openocd−0.9 .0 . ta r . bz2
$ cd openocd−0.9.0
$. / conf igure −−enable−legacy−f t 2 2 3 2 _ l i b f t d i
$ make
$ sudo make i n s t a l l

Then, in /usr/local/share/openocd/scripts/target/, copy the �le ipmcv2_1.cfg.

Add a udev rules to allow any user to launch OpenOCD, for instance creating the �le
/́etc/udev/rules.d/95-olimex.rules.́..

SUBSYSTEM== "usb " , ATTR { idProduct }== "002b" , ATTR { idVendor }== " 15ba" , MODE= "
0666 "

... replacing the product ID and the vendor ID with those of your device (Use the com-
mand ĺsusbt́o get these IDs.

Finally, run the OpenOCD server:

$ openocd −f i n te r face /olimex−arm−usb−ocd−h . c fg −f ta rge t / ipmcv2_1 . c fg

When programming the IPMC (make �ash ...), if the following error occurs...

61

62 APPENDIX C. LOCALLY INSTALL OPENOCD ON CERN-SLC6

arm−none−eabi−gdb : error while loading shared l i b r a r i e s : l ibtermcap . so . 2 :
cannot open shared object f i l e : No such f i l e or d i rec tory

... check that the libncurses library is installed and create a symbolic link to replace the
libtermcap library which is deprecated:

$ ln −s / l i b / l ibncurses . so . 5 . 7 / l i b / libtermcap . so . 2

Appendix D

Status

D.1 ATCA Boards status

Currently, three ATCA boards are installed in the EMF setup:

Slot Number Carrier ID Carrier Version IPMC ID Prog. JTAG Prog. ETH IP address
4 3-5 3 110 Yes Yes 128.141.202.203
9 2.1-3 2.1 133 No Yes 128.141.202.204
12 3-3 3 108 Yes Yes 128.141.202.208

Table D.1: ATCA board setup information

63

Appendix E

LArC Power Con�guration

By default, the con�guration �le indicating the power requirements for the LAr Carrier (LArC)
board is located in LArC/share/data/LArC.m4. In order to select another con�guration �le,
the following commands should be issued. For instance, to load LArC_400w.m4:
$ source setup . sh −tag_add=400w

To check if the tags has been correctly loaded:
$ cmt show tags
. . .
400w (from CMTEXTRATAGS)
. . .

To change an existing con�guration and load a new one, for instance LArC_200w.m4:
$ source cleanup . sh
$ source setup . sh −tag_add=200w

64

Bibliography

[1] ATLAS Experiment, 2016. 3

[2] LATOME reference manual, 2017. 9

[3] IPMC environment & con�guration, 2016. 10

[4] RM0090 Reference Manual, 2016. 36

[5] PICMG 3.0 R3.0 AdvancedTCA Base Speci�cation, 2008. 45

[6] Schro� GmbH. Shelf Management for optimized cooling in ATCA shelves, 2008. 46, 47, 48

65

Glossary

AMC Advanced Mezzanine Card. 6, 8, 9, 26–28, 37
ATCA Advanced Telecom Computer Architecture. 6–9, 19, 27, 28, 45, 54

CMC Carrier Manager Controller. 37
CTP Central Trigger Processor. 4

DMA Direct Memory Access. 34, 35

FEB Front-End Board. 4
FRU Field Replaceable Unit. 7, 26, 27, 56

HLT High-Level Trigger. 5
HPM Hardware Platform Management. 26–28

ICARE Intelligent platform management Controller softwARE. 10, 11, 13, 37
IOIF Input/Output InterFace. 8, 10, 31, 32, 37
IPMB Intelligent Platform Management Bus. 7–9, 37, 48
IPMC Intelligent Platform Management Controller. 6–11, 27, 28, 31, 32, 37
IPMI Intelligent Platform Management Interface. 7, 9, 27, 56

LAPP Laboratoire d’Annecy de Physique des Particules. 11, 13
LArC LAr Carrier. 64
LATOME LAr Trigger prOcessing MEzzanine. 9, 19–21, 26, 44, 47, 48, 50–52, 54
LR Link Register. 60
LUN Logical Unit Number. 7

MCU Micro-Controller Unit. 8–10, 12, 14, 23, 26, 31–34, 37
MMC Module Management Controller. 6, 9, 19–21, 23, 26, 30, 44, 48, 56

PU Processing Unit. 5

RMCP Remote Management Control Protocol. 27, 28
ROBIN Read-Out Bu�er INput. 5
ROD Read-Out Driver. 4

66

67 Glossary

ROL Read-Out Link. 5
ROS Read-Out System. 5
RTM Rear Transition Module. 8

SDR Sensor Data Records. 7, 44, 52, 54–56
SEL System Event Log. 6, 7
SMBus System Management Bus. 6
SPI Serial Peripheral Interface. 31, 32, 34, 35

TCB Task Control Block. 57, 58
TTC Trigger Timing Control. 4
TWI Two Wire Interface. 20

	Introduction
	ATLAS Overview
	Detectors Components
	Back-End System

	ATCA Platform
	Introduction
	IPMI Architecture
	IPMI Protocol

	IPMC Board
	Introduction
	Hardware Overview

	AMC Board
	Introduction
	Hardware Overview

	Development Tools
	ICARE Firmware
	Environment Setup
	Working Directories
	OpenOCD
	ICARE Source Code
	Package Development
	Firmware Upgrade

	MMC Firmware
	Atmel Studio
	Software Organization
	Firmware Upgrade

	ICARE Developments
	SPI Package
	SPI Multi-Master Feature
	DMA Feature

	CMC Package
	Testbench Feature [Deprecated]

	LArC Commands Package
	Command Parsing Feature
	Adding a New Command

	UART Listener Package
	Description
	Usage

	MMC Developments
	User Sensors
	Sensors list
	Alerts and Sensors Thresholds
	LATOME Sensors Thresholds
	Sensors Data Conversion
	SDR Values: Experiments on the Shelf

	Task Management
	Introduction
	Task Control Block
	Scheduler

	ICARE firmware compilation on CERN-SLC6
	Hard fault: Retrieve the faulty line
	Locally install OpenOCD on CERN-SLC6
	Status
	ATCA Boards status

	LArC Power Configuration

