
HUB Firmware overview

HUB team

Michigan State University

HUB Final Design Review

March 20, 2018

Introduction

 MAC + IPBus overview

 Combined_TTC/Data stream

 Readout_Control stream

 HUB Safe Configuration

 Readout (Aurora8b10b)

 HUB FW development scheme

 IBERT test (MGT channels)

 Conclusions

2

2

IPbus overview

 HUB: An IPbus interface provides high-level, functional control of the FEX-Hub module.

This allows, for example, setting any firmware parameters, controlling modes of operation

and reading monitoring data. This will allow a computer using IPbus to:

 Access registers within the ROD FPGA, setting parameters and controlling modes of operation
 Access external FPGA interfaces (I2C)

The Hub Module requires two physical chips

for the Ethernet Base Interface connections.

Two FPGA MACs are connected to the

physical chips via RGMII ports.The single

IPbus controller is connected to two MACs

via MUX. IPbus was demonstrated to work

with 2 MACs and PHY chips and demo slave

registers.

HUB FPGA Register – Initial map

3

Combined_TTC/DATA overview

 HUB module is obliged to distribute TTC information throughout the shelf.

The combined_TTC/DATA bits are defined to provide TTC information as well

as initialization functions (Aurora).The link is set to run at 6.4Gbps raw rate

 The HUB uses MiniPOD optical receiver to receive TTC signals from the FELIX system

 Receive the Reset signal (Aurora Initialization) from the Readout_CTRL stream and

distribute it to the appropriate shelf slot

 Several Combined_TTC links within the shelf; each FEX slot (3-14); one between

each HUB and ROD; links between two HUBs

 Combined_TTC/DATA links on the HUB FPGA is implemented with use of several

components, including the MGT transceivers (GTH and GTY), control and diagnostic logic

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

4

Combined_TTC/DATA overview

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

5

 Combined_TTC/DATA

Physical Implementation

 The Combined_TTC/Data link on the HUB FPGA is implemented with the use of several components,

including the MGT transceivers (GTH and GTY), control and the diagnostic logic.

 The Combined_TTC/DATA link is designed to operate at 6.4 Gbps.

 The physical implementation of the Combined_TTC/DATA stream assumes that there are 4 Control

Registers on the Hub TX side, and Shadow Registers on the Rx side (Receiver: FEX, ROD and other

HUB).

 The transmitter side generates the 128 bit message from 4 Control registers: Word_0, Word_1,

Word_2, and Word_3. The transmitter side logic is in charge to write control information into these

Control Registers. The contents of these registers are continuously transmitted to the modules
 (within the shelf) which receives the data into a duplicate set of 4 registers referred to as shadow

registers. Anything written into a Control Register at the transmitter side will appear in the

corresponding Shadow register at the receiving side within the following LHC clock.

 The least significant byte of Word_0 is reserved for the 8b10b Comma character K28.5.

6

 Combined_TTC/DATA

Bit definition

 The bits within the Combined_TTC/DATA control words are primarily defined to provide TTC

information as well as initialization functions for all of the Fex data links (Aurora in the case of eFex).

The TTC information is sourced from a dedicated TTC interface on the Hub. The Reset information is

received from the ROD via the Readout_Ctrl link.

 Comma Character
 #Bits 7 to 0 of Word_0 contain the Comma character that maintains alignment of the 4 shadow

registers with their corresponding Control registers. The chosen character is K28.5 = 0xBC.

 Version

#The 4-bit value contains the version number of this overall bit assignment. It will be held at “0000”

through the initial debug phases, where many changes may occur.

 Reset 3:0
 #These bits provide a system level reset/enable function. There are four per slot, and the functionality

of these bits will be specified by the targets (eFex, jFex, etc).

 Level-1 Accept (L1A)

#L1 Accept is used to indicate when an event has been accepted by the Central Trigger Processor.

7

 Combined_TTC/DATA

Bit definition

Combined_TTC/DATA bit definitions:

The least significant byte of Word_0 is

reserved for the 8b10b Comma

Character K28.5

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

8

Links between each FEX slot and

HUB

Link between the ROD and

HUB

Link between two

HUBs

 Combined_TTC/DATA

Link placement

9

 Combined_TTC/DATA

FW development strategy

 Combined_TTC/DATA Firmware development comprises several stages

 First stage assumes to transmit the Combined_TTC/Data stream to the ROD module,

also to the FEX slot 3

 In order to debug the design, the standard Xilinx diagnostic components are being used

to monitor the data flow (as for example like the ILA and VIO).

 The physical layer is configured with the use of GT wizard

 For the purpose of the initial test, the HUB transmitter side generates the 128 bits from

4 Control registers but only some static patterns are written into these registers

 In the next step, the Readout_Ctrl data received on the HUB from ROD module are

retransmitted as the Combined_TTC/Data stream to the ROD and FTM module in slot 3

 Once the communication between the HUB and other modules within shelf is established,

a test pattern generator will be replaced by real TTC component

 Next development steps assumes to add (gradually) the remaining receivers in the shelf

10

 Combined_TTC/DATA

FW development strategy

 Combined_TTC Data link test:

 A correct Combined_TTC stream on the ROD

11

 Readout_Control overview

 The HUB module is obliged to receive the Readout Control (Readout_CTRL)

information from the ROD via serial link named Readout_CTRL. The HUB

module is the only one module within the shelf which gets the Readout Control

data from the ROD

 That information is used by the Hub, also fanned out to the rest of the system.

The main purpose is to provide resets to all of the data links (Aurora) between

the Fex’s and the ROD plus HUB module

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

12

 Readout_Control

 Physical Implementation

 The Readout_Ctrl link on the HUB module is implemented with the use of MGT Transceiver GTH,

control and diagnostic logic

 The Readout_Ctrl link is designed to operate at 6.4 Gbps.

 In order to to control message transmission within a single LHC clock period, the length of the message

is limited to 128 bits

 The HUB Readout Control FW features one receiver (RX). In order to debug the design, the standard

Xilinx diagnostic components are being used to monitor the data flow (as for example like the ILA and

VIO).

 The physical layer is configured with the use of GT wizard

 The physical implementation of the Readout_CTRL links assumes that there are Control Registers on

the Tx ROD side, and Shadow Registers on the Rx HUB side. The transmitter side generates the 128

bit message from 4 Control registers: Word_0, Word_1, Word_2, and Word_3. The transmitter side

logic is in charge to write control information into these registers for transmission to the modules

within the shelf. These registers are continuously transmitted to the HUB which receives the data into

a duplicate set of 4 registers referred to as Shadow Registers. Anything written into a Control Register

at the transmitter side will appear in the corresponding Shadow register at the receiving side within the

following LHC clock.

13

There are Control Registers on the TX side and

 Shadow Register on the RX side

 Readout_Control

Physical Implementation

14

 Readout_Control

 Bit definition

 The bits within the Readout Control words are primarily defined to provide initialization functions for

all of the FEX data links

 Comma Character

#Bits 7 to 0 of Word_0 contain the Comma character that maintains alignment of the 4 shadow registers

with their corresponding Control registers. The chosen character is K28.5 = 0xBC

 Version

#The 4-bit value contains the version number of this overall bit assignment

 ROD_BUSY

#When active, this signal indicates that the ROD cannot currently accept further data from Fex sources.

This signal is fanned-out to the shelf FEX’s by the Hub via the Combined_TTC link

 Global_Link_Reset

#This single bit is used to reset all of the data (Aurora) links within the shelf. The primary use is in the

first initialisation after power-up. The ROD can hold this reset active for an indefinite amount of time.

On the trailing edge (deactivation), the eFex’s should provide additional timing control for the GTReset

and Reset signals on the Aurora interface. This signal is fanned-out to the shelf FEX’s by the Hub via

the Combined_TTC link

15

 Readout_Control

 Bit definition

 The bits within the Readout Control words are primarily defined to provide initialization functions for

all of the FEX data links

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

16

 Readout_Control

 FW development strategy

 The HUB Readout Control FW features one receiver (RX). In order to debug the

design, the standard Xilinx diagnostic components are being used to monitor the

data flow (as for example like the ILA and VIO). The physical layer is configured

with the use of GT wizard.

17

Physical implementation of the Readout_CTRL link is similar to the Combined_TTC

links. There are Control Registers on the TX side and Shadow Register on the RX side

 Readout_Control

 FW development strategy

18

 HUB Safe Configuration (1)

 During the regular operation, the HUB firmware is obliged to control the group of signals which are

wired to the FPGA. These signals are handled on the HUB FPGA by the Safe Configuration

component. This piece of firmware is in charge to properly receive the signals and control them by the

ILA and VIO component. The HUB Safe Configuration needs to present in any type of HUB

configuration

 Signal types →See Table 3 (HUB Firmware Specification)

Logic Analyzer (ILA). The customizable Integrated Logic Analyzer (ILA) IP core is a logic analyzer core that

can be used to monitor the internal signals of a design.

 Virtual Input/Output (VIO). The LogiCORETM IP Virtual Input/Output (VIO) core is a customizable core

that can both monitor and drive internal FPGA signals in real time

 SYSMON. Optionally, the HUB configuration can include the SYSMON (SLR0 and SLR1): Each super logic

region: SLR0 and SLR1 has one system monitor to provide for monitoring supply voltages within the

SLR. The I2C DRP and JTAG DRP access is limited to the master SLR only (SYSMONE1_X0Y0 for

devices with two SLRs).

19

 HUB Safe Configuration (2)

HUB Signal types →See Table 3 (HUB Firmware Specification)

20

 Readout (Aurora8b10b) - overview

 This figure shows the Hub's distribution of readout data in the context of the cards in the ATCA shelf.

 All of this data flows to both the ROD and to the FPGA on each Hub. It supports 2 independent streams

 of readout data. That is, the readout stream processed by the ROD and Hub FPGA on Hub-1 can be

 Independent of the readout stream flowing into Hub-2.

21

- Aurora IP core (without GT) to generate the Aurora protocol files

- GT Wizard to configure the physical layer

- User merging process

 Readout (Aurora8b10b)

Implementation method

22

Option A: 1,2,3,4

Option B: 3,4,5,6 (mix of GTY and GTH)

Option C: 6-lane

 Readout (Aurora8b10b)

 Aurora Line Mapping

23

 Aurora8b10b IP core supports: 7 series GTX/GTH, UltraScaleTM GTH,

UltraScale+TM GTH, GTP transceivers

 Officially the Aurora8b10b IP core does not support the GTY transceivers

 Service Request (SR, Xilinx) to resolve the issue

 Readout (Aurora8b10b)

Background

24

 Me: Is there any plan to upgrade the Aurora8b10b core to support the GTY

transceivers?

 Xilinx: I checked in for the internal resources to see if there is any plan in

near future to support the Aurora8b10b protocol in UltraScale GTY

transceivers but right now it is not yet planned.

 Me: I can see that GT wizard offers the Aurora8b10b protocol for the GTY?

 Xilinx: Even if the GT wizard offers Aurora8b10b protocol for the GTY

transceivers, it will just customize the GT part of the protocol (not the

complete protocol).

 Readout (Aurora8b10b)

Feedback from Xilinx (1)

25

 Me: Is there any technical reason behind Aurora8b10b protocol not

supporting GTY transceivers?

 Xilinx: There is not really technical reason behind Aurora8b10b

protocol not supporting GTY transceivers

But since GTY transceivers are meant to be targeted for higher line rate, we

recommend to use Aurora64b66b protocol for better throughput

 Readout (Aurora8b10b)

Feedback from Xilinx (2)

26

 Finally, we figured out the method to implement the Aurora8b10b protocol in

GTY transceivers. The test design is based on the Xilinx example

 The design was sent to Xilinx for validation (including video and text

documentation)

 Xilinx seemed to be pleased with our design. The design is stored in Xilinx

internal database and it will be offered for anyone who wants to implement

similar application in future

 Readout (Aurora8b10b)

Feedback from Xilinx (3)

27

 Successfully tested, VCU108 (GTY), Xilinx dev board:

 GTY ↔ GTY (@5 Gbps, QSFP loopback module)
 GTY ↔ GTY (@6.4 Gbps, QSFP loopback module)

 Successfully tested, VCU108 (GTY) ↔ ZYNQ (GTX):

 GTY → GTX (@5 Gbps, QSFP-SFP passive splitter cable)
 GTX → GTY (@5 Gbps, QSFP-SFP passive splitter cable)

 Readout (Aurora8b10b)

GTY (test scope)

28

VCU108, Xilinx Evaluation Board:

GTH/GTY, QSFP → SFP passive splitter cable

 Readout (Aurora8b10b)

Implementation in GTY, setup (1)

29

The ZYNQ board for Panda Experiment. Designed by Pawel Marciniewski (Uppsala University)

This board is a DAQ device featuring 4 optical

interfaces with up to 6.6 Gbps bandwidth each.

The unit is powered by a ZYNQ XC7Z030 SoC

- 512 MB DDR3 RAM

- USB 2.0

- Uart port

- MicroSD

- GbE port

- HDMI

- 4 NIM I/O

The device was tested with Ubuntu 14.4

 Readout (Aurora8b10b)

Implementation in GTY, setup (2)

30

VCU108 (GTY) ↔ ZYNQ (GTX), @5Gbps (1 line, RX/TX simplex, timer)

Diagnostic: ILA/VIO. Xilinx Data generator/checker.

VCU108

ZYNQ Board

 Readout (Aurora8b10b)

Implementation in GTY, setup (3)

31

Aurora8b10b Core configures two parts: link layer (protocol) and physical layer (GT

part). In real, the Aurora8b10b core uses the GT wizard to configure the physical

layer. Basically, two IP cores are being used to provide full setup. Thus, in order to

Implement the Aurora8b10b in GTY, the GT wizard needs to be run “manually”

to configure the GTY transceivers

Figure: Aurora8b10b overview (source: Xilinx documentation)

 Readout (Aurora8b10b)

Implementation in GTY, setup (4)

32

Standard Aurora8b10b IP core (GTH), configure the Physical and Link Layer.

 Readout (Aurora8b10b)

Implementation in GTY, recipe (1)

33

Once the Aurora8b10b core is generated, open IP example Design

 Readout (Aurora8b10b)

Implementation in GTY, recipe (1)

34

Open GT wizard to configure the GT part of the protocol

 Readout (Aurora8b10b)

Implementation in GTY, recipe (3)

35

 Readout (Aurora8b10b)

Implementation in GTY, recipe (4)

Once the GT files are generated, replaced them with the files generated by Aurora8b10b

36

This is the original Aurora_8b10b_0_gt_gtwizard_top file. It looks that the Xilinx experts were

pretty close to add the GTY to the Aurora8b10b IP core.

 Readout (Aurora8b10b)

Implementation in GTY, recipe (5)

37

Aurora8b10b protocol in GTY

 (based on the Xilinx Example Design – non standard implementation)

 Visual inspection needed (design, xdc file, system clock, mgt reference clock)

 Readout (Aurora8b10b)

Implementation in GTY, recipe (5)

38

ZYNQ Board (GTX) VCU108 Xilinx Dev Board

 Links are up and stable

 Readout (Aurora8b10b)

Implementation in GTY, test (1)

39

ZYNQ Board (GTX) VCU108 Xilinx Dev Board

TX and RX data check

 Readout (Aurora8b10b)

Implementation in GTY, test (2)

40

HUB FW development scheme

41

IBERT test (MGT channels)

 In order to test the specific MGT channels the IBERT FW is provided for the FTM, ROD and HUB modules.

The table below describes the list of tests and results.

42

Summary

 HUB FW development in good shape

 HUB FW comprises several components [MAC + IPBus,

Readout_Control, Combined_TTC/Data, Readout (Aurora 8b10b),...]

 These components were successfully tested on the HUB module

and/or on the Xilinx dev board

 Firmware development split into several stages

 Aurora, Readout_Control and Combined_TTC/Data initialization

scheme needs to be discussed (dedicated meeting is foreseen)

 Repository structure will be defined soon

43

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

