

HUB Firmware overview

HUB team Michigan State University

HUB Final Design Review March 20, 2018

Introduction

- MAC + IPBus overview
- Combined_TTC/Data stream
- Readout_Control stream
- HUB Safe Configuration
- Readout (Aurora8b10b)
- HUB FW development scheme
- IBERT test (MGT channels)
- Conclusions

IPbus overview

- HUB: An IPbus interface provides high-level, functional control of the FEX-Hub module. ٠ This allows, for example, setting any firmware parameters, controlling modes of operation and reading monitoring data. This will allow a computer using IPbus to:
 - Access registers within the ROD FPGA, setting parameters and controlling modes of operation
 - Access external FPGA interfaces (I2C)

The Hub Module requires two physical chips for the Ethernet Base Interface connections. Two FPGA MACs are connected to the physical chips via RGMII ports. The single IPbus controller is connected to two MACs via MUX. IPbus was demonstrated to work with 2 MACs and PHY chips and demo slave registers.

HUB FPGA Register – Initial map

These are 4 "common" HUB registers (ReadOnly and ReadWrire):

- RO hub_module: general HUB information (Module ID, HW/FW versions)
 RO hub_address: external FPGA input pins for shelf and slot addresses, read internally generated address to ROD.
 RO hub_alerts: all bits ='0' in normal operation, set to '1' by external signals
 RW hub_control: on power ON all bits ='0'; set and cleared via IPbus.

Combined_TTC/DATA overview

- HUB module is obliged to distribute TTC information throughout the shelf. The combined_TTC/DATA bits are defined to provide TTC information as well as initialization functions (Aurora). The link is set to run at 6.4Gbps raw rate
- The HUB uses MiniPOD optical receiver to receive TTC signals from the FELIX system
- Receive the Reset signal (Aurora Initialization) from the Readout_CTRL stream and distribute it to the appropriate shelf slot
- Several Combined_TTC links within the shelf; each FEX slot (3-14); one between each HUB and ROD; links between two HUBs
- Combined_TTC/DATA links on the HUB FPGA is implemented with use of several components, including the MGT transceivers (GTH and GTY), control and diagnostic logic

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

Combined_TTC/DATA overview

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

Combined_TTC/DATA Physical Implementation

- The Combined_TTC/Data link on the HUB FPGA is implemented with the use of several components, including the MGT transceivers (GTH and GTY), control and the diagnostic logic.
- The Combined_TTC/DATA link is designed to operate at 6.4 Gbps.
- The physical implementation of the Combined_TTC/DATA stream assumes that there are 4 Control Registers on the Hub TX side, and Shadow Registers on the Rx side (Receiver: FEX, ROD and other HUB).
- The transmitter side generates the 128 bit message from 4 Control registers: Word_0, Word_1, Word_2, and Word_3. The transmitter side logic is in charge to write control information into these Control Registers. The contents of these registers are continuously transmitted to the modules
- (within the shelf) which receives the data into a duplicate set of 4 registers referred to as shadow registers. Anything written into a Control Register at the transmitter side will appear in the corresponding Shadow register at the receiving side within the following LHC clock.
- The least significant byte of Word_0 is reserved for the 8b10b Comma character K28.5.

Combined_TTC/DATA Bit definition

The bits within the Combined_TTC/DATA control words are primarily defined to provide TTC information as well as initialization functions for all of the Fex data links (Aurora in the case of eFex). The TTC information is sourced from a dedicated TTC interface on the Hub. The Reset information is received from the ROD via the Readout_Ctrl link.

Comma Character

• #Bits 7 to 0 of Word_0 contain the Comma character that maintains alignment of the 4 shadow registers with their corresponding Control registers. The chosen character is K28.5 = 0xBC.

Version

#The 4-bit value contains the version number of this overall bit assignment. It will be held at "0000" through the initial debug phases, where many changes may occur.

• Reset 3:0

• #These bits provide a system level reset/enable function. There are four per slot, and the functionality of these bits will be specified by the targets (eFex, jFex, etc).

• Level-1 Accept (L1A)

#L1 Accept is used to indicate when an event has been accepted by the Central Trigger Processor.

Combined_TTC/DATA Bit definition

Combined_TTC/DATA bit definitions: The least significant byte of Word_0 is reserved for the 8b10b Comma Character K28.5

word 0		word 1		word 2		word 3		
bit	0XBC = K28.5	bit		bit		bit		
0	0	0	L1ID(0)	0	control channel	0	Link_reset 0	
1	0	1	L1ID	1	control channel	1	Link_reset 1	
2	1	2	L1ID	2	control channel	2	Link_reset 2	
3	1	3	L1ID	3	control channel	3	Link_reset 3	
4	1	4	L1ID	4	control channel	4	ROD Busy	
5	1	5	L1ID	5	control channel	5	Link Enable	
6	0	6	L1ID	6	control channel	6	rod 0 channel up)
7	1	7	L1ID	7	control channel	7	rod 1 channel up)
8	version(0)	8	L1ID	8	control channel	8	0 (ROD reserved)	
9	version(1)	9	L1ID	9	control channel	9	0 (ROD reserved)	
10	version(2)	10	L1ID	10	control channel	10	0 (ROD reserved)	
11	version(3)	11	L1ID	11	control channel	11	0 (ROD reserved)	
12	reset	12	L1ID	12	control channel	12	0 (ROD reserved)	
13	reset	13	L1ID	13	control channel	13	0 (ROD reserved)	
14	reset	14	L1ID	14	control channel	14	0 (ROD reserved)	
15	reset	15	L1ID	15	control channel	15	0 (ROD reserved)	
16	L1A	16	L1ID	16	control channel	16	0 (ROD reserved)	
17	BCR	17	L1ID	17	control channel	17	0 (ROD reserved)	
18	ECR	18	L1ID	18	control channel	18	0 (ROD reserved)	
19	Privileged Readout	19	L1ID	19	control channel	19	0 (ROD reserved)	
20	0 (TTC reserved)	20	L1ID	20	control channel	20	shelf#	
21	0 (TTC reserved)	21	L1ID	21	control channel	21	shelf #	
22	0 (TTC reserved)	22	L1ID	22	control channel	22	shelf#	
23	0 (TTC reserved)	23	L1ID(23)	23	control channel	23	CRC (9-bit)	ł
24	0 (TTC reserved)	24	ECRID(0)	24	control channel	24	CRC (9-bit)	F
25	0 (TTC reserved)	25	ECRID(1)	25	control channel	25	CRC (9-bit)	
26	0 (TTC reserved)	26	ECRID(2)	26	control channel	26	CRC (9-bit)	
27	0 (TTC reserved)	27	ECRID(3)	27	control channel	27	CRC (9-bit)	
28	0 (TTC reserved)	28	ECRID(4)	28	control channel	28	CRC (9-bit)	
29	0 (TTC reserved)	29	ECRID(5)	29	control channel	29	CRC (9-bit)	
30	0 (TTC reserved)	30	ECRID(6)	30	control channel	30	CRC (9-bit)	
31	0 (TTC reserved)	31	ECRID(7)	31	control channel	31	CRC (9-bit)	

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

Combined_TTC/DATA Link placement

Combined_TTC/DATA FW development strategy

- Combined_TTC/DATA Firmware development comprises several stages
- First stage assumes to transmit the Combined_TTC/Data stream to the ROD module, also to the FEX slot 3
- In order to debug the design, the standard Xilinx diagnostic components are being used to monitor the data flow (as for example like the ILA and VIO).
- The physical layer is configured with the use of GT wizard
- For the purpose of the initial test, the HUB transmitter side generates the 128 bits from 4 Control registers but only some static patterns are written into these registers
- In the next step, the Readout_Ctrl data received on the HUB from ROD module are retransmitted as the Combined_TTC/Data stream to the ROD and FTM module in slot 3
- Once the communication between the HUB and other modules within shelf is established, a test pattern generator will be replaced by real TTC component
- Next development steps assumes to add (gradually) the remaining receivers in the shelf

Combined_TTC/DATA FW development strategy

- Combined_TTC Data link test:
- A correct Combined_TTC stream on the ROD

Readout_Control overview

- The HUB module is obliged to receive the Readout Control (Readout_CTRL) information from the ROD via serial link named Readout_CTRL. The HUB module is the only one module within the shelf which gets the Readout Control data from the ROD
- That information is used by the Hub, also fanned out to the rest of the system. The main purpose is to provide resets to all of the data links (Aurora) between the Fex's and the ROD plus HUB module

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

Readout_Control Physical Implementation

- The Readout_Ctrl link is designed to operate at 6.4 Gbps.
- In order to to control message transmission within a single LHC clock period, the length of the message is limited to 128 bits
- The HUB Readout Control FW features one receiver (RX). In order to debug the design, the standard Xilinx diagnostic components are being used to monitor the data flow (as for example like the ILA and VIO).
- The physical layer is configured with the use of GT wizard
- The physical implementation of the Readout_CTRL links assumes that there are Control Registers on the Tx ROD side, and Shadow Registers on the Rx HUB side. The transmitter side generates the 128 bit message from 4 Control registers: Word_0, Word_1, Word_2, and Word_3. The transmitter side logic is in charge to write control information into these registers for transmission to the modules within the shelf. These registers are continuously transmitted to the HUB which receives the data into a duplicate set of 4 registers referred to as Shadow Registers. Anything written into a Control Register at the transmitter side will appear in the corresponding Shadow register at the receiving side within the following LHC clock.

Readout_Control Physical Implementation

There are Control Registers on the TX side and Shadow Register on the RX side

Figure 1: Control and Shadow Registers

Readout_Control Bit definition

• The bits within the Readout Control words are primarily defined to provide initialization functions for all of the FEX data links

Comma Character

#Bits 7 to 0 of Word_0 contain the Comma character that maintains alignment of the 4 shadow registers with their corresponding Control registers. The chosen character is K28.5 = 0xBC

• Version

#The 4-bit value contains the version number of this overall bit assignment

• ROD_BUSY

#When active, this signal indicates that the ROD cannot currently accept further data from Fex sources. This signal is fanned-out to the shelf FEX's by the Hub via the Combined_TTC link

Global_Link_Reset

#This single bit is used to reset all of the data (Aurora) links within the shelf. The primary use is in the first initialisation after power-up. The ROD can hold this reset active for an indefinite amount of time. On the trailing edge (deactivation), the eFex's should provide additional timing control for the GTReset and Reset signals on the Aurora interface. This signal is fanned-out to the shelf FEX's by the Hub via the Combined_TTC link

Readout_Control Bit definition

• The bits within the Readout Control words are primarily defined to provide initialization functions for all of the FEX data links

word 0		word 1		word 2		word 3	
bit	OXBC = K28.5	bit		bit		bit	
0	0	0	slot 3 link reset 0	0	0	0	0
1	0	1	slot 3 link reset 1	1	0	1	0
2	1	2	slot 3 link reset 2	2	0	2	0
3	1	3	slot 3 link reset 3	3	0	3	0
4	1	4	slot 4 link reset 0	4	0	4	0
5	1	5	slot 4 link reset 1	5	0	5	0
6	0	6	slot 4 link reset 2	6	0	6	0
7	1	7	slot 4 link reset 3	7	0	7	0
8	version 0	8	slot 5 link reset 0	8	0	8	0
9	version 1	9	slot 5 link reset 1	9	0	9	0
10	version 2	10	slot 5 link reset 2	10	0	10	0
11	version 3	11	slot 5 link reset 3	11	0	11	0
12	0	12	slot 6 link reset 0	12	0	12	0
13	0	13	slot 6 link reset 1	13	0	13	0
14	ROD_BUSY (to all slots)	14	slot 6 link reset 2	14	0	14	0
15	Aurora_Init (all links)	15	slot 6 link reset 3	15	0	15	0
16	slot3 channel up	16	slot 7 link reset 0	16	0	16	0
17	slot4 channel up	17	slot 7 link reset 1	17	0	17	0
18	slot5 channel up	18	slot 7 link reset 2	18	0	18	0
19	slot6 channel up	19	slot 7 link reset 3	19	0	19	0
20	slot7 channel up	20	slot 8 link reset 0	20	0	20	0
21	slot8 channel up	21	slot 8 link reset 1	21	0	21	0
22	slot9 channel up	22	slot 8 link reset 2	22	0	22	0
23	slot10 channel up	23	slot 8 link reset 3	23	0	23	CRC (9-bit)
24	slot11 channel up	24	slot 9 link reset	24	0	24	CRC (9-bit)
25	slot12 channel up	25	slot 10 link reset	25	0	25	CRC (9-bit)
26	slot13 channel up	26	slot 11 link reset	26	0	26	CRC (9-bit)
27	slot14 channel up	27	slot 12 link reset	27	0	27	CRC (9-bit)
28	0	28	slot 13 link reset	28	0	28	CRC (9-bit)
29	0	29	slot 14 link reset	29	0	29	CRC (9-bit)
30	0	30	0	30	0	30	CRC (9-bit)
31	0	31	0	31	0	31	CRC (9-bit)

Full spec at: Specification for Readout Control & Combined TTC Serial links in L1Calo

Readout_Control FW development strategy

 The HUB Readout Control FW features one receiver (RX). In order to debug the design, the standard Xilinx diagnostic components are being used to monitor the data flow (as for example like the ILA and VIO). The physical layer is configured with the use of GT wizard.

Readout_Control FW development strategy

Probing the aligned data from the GT

Expected Results
Word_0: constant a50f00bc
Word_1: constant 0000000
Word_2: counter value
Word 3: constant be800000

Waveform - hw_ila_1														
Q + − ϑ ▶ ≫	•	0, 0, ;	s +r 14	H m m	+F F	i al i								
ILA Status: Idle												478		
Name	Value		462	464	466	1	468	470	472	474	476	478	480	
reg0[31:0]	a50f00bc											a50f00bc		
> 📲 reg1 [31:0]	0000000											30000000		
> 🖬 reg2[31:0]	2d871d65	2d87	1.455	2d8	71459		2d8	71.d5d	20	871161	2d8	71d65	X	2d87
> 🐝 reg3[31:0]	be800000											pe800000		

Physical implementation of the Readout_CTRL link is similar to the Combined_TTC links. There are Control Registers on the TX side and Shadow Register on the RX side

HUB Safe Configuration (1)

- During the regular operation, the HUB firmware is obliged to control the group of signals which are wired to the FPGA. These signals are handled on the HUB FPGA by the Safe Configuration component. This piece of firmware is in charge to properly receive the signals and control them by the ILA and VIO component. The HUB Safe Configuration needs to present in any type of HUB configuration
- Signal types →See Table 3 (HUB Firmware Specification)

Logic Analyzer (ILA). The customizable Integrated Logic Analyzer (ILA) IP core is a logic analyzer core that can be used to monitor the internal signals of a design.

- Virtual Input/Output (VIO). The LogiCORETM IP Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal FPGA signals in real time
- SYSMON. Optionally, the HUB configuration can include the SYSMON (SLR0 and SLR1): Each super logic region: SLR0 and SLR1 has one system monitor to provide for monitoring supply voltages within the SLR. The I2C DRP and JTAG DRP access is limited to the master SLR only (SYSMONE1_X0Y0 for devices with two SLRs).

HUB Safe Configuration (2)

HUB Signal types →See Table 3 (HUB Firmware Specification)

No	Signal name	Location and I/O Standards	Components	Direction
0	Logic_ <u>Clk_</u> 320.64 <u>Mhz</u> to <u>FPGA</u> Dir Logic <u>Clk</u> _320.64_MHz_to <u>FPGA_Cmp</u>	PACKAGE_PIN K22 PACKAGE_PIN J22 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100 DQS_BIAS	IBUFGDS	IN
		TRUE_EQUALIZATION EQ_LEVEL0		
1	Logic_Clk_40.08_Mhz_to_FPGA_Dir Logic_Clk_40.08_Mhz_to_FPGA_Cmp	PACK AGE_PIN J24 PACK AGE_PIN H24 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100 DQS_BIAS TRUE_ EQUALIZATION EQ_LEVEL0	IBUFGDS	IN
2	Ref_4008 <u>Mhz_</u> from_Other_Hub_Dir Ref_4008 <u>Mhz_</u> from_Other_Hub <u>_Cmp</u>	PACKAGE_PIN H23 PACKAGE_PIN G23	IBUFGDS	IN

• This figure shows the Hub's distribution of readout data in the context of the cards in the ATCA shelf. All of this data flows to both the ROD and to the FPGA on each Hub. It supports 2 independent streams of readout data. That is, the readout stream processed by the ROD and Hub FPGA on Hub-1 can be Independent of the readout stream flowing into Hub-2.

Hub-Module Readout Data Distribution

Readout (Aurora8b10b) Implementation method

- GT Wizard to configure the physical layer
- User merging process

? _ D D X Project Summary × ug580.xdc	× ug380.v × PCatalog ×
🝸 🛑 0 🔥 Customize IP	
x) (7) Aurora 8B10B (11.1) nager_inst: cik_	
I_SYSMON_INS Documentation IP Location C Switch to Defaults ON_Inst : IIa_SYS	
I: vio_0 (vio_0.xc	Component Name aurora 8b10b 0
tor_modul_inst:	Case Options - Shared Look
:vio_1 (vio_1.xd)	Core canona america cogra
agement_wiz_0 (Physical Layer
	Lane Width (Bytes)
	Line Rate (Gbps) 3.125 [0.5 - 6.25]
(2)	Column Used right ~
	Lanes / 1 ~
	Starting GT Quad / Quad X0Y0 ~
	Starting GT Lane X0Y0 V [Selected GT X0Y0]
	GT Refck Selection MGTREFCLK0 of Quad X0Y0 ~
Libraries	25 V
	NIT Cik (MHC) 96.25 (0) [8.25 - 156.25]
	Generate Aurora without GT
_	Link Layer
ible multi-lane gi	Datation toda
ting the Aurora 86	Interface Framing ~
	Flow Control None V
ige Log	Back Channel Sidebands ~
	ScrambleriDescrambler Little Endian Support
ip:aurora_8b10b	Error Detection
rador2017.1/data	CRC
	Ledug and Control
	Vivado Lab Tools
	Additional transceiver control and status ports

Readout (Aurora8b10b) Aurora Line Mapping

		1	1		1	1	1			1	
	<u>1,2</u>	2,3,4 opt	ion		<u>3,4,5,6</u>	option			6-Lane		
	lane	guad	rx MGT	lane	quad	rx MGT		lane	guad	rx MGT	
Slot 3	1	126	1	1	126	1		1	126	1	
	2	126	0	2	126	0		2	126	0	
	3	125	3	3	125	3		3	125	3	
	4	125	2	4	125	2		4	125	2	
	5	125	1	5	125	1		5	125	1	
	6	125	0	6	125	0		6	125	0	
slot 4	1	124	3	1	124	3		1	124	3	
	2	124	2	2	124	2		2	124	2	
	3	128	1	3	128	1		3	128	1	
	4	128	0	4	128	0		4	128	0	
	5	127	3	5	127	3		5	127	3	
	6	127	2	6	127	2		6	127	2	
slot 5	1	127	1	1	127	1		1	127	1	
	2	127	0	2	127	0		2	127	0	
	3	126	3	3	126	3		3	126	3	
	4	126	2	4	126	2		4	126	2	
	5	130	1	5	130	1		5	130	1	
	6	130	0	6	130	0		6	130	0	
slot 6	1	129	3	1	129	3		1	129	3	
	2	129	2	2	129	2		2	129	2	
	3	129	1	3	129	1		3	129	1	
	4	129	0	4	129	0		4	129	0	
	5	128	3	5	128	3		5	128	3	
	6	128	2	6	128	2		6	128	2	
slot 7	1	132	3	1	132	3		1	132	3	
	2	132	2	2	132	2		2	132	2	
	3	132	1	3	132	1		3	132	1	
	4	132	0	4	132	0		4	132	0	
	5	131	1	5	131	1		5	131	1	
	6	131	0	6	131	0		6	131	0	

Option A: 1,2,3,4 Option B: 3,4,5,6 (mix of GTY and GTH) Option C: 6-lane

Readout (Aurora8b10b) Background

- Aurora8b10b IP core supports: 7 series GTX/GTH, UltraScale[™] GTH, UltraScale+[™] GTH, GTP transceivers
- Officially the Aurora8b10b IP core does not support the GTY transceivers
- Service Request (SR, Xilinx) to resolve the issue

Readout (Aurora8b10b) Feedback from Xilinx (1)

- Me: Is there any plan to upgrade the Aurora8b10b core to support the GTY transceivers?
- Xilinx: I checked in for the internal resources to see if there is any plan in near future to support the Aurora8b10b protocol in UltraScale GTY transceivers but right now it is not yet planned.
- *Me: I can see that GT wizard offers the Aurora8b10b protocol for the GTY?*
- Xilinx: Even if the GT wizard offers Aurora8b10b protocol for the GTY transceivers, it will just customize the GT part of the protocol (not the complete protocol).

Readout (Aurora8b10b) Feedback from Xilinx (2)

- Me: Is there any technical reason behind Aurora8b10b protocol not supporting GTY transceivers?
- Xilinx: There is not really technical reason behind Aurora8b10b
 protocol not supporting GTY transceivers

But since GTY transceivers are meant to be targeted for higher line rate, we recommend to use Aurora64b66b protocol for better throughput

Readout (Aurora8b10b) Feedback from Xilinx (3)

- Finally, we figured out the method to implement the Aurora8b10b protocol in GTY transceivers. The test design is based on the Xilinx example
- The design was sent to Xilinx for validation (including video and text documentation)
- Xilinx seemed to be pleased with our design. The design is stored in Xilinx internal database and it will be offered for anyone who wants to implement similar application in future

Readout (Aurora8b10b) GTY (test scope)

STATE

- Successfully tested, VCU108 (GTY), Xilinx dev board:
- GTY ↔ GTY (@5 Gbps, QSFP loopback module)
- GTY ↔ GTY (@6.4 Gbps, QSFP loopback module)
- Successfully tested, VCU108 (GTY) \leftrightarrow ZYNQ (GTX):
- GTY \rightarrow GTX (@5 Gbps, QSFP-SFP passive splitter cable)
- GTX \rightarrow GTY (@5 Gbps, QSFP-SFP passive splitter cable)

Readout (Aurora8b10b) Implementation in GTY, setup (1)

VCU108, Xilinx Evaluation Board: GTH/GTY, QSFP \rightarrow SFP passive splitter cable

Readout (Aurora8b10b) Implementation in GTY, setup (2)

The ZYNQ board for Panda Experiment. Designed by Pawel Marciniewski (Uppsala University)

This board is a DAQ device featuring 4 optical interfaces with up to 6.6 Gbps bandwidth each.

The device was tested with Ubuntu 14.4

The unit is powered by a ZYNQ XC7Z030 SoC - 512 MB DDR3 RAM

- USB 2.0
- Uart port
- MicroSD
- GbE port
- HDMI
- 4 NIM I/O

Readout (Aurora8b10b) Implementation in GTY, setup (3)

VCU108 (GTY) ↔ ZYNQ (GTX), @5Gbps (1 line, RX/TX simplex, timer) Diagnostic: ILA/VIO. Xilinx Data generator/checker.

Readout (Aurora8b10b) Implementation in GTY, setup (4)

Aurora8b10b Core configures two parts: link layer (protocol) and physical layer (GT part). In real, the Aurora8b10b core uses the GT wizard to configure the physical layer. Basically, two IP cores are being used to provide full setup. Thus, in order to Implement the Aurora8b10b in GTY, the GT wizard needs to be run "manually" to configure the GTY transceivers

Figure: Aurora8b10b overview (source: Xilinx documentation)

Δ

Readout (Aurora8b10b) Implementation in GTY, recipe (1)

Standard Aurora8b10b IP core (GTH), configure the Physical and Link Layer.

Decomentation Processorie Processorie Oppomentation Processorie Corporent Name Surve 260.0.0 Corporent Name Surve 260.0.0 Core Options Processorie Sared Logs Sared Color Sared Logs Sared Color Sared Logs Sared Color Sared Color	urora 8B10B (11.0)	
□ Show deakled ports Component Name Javara, 56 bb, 0 □ Gene Options: Started Cgg: □ Physical Layer Inter Galaxies □ Physical Layer Inter Galaxies □ Head (Spp) 5 □ Component Name Javara, 56 bb, 0 □ Gene Options: Started Cgg: □ Physical Layer □ □ Line Rate (Spp) 5 □ Color 0 □ Starting GT Law NOTE □ Starting CT Law Starting	Documentation 📄 IP Location 🇔 Switch to Defaults	
Import Core Options Stared Logs Physical Layer Import Import Lawer With Options Stared Logs Import Column Used Import Import Starting GT Lawer Column Used Import Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Column Used Import Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Starting GT Lawer Import Concert Starting GT Lawer Starting GT Lawer Import Concert Interface Prime Prime Import Concert Interface Prime Prime Physical Lawer Sorabler Descambler Luttle Enden Support Encord Lawer Sorabler Descambler Luttle Enden Support Encord Lawer Encord Lawer Prive Contel Import Lawer Import Lawer Import Lawer Import Lawer Sorabler Descambler Luttle	Show disabled ports	Component Name aurora_8b10b_0
		Accel Uptions Shared Logic Physical Layer

Once the Aurora8b10b core is generated, open IP example Design

Readout (Aurora8b10b) Implementation in GTY, recipe (3)

Open GT wizard to configure the GT part of the protocol

JItraScale FPGAs Transceivers Wizard (1.6) Documentation 🚯 Presets 🚞 IP Location 🧔 Switch to Defaul	ts	A
IP Symbol Physical Resources	Component Name gtwizard_ultrascale_0	6
Diabit dide on abanada ta anabla and adit	Basic Physical Resources Optional Features Structural Options	
	System	
XOV8	Transceiver configuration preset GTY-Aurora_88108**	
QuadX0Y2	Transceiver type GTY *	
	Transmitter Receiver	
CPLL YOYZ	Line rate (Gb/s) 3.125 C Line rate (Gb/s) 3.125	1
	PLL type CPLL V PLL type CPLL V	-
	QPLL Fractional-N options	۲
	PIL type PIL type Requested reference dock (MHz) 156.25 Calc Requested reference dock (MHz) 156.25 Calc	
iaditi di	Resulting fractional part of QPLL feedback divider /(2^24) = 0	
	Actual Reference 125 v Actual Reference 125 v 125 v	-]
XOYS	Encoding 88/108	
	User data width 16 v User data width 16 v	1
X0Y4	Internal data width 20 v Internal data width 20 v	
QuadX0Y1	Buffer Enable (1)	-
	TXOUTCLK source TXOUTCLKPMA RXOUTCLK source RXOUTCLKPMA	-
	Advanced & Advanced	۲
	Differential swing Insertion loss at Nyquist (dB) 14	8
	emphasis mode Equalization mode Auto	•
	When Auto is specified, the equalization mode implemented by the Wizard depends on the value specified for insertion loss at Nyquist. Refer to Xilun (US576/UC578 to determine the appropriate equalization mode for your system	
	Link coupling AC	¥
	Termination Programmable	v

Once the GT files are generated, replaced them with the files generated by Aurora8b10b

Readout (Aurora8b10b) Implementation in GTY, recipe (5)

This is the original Aurora_8b10b_0_gt_gtwizard_top file. It looks that the Xilinx experts were pretty close to add the GTY to the Aurora8b10b IP core.

Pro	ject	Manage	- aurora_8b10b_0_example					
s	Σ	Project S	ummary 🗙 🔞 aurora_8b10b_(0_gt_gtwizard_top.v ×				
ertie		C:/Desig	n/vcu108_aurora_8b10b_gty_at_5G	_rx_simplex/aurora_8b10b_0_e	example/aurora_8b10b_	example.srcs/sources_	1/ip/aurora_8	Bb10b_0/ip_0/synth/aurora_8b10b_0_gt_gtwizard_to
<u>do</u>		1755	assign ubdaddr out	= {{`aurora 8k	olob 0 ort SF CM}{	1/100}};		
	10	1756	assign ubden out	= {{`aurora 8k	o10b 0 gt SF CM}{	1'00}};		
	67	1757	assign ubdi out	= {{`aurora 8k	olob 0 ot SF CM){	1'b0};;		
	A	1758	assign ubdwe out	= {{`aurora 8h	olob 0 gt SF CM}{	1'b0}};		
s	0	1759	assign ubmdmtdo out	= {{`aurora 8k	o10b 0 gt SF CM}{	1'b0}};		
G		1760	assign ubrsvdout out	= {{`aurora 8k	o10b 0 gt SF CM}{	1'b0});		
<u>ہ</u>	Ľ.	1761	assign ubtxuart out	= {{`aurora 8h	o10b 0 gt SF CM}{	1'b0}};		
<u>~</u>	X	1762	assign dmonitoroutclk	cout = {{`aurora 8k	o10b 0 gt N CH}{1	'b0}};		
	-	1763	assign gtytxn out	= {{`aurora 8k	o10b 0 gt N CH}{1	'b0}};		
	//	1764	assign gtytxp out	= {{`aurora 8h	010b 0 gt N CH}{1	'b0}};		
		1765	assign powerpresent of	out = {{`aurora 8h	010b 0 gt N CH}{1	'b0}};		
	Æ	1766	assign rxckcaldone ou	it = {{`aurora_8h	010b 0 gt N CH}{1	'b0}};		
	- an	1767	assign rxlfpstresetde	t out = {{`aurora 8h	010b 0 gt N CH}{1	'b0}};		
		1768	assign rxlfpsu2lpexit	det out = {{`aurora 8h	010b 0 gt N CH}{1	'b0}};		
	R.	1769	assign rxlfpsu3wakede	t_out = {{`aurora_8h	010b 0 gt N CH}{1	'b0}};		
		1770	assign txdccdone_out	= {{`aurora_8b	o10b_0_gt_N_CH}{1	'b0}};		
		1771	_	_		7		
		1772 🍐	end					
		1773 🖯	else if (C_GT_TYPE == `	aurora_8b10b_0_gt_GT_1	IYPE_GTYE3) begi	n : gen_gtwizard_g	gtye3_top	
		1774						
		1775	// Generate GTYE3-typ	e Transceivers Wizard	submodule			
		1776	aurora_8b10b_0_gt_gtw	/izard_gtye3 #(
		1777	.C_CHANNEL_ENABLE		(C_CHANNEL_ENA	BLE),
		1778	.C_COMMON_SCALING_B	TACTOR	(C_COMMON_SCAL	ING_FACTOR),
		1779	.C_FREERUN_FREQUENC	Υ.	(C_FREERUN_FRE	QUENCY),
		1780	.C_GT_REV		(C_GT_REV),
		1781	.C_LOCATE_RESET_CON	ITROLLER	(C_LOCATE_RESE	T_CONTROLLER),
		1782	.C_LOCATE_USER_DATA	WIDTH_SIZING	(C_LOCATE_USER	_DATA_WIDTH_SIZING	3),
		1783	.C_LOCATE_RX_BUFFEF	BYPASS_CONTROLLER	(C_LOCATE_RX_B	UFFER_BYPASS_CONTR	ROLLER),
		1784	.C_LOCATE_RX_USER_C	CLOCKING	(C_LOCATE_RX_U	SER_CLOCKING),
		1785	.C_LOCATE_TX_BUFFEF	BYPASS_CONTROLLER	(C_LOCATE_TX_B	UFFER_BYPASS_CONTR	ROLLER),
		1786	.C_LOCATE_TX_USER_C	CLOCKING	(C_LOCATE_TX_U	SER_CLOCKING),
		1787	.C_RESET_CONTROLLER	INSTANCE_CTRL	(C_RESET_CONTR	OLLER_INSTANCE_CT	ST.),
		1788	.C_RX_BUFFBYPASS_MC	DE	(C_RX_BUFFBYPA	SS_MODE),
		1789	.C_RX_BUFFER_BYPASS	S_INSTANCE_CTRL	(C_RX_BUFFER_B	YPASS_INSTANCE_CT	RL.),
		1790	.C_RX_BUFFER_MODE		(C_RX_BUFFER_M	ODE),
		1791	.C_RX_DATA_DECODING	3	(C_RX_DATA_DEC	ODING),
		1792	.C_RX_ENABLE		(C_RX_ENABLE),
		1793	.C_RX_INT_DATA_WID1	ΤΗ	(C_RX_INT_DATA	_WIDTH),
		1794	.C_RX_LINE_RATE		(C_RX_LINE_RAT	E),

Readout (Aurora8b10b) Implementation in GTY, recipe (5)

Aurora8b10b protocol in GTY

(based on the Xilinx Example Design – non standard implementation) Visual inspection needed (design, xdc file, system clock, mgt reference clock)

Readout (Aurora8b10b) Implementation in GTY, test (1)

ZYNQ Board (GTX) VCU108 Xilinx Dev Board Links are up and stable

Hardware Manager - localhost/xilinx_tcf/Xilinx/	0000183b3a1c01														
Hardware	_ 🗆 🖻 ×	0	l hw	_ila_1 🗙 🔊 hw_vios	×										
९ 🔀 🖨 🛃 🗣 🕨 🕨 🔳			hw	vio 1		\									
Name	Status		٩	Name		Value	2	Activ	vity Dire	ection	VIO				
■ iocanos(2) ■	Closed Open	d Options		lane_up_j_vio ···· lao tx_channel_up_r_v ··· lao tx_lock_i i vio	/io				Inpu Inpu Inpu	ut ut ut	hw_vio_1 hw_vio_1 hw_vio_1				
	Programmed	Dashboar	-	thipscope 1، _vio/pr والمعالية: رواية: يونية: Chipscope 1، _vio/pr والمعالية: يونية: يونية: Chipscope 1، _vio/pr والمعالية: يونية:	obe_out2[2:0]	[H] 0 [B] 0 [B] 0	v v v		Out Out Out	put put put	hw_vio_1 hw_vio_1 hw_vio_1				
""" " hw_vio_1 (chipscope 1, i_vio)	OK Hardware M	ana	iger	- localhost/xilinx_tcf/Digiler	nt/2103089562	81									
	Hardware	Ł	1 1			×		hw <u>hw</u>	_ila_1 ×	🔊 hw	_vios X				
	Name				Status			0	Name			Value	Activity	Direction	VIO
<	en ∎ localhos en ∎ ⊘ xil	st (2 inx_ «cvu) tcf/D 095	igilent/210308956281 (1) 0 (3)	Connected Open Programmed		Options	∑ ⊜	-∿e lan -∿e rx	ne_up_i _channe	_i_vio el_up_r_vio i_vio	•	•	Input Input Input	hw_vio_1 hw_vio_1
		S h	ysMo w_ila	n (System Monitor) _1 (chipscope 1.i_ila)	O Idle		shboard (+	ite di ⊡∿agtr	ipscope reset_vi	1.i_vio/probe_out2[2:0] io_i	[H] 0 ▼ [B] 0 ▼		Output Output	hw_vio_1 hw_vio_1
	- B C xil	inx_	tcf/Xi	linx/0000183b3a1c01 (0)	Closed		Da		La Sy:	sreset_	vio_1	[B] 0 🔹		Output	nw_vio_1
	<					>									

Readout (Aurora8b10b) Implementation in GTY, test (2)

ZYNQ Board (GTX) VCU108 Xilinx Dev Board TX and RX data check Hardware Manager - localhost/xilinx tcf/Xilinx/0000183b3a1c01 Hardware – 🗆 🖻 🗡 🕥 hw ila 1 🗙 🕥 hw vios 🗙 🗷 I 🔍 I 🕨 🔛 Waveform - hw ila 1 Name Status ÷∏ ILA Status:Idle ---- I localhost (2) Connected ÷ Value Dashboard Options Name xilinx_tcf/Digilent/210308956281 (0) Closed ⊡ Ø xilinx_tcf/Xilinx/0000183b3a1c01 (2) Open 1883 1883 X Oc41 0620 🗙 8310 c188 📈 60c4 b06 arm dap 0 (0) N/A ۲ 🕼 tx channel up r 1 🖮 🌑 xc7z030_1 (3) Programmed 🗓 lane_up_i_i_r 1 • 📴 XADC (System Monitor) hw_ila_1 (chipscope1.i_ila) Idle \triangleright OK Hardware Manager - localhost/xilinx_tcf/Digilent/210308956281 Hardware _ 🗆 🖻 🗡 n hw_ila 1 x n hw_vios x 🔍 🛣 🚖 🛃 🔍 🕨 🔳 Waveform - hw ila 1 Name Status ÷∏ ILA Status:Idle ⊡ · Iocalhost (2) Connected ÷ Value Dashboard Options Name ⊡ · **∭** / vilinx_tcf/Digilent/210308956281 (1) Open ⊡ ⊗ xcvu095 0 (3) Programmed 🗄 📲 rx_d_i[0:15] 1883 1883 📈 Oc41 0620 🗙 8310 c188 📈 60c4 b06 SysMon (System Monitor) ø H loss and the second secon 00 🛿 hw ila 1(chipscope1.i ila) 🔘 Idle 🎚 link reset ila 0 🛄 🚾 hw vio 1 (chipscope1.i vio) OK xilinx tcf/Xilinx/0000183b3a1c01 (0) Closed 🖟 rx_resetdone_i 1 🕼 frame_err_i 0 0 🗓 soft_err_i 0 🖟 rx hard err i 0+ 🎚 tx lock i ila 1 Qpll_not_locked_ila 0 k rx_channel_up_r

HUB FW development scheme

Config ver	HUB FW features	Status
1	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD; Combined_TTC/Data to FEX 3.	Done
2	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD; Combined_TTC/Data to FEX 3, Readout data from FEX 3 (Aurora8b10b)	In progress
3	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD, Combined to FEX 3, Readout data from FEX 3 (Aurora8b10b);	waiting
4	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD, Combined_TTC/Data to FEX 3, Readout data from the FEX 3 (Aurora 8b10b); Readout data from FEX 13 (Aurora8b10b)	waiting
5	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD; Combined_TTC/data to FEX 3, Readout data from FEX 3 (Aurora 8b10b); Readout data from FEX 13 (Aurora8b10b); Combined_TTC/Data to Other HUB	waiting
6	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD; Combined_TTC/data to FEX 3, Readout data from FEX 3 (Aurora 8b10b); Readout data from FEX 13 (Aurora8b10b); Combined_TTC/Data to Other HUB; Readout AL_0 data to This ROD; Readout AL_1 data to This ROD	waiting
7	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD; Combined_TTC/data to FEX 3, Readout data from FEX 3 (Aurora 8b10b); Readout data from FEX 13 (Aurora8b10b); Combined_TTC/Data to Other HUB; Readout AL_0 data to This ROD; Readout AL_1 data to This ROD; Readout AL_0 data to Other HUB; Readout AL_1 data to Other HUB;	waiting
8	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD; Combined_TTC/data all FEXs, Readout data from all FEXs (Aurora 8b10b); Combined_TTC/Data to Other HUB; Readout AL_0 data to This ROD; Readout AL_1 data to This ROD; Readout AL_0 data to Other HUB; Readout AL_1 data to Other HUB;	waiting
9	Readout Control (Readout_Ctrl) data from the ROD; Combined_TTC/Data to This ROD; Combined_TTC/data all FEXs, Readout data from all FEXs (Aurora 8b10b); Combined_TTC/Data to Other HUB; Readout AL_0 data to This ROD; Readout AL_1 data to This ROD; Readout AL_0 data to Other HUB; Readout AL_1 data to Other HUB; IPBus component	waiting

• In order to test the specific MGT channels the IBERT FW is provided for the FTM, ROD and HUB modules. The table below describes the list of tests and results.

No	Test description	Result
1	4 MiniPOD Receiver MGT channels	No errors
2	6 lanes of MGT data from all 12 of the FEX slot	No errors
3	Combined_TTC/Data to the 12 FEX slots	No errors
4	Combined_TTC/Data to the ROD on This HUB	No errors
5	Combined_TTC/Data Data to the Other HUB	No errors
6	Combined_TTC/Data Data that was sent out by the Other HUB	No errors
7	Readout Control Data that was sent out by the ROD on This HUB	No errors
8	HUB sends out two lanes of Readout data to the Other HUB	No errors
9	HUB receives two lanes of Readout data from the Other HUB	No errors
10	FPGA on This HUB sends one lane of its readout data to the ROD on This HUB	No errors

Summary

- HUB FW development in good shape
- HUB FW comprises several components [MAC + IPBus, Readout_Control, Combined_TTC/Data, Readout (Aurora 8b10b),...]
- These components were successfully tested on the HUB module and/or on the Xilinx dev board
- Firmware development split into several stages
- Aurora, Readout_Control and Combined_TTC/Data initialization scheme needs to be discussed (dedicated meeting is foreseen)
- Repository structure will be defined soon