

FEX System ATCA Hub Module: Production Readiness

Hub Team Michigan State University

10 December 2018

Overview & Goals

Hub PRR Goals:

- Action items identified during FDR will be reviewed.
- Additional tests beyond those identified at FDR will be presented for review.
- Firmware aspects directly impacting hardware function, performance and capability will be presented for review.
- If no hardware issues are identified during the PRR, production PCBs will be scheduled for manufacture.
- If any hardware-sensitive firmware issues are identified during the PRR, a post-PRR review will be scheduled.
- If/when the PRR and any follow-ups are passed, Hub production modules will be assembled.

Today's Presentation Material:

- Review of "beyond FDR" Hub test results & firmware implementation Hub production schedule and scope
- Next talk:
- Previous talk: Introduction and follow-up of FDR action items This talk:

Outline of this Presentation

Overview of tests performed on Hub modules

Focus on tests beyond basic input to FDR follow-up

Core areas of Hub functionality are presented

- Power and cooling
- Clock
- High speed links
- GbE switch
- Slow control & monitoring
- Miscellaneous hardware
- Firmware

Hub Prototype Card

HUB PCB is a 22 layer IPC* class 2 card, 3.05 mm thick.

IPC, the **Association Connecting Electronics** Industries (initial name: Institute for Printed **Circuits**)

- 10 of the layers are 1/2 oz Ground planes
- 8 of the layers are 1/2 oz signal routing
- 2 of the layers are 1 oz mixed signal/power fills
- 2 of the layers are 1 oz power fills/routing

Hub Prototype Manufacturing

The Hub PCB was manufactured by TTM Technologies

- Same PCB company as gFEX and CMX
- Laminate is Isola FR408HR
- Extra care taken to ensure a reliable design (eg, back drilling instead of blind vias)

https://www.ttmtech.com/

Hub assembly was performed by Debron Electronics

- Same assembly company as CMX and HTM
- Excellent experience here and we plan to use them for production Hub cards.

http://www.debron-electronics.com/

TTM Technologies

Job Name : HUB PCB STACKUP Customer : Debron Electronics Part Num : HUB PCB STACKUP Part Rev : Engineer : Gus Trakas

	Calc	
Layer	Thickness	
Layer - 1	0.0127 0.0508	
-	0.0965	
Layer - 2	0.0152	-
	0.1270	
Layer - 3	0.0152	, I
	0.1422	l
Layer - 4	0.0152	
	0.1270	
Layer - 5	0.0152	
	0.1422	
Layer - 6	0.0152	
	0.1270	
Layer - 7	0.0152	
	0.1422	
Layer - 8	0.0152	
	0.1270	
Layer - 9	0.0305	-
	0.1397	
Layer - 10	0.0152	
2	0.0762	
Layer - 11	0.0305	-
	0.0813	
lavor 12	0.0305	l
Layer - 12	0.0303	1
laver - 13	0.0152	
Layor to	0.4007	
	0.1397	İ
Layer - 14	0.0305	-
	0.1270	
Layer - 15	0.0152	
	0.1422	l
Layer - 16	0.0152	
	0.1270	
Layer - 17	0.0152	
	0.1422	
Layer - 18	0.0152	
	0.1270	
Layer - 19	0.0152	
	0.1422	

Description Taiyo 4000-BN 1/2oz Sig (Std Plt) FR408HR 1/2oz P/G FR408HR 1/2oz Sig FR408HR 1/2oz P/G FR408HR 1/2oz Sig FR408HR 1/2oz P/G FR408HR 1/2oz Sig FR408HR 1/2oz P/G FR408HR 1oz Mix FR408HR 1/2oz P/G FR408HR 1oz Mix FR408HR 1oz Mix FR408HR 1/2oz P/G FR408HR 1oz Mix FR408HR 1/2oz P/G FR408HR 1/2oz Sig FR408HR 1/2oz P/G FR408HR 1/2oz Sig FR408HR 1/2oz P/G

(C) 2014 Viasystems, All rights reserved.

Viastack Stackup Report for HUB PCB STACKUP

09/10/2016

5

FR408HR

	Calc			
Layer	Thickness	Primary Stack	Description	Dk / Df
Layer - 20	0.0152		1/2oz Sig	
	0.1270	0.0050	FR408HR	3.77 / 0.0089
Layer - 21	0.0152		1/2oz P/G	
	0.0965	1080HRC	FR408HR	3.42 / 0.0098
Layer - 22	0.0508 0.0127		1/2oz Sig (Std Plt) Taiyo 4000-BN	3.90 / 0.0330

Through

Materials: Isola FR408HR High Speed High-Tg FR4

Requirement	Req. Thickness	Tol +	Tol -	Calc Thick	
Incl. Plating & Mask	3.0505	0.3048	0.3048	3.0683	
Incl. Mask over Laminate	2.9489	0.2946	0.2946	2.9667	
Incl. Plating	3.0251	0.3023	0.3023	3.0429	
After Lamination	2.9540	0.1473	0.1473	2.9718	
Over Laminate	2.9235	0.2921	0.2921	2.9413	

Impedance Type	Layer	Design	Actual	Pitch	Plane	tpd ps Atten	Rdc Rac	L ph C pf	Target	Tol (ohms	Predict
1 EC Microstrip	L1	0.14000	0.14500	0.40000	-	141.7	0.062	7660	100		
	-	0.14000	0.14500	-	L2	0.34	-	2.6	100	10.0	99.88
2 EC Stripline	L3	0.14000	0.13000	0.40000	L2	159.5	0.232	8145	400	10.0	400.04
	-	0.14000	0.13000	-	L4	0.37	-	3.1	100	10.0	100.34
3 EC Stripline	L5	0.14000	0.13000	0.40000	L4	159.5	0.232	8145	400	10.0	100.04
	-	0.14000	0.13000	-	L6	0.37	-	3.1	100	10.0	100.34
4 EC Stripline	L7	0.14000	0.13000	0.40000	L6	159.5	0.232	8145	400	10.0	400.04
	-	0.14000	0.13000	-	L8	0.37	-	3.1	100	10.0	100.34
5 EC Stripline	L9	0.14000	0.12500	0.40000	L8	158.4	0.128	8052	52 1 100	10.0	00.70
	-	0.14000	0.12500	-	L10	0.36	-	3.1		10.0	99.70
6 EC Stripline	L14	0.14000	0.12500	0.40000	L13	158.4	0.128	8052	100	10.0	00.70
	-	0.14000	0.12500	-	L15	0.36	-	3.1	100	10.0	99.70
7 EC Stripline	L16	0.14000	0.13000	0.40000	L15	159.5	0.232	8145	400	40.0	100.04
	-	0.14000	0.13000	-	L17	0.37	-	3.1	100	10.0	100.34
8 EC Stripline	L18	0.14000	0.13000	0.40000	L17	159.5	0.232	8145	400	10.0	100.04
	-	0.14000	0.13000	-	L19	0.37	-	3.1	100	10.0	100.34
9 EC Stripline	L20	0.14000	0.13000	0.40000	L19	159.5	0.232	8145	400	10.0	100.04
	-	0.14000	0.13000	-	L21	0.37	-	3.1	100	10.0	100.34
10 EC Microstrip	L22	0.14000	0.14500	0.40000	L21	141.7	0.062	7660	400	40.0	00.00
	-	0.14000	0.14500	-	-	0.35	-	2.6	100	10.0	99.88

Board Layout

Core functions of the Hub hardware

- Host the ROD Mezzanine
- Receives Zone-2 FEX readout data and 2) provide to the ROD
- 3) Distribute LHC master clock to FEX, Hub and ROD modules
- Distribute TTC and ROD control data to 4) FEX, Hub and ROD modules
- 5) Provide Ethernet switch for the ATCA shelf via the Base Interface

Hub Production Readiness Review, 12/2018

9 Hub prototypes were build (8 with FPGAs) *

W. Fisher, MSU

Prototype Hub Modules

Here: Hub S/N 09 with ROD and optical cabling included to illustrate final installation assembly.

Hub Test Module

ub Production Readiness Review, 12/2018

Hub Test Module (HTM) designed to allow full system tests * far in advance of a full shelf of FEX/FTM cards

Developed at MSU. 20 cards delivered July 2018.

HTM design specifics

- ATCA form factor, 10 layer board
- Hosts a commercial mezzanine card with a 7-series Zynq
- Receives Hub TTC & clock via Zone-2
- Sources 6 lanes of "FEX" data to each Hub slot, up to 10.26 Gbps
- Optional MiniPods to emulate all Hub/ROD optical interfaces
- Connections to both Hub GbE networks

Viasystems Technologies Corp. LLC 8150 Sheppard Ave E Toronto, ON, M1B 5K2

Job Name : 181875 Customer : DEBRON INDUSTRIAL ELECTRONICS Part Num: 40-00643-00LF Part Rev : -Engineer : Yogi Perin

Layer	Cust Thickness	Calc Thickness
Laver - 1		0.0005
		0.0038
Layer - 2		0.0006
		0.0100
Layer - 3		0.0006
		0.0040
Layer - 4		0.0006
		0.0210
Layer - 5		0.0012
		0.0034
Layer - 6		0.0012
		0.0210
Layer - 7		0.0006
		0.0040
Layer - 8		0.0006
		0.0100
Layer - 9		0.0006
		0.0038
Layer - 10		0.0020 0.0005

Description	Dk / Df
Taiyo 4000-HFX DI 1/2oz Mix (Std Plt)	3.50 / 0.0190
FR408HR	3.42 / 0.0098
1/2oz P/G	
FR408HR	3.69 / 0.0089
1/2oz Sig	
FR408HR	3.48 / 0.0096
1/2oz P/G	
FR408HR	3.79 / 0.0086
1oz Mix	
FR408HR	3.48 / 0.0096
1oz Mix	
FR408HR	3.79 / 0.0086
1/2oz P/G	
FR408HR	3.48 / 0.0096
1/2oz Sig	
FR408HR	3.69 / 0.0089
1/2oz P/G	
FR408HR	3.42 / 0.0098
1/2oz Mix (Std Plt) Taiyo 4000-HFX DI	3.50 / 0.0190

Materials: Isola FR408HR High Speed High-Tg FR4

MSU Test Stands

* MSU has two Hub/HTM test stands available for system tests

- 14 slot ATCA shelf (40G qualified), primarily used for bandwidth tests. Shown here with 12 HTM cards.
- 6 slot ATCA shelf (40G qualified), primarily used for firmware development.

System test capabilities

- VME TTC system providing 40.08 MHz master clock, L1A, ECR, BCR, etc.
- FELIX functions via TTCfx v3.1 mezzanine on VC709 Xilinx dev board.
- Optical connections between HTMs and Hub/ROD cards
- Full backplane link population with 8 lanes to/from each slot
- 16 PCs to source & sink GbE throughput tests

W. Fisher, MSU

TTCvi TTCvx *Modified to deliver 40.08 MHz clock

Hub Production Readiness Review, 12/2018

Hub Testing Status

- MSU has fully assembled 8 Hub modules. Delivered 24 May 2017, ready for testing 16 June 2017.
 - All modules were fully tested on the bench and with all available HW here at MSU
 - This includes RODs, FTM, HTMs. The availability of each varied over time.

 - 1 module was sent to CERN (S/N 09), mated with ROD (S/N 04), fully tested with FTM.
 - 5 modules at MSU, all tested with full shelf of HTMs since August 2017.
- Between 14-slot and 6-slot shelves we now have 4 months straight rotating 5 Hubs in operation here at MSU (ignoring the 3 modules in EU)
 - No ROD or Hub MGT link errors observed that were not associated with known HTM issues.
 - GbE switch has been thoroughly tested for throughput, packet loss, errors
- <u>FYI:</u> Hub sent to CERN was damaged when someone dropped it.
 - Front-panel alignment pin was broken off.
 - Hub S/N 09 now back at MSU and is going through retesting (all looks great so far)
 - These are potentially expensive mistakes.

2 modules were sent to Cambridge before we had ROD or FTM (S/N 02, 03). Used in ROD/FTM/eFEX tests since then.

Hub Test Overview

Detailed list of acceptance tests:

Category: MGT Link Tests

1. Verify that the 13 Equalization Group Enable Signals are all working OK and routed to the correct sets of MGT Fanout Chips. 2. Verify that the 4 MiniPOD Receiver MGT channels and the 8 MiniPOD Transmitter MGT channels are all working OK.

Verify that the Hub FPGA can receive 6 lanes of MGT data from all 12 of the FEX slots.

Verify that the Hub can receiver 6 lanes of MGT data from all 12 of the FEX slots and correctly pass this data to the ROD.

5. Verify that the Hub FPGA can send out Combined Data to the 12 FEX slots, to the ROD on This Hub, and to the Other Hub. Verify that This Hub can Receive Combined Data that was sent out by the Other Hub. 7. Verify that This Hub can Receive the Readout Control data that was sent out by the ROD on This Hub.

Verify that This Hub can send out two lanes of Readout data to the Other Hub. Verify that This Hub can Receive two lanes of Readout data from the Other Hub. 10. Verify that This Hub can Receive and correctly pass to its ROD one lane of readout

data from the Other Hub.

11. Verify that the FPGA on This Hub can send one lane of its readout data to the ROD on This Hub

Category: Power Supplies and Hub Component Cooling Tests 1. During MSU Final Assembly and Bench Testing

Example text from Hub Test Plan. Full test scope posted on agenda.

Power and Cooling Tests

W. Fisher, MSU

Hub Production Readiness Review, 12/2018

- 1. During MSU Final Assembly and Bench Testing
 - firmware.
 - Vout_Scale_Loop.
- the Front Panel I2C Bus connector. The intent is to verify that the IPMC has access to this data.
- SWCH_1V2, and DC/DC-8 Bulk_3V3.
- working correctly.
- FPGA firmware that we have available (currently about 38 Watts).
- to the Hub FPGA.

✓ Done on 1–7 cards Done on all cards

Power Supplies & Component Cooling

a. Verify (measure) 11 power supply output voltages and 7 power supply output currents while the FPGA is configured with test

b. The 7 DCDC Converters on each Hub are tested and setup for: Vin_On, Vin_Off, Vout_Margin_High, Vout_Margin_Low, and

V 2. Verify that the I2C PMBus monitoring of the 7 DCDC Converter output voltages and currents is working OK by reading them from

3. Verify that the FPGA's System Monitor reads out correct data for the Si Temperature, 1V8 Aux power, and 0V95 Core power.

4. Verify the sequencing and ramp rate for at least two of the power supply voltages, e.g. DC/DC-1 FPGA_Core, DC/DC-5

5. Verify that the board power enable circuit, the board start-up reset circuit and the two front panel board power status LEDs are all

6. Verify the expected Hub FPGA Si Temperature with the Hub running in the Shelf with standard air flow rate and the highest wattage

7. Verify that the expected operating temperature is readout from the two MiniPODs via their control/monitoring serial bus connection

Load firmware designed to push DCDC supplies close to operating conditions. • All available MGTs operating IBERT IP core and also IPbus firmware

- - Power consumption estimated at 38W.
 - <u>Note</u>: this version requires less than ~25% of FPGA fabric resources, which is useful for a simple extrapolation on the next pages

Jtilization	Pos	t-Synthesis Pos	st-Implementation	Power		Summary On-Chip
			Graph <mark>Table</mark>	Total On-Chip Power: Junction Temperature:	37.608 W	
Resource	Utilization	Available	Utilization %	Thermal Margin:	44.8 °C (52.3 W)	
LUT	195922	716160	27.36	Effective AIA:	0.8 °C AV	
LUTRAM	6361	154560	4.12	Power supplied to off-chip devices	0.002.W	
FF	347658	1432320	24.27	Confidence level	Low	
BRAM	431.50	2520	17.12	Implemented Power Report	LOW	
DSP	160	1200	13.33			
10	127	416	30.53			
GT	80	80	100.00			
BUFG	420	1200	35.00			
ммсм	4	20	20.00			

Power & Resource Estimates

Power Consumption & Cooling

Power consumption is well within design capacity

- - We could be pushing the switch harder in these tests, but it cannot dissipate more than a few Watts.
- Hub supply capacity is 300W
 - 100W reserved for ROD, 200W reserved for Hub

Cooling design is adequate

- Hub FPGA silicon temps are at ~45C for the full IBERT FW load.
- ROD FPGA silicon temps are at ~54C for the full IBERT FW load.
- Shelf fan speed set at ~40% of maximum

FPGA silicon temperatures measured with a full 14-slot shelf of 12 HTMs, 2 Hub modules and 1 ROD.

• Total power consumption for maximum usage is 71W (FPGA:38W, GbE/Fanout:25.1W, MiniPOD/Clk:8.2W)

emperature>	Hub2		R0D2
Configuration Stage	temp C	İ	temp C
ower up with safe foundation	26	i	i
onfig with ibert+ipbus V1.2	46	+20	
ower ON	46		26.5
urn OFF unused TX	43.5	-2.5	26.5
efine links (DFE ON)	43.5	Í	26.5
urn DFE OFF all links	42.5	-1	26.5
onfig FPGA with Ed's ibert	42.5	Í	54.3
efine links (DFE ON)	42.5	İ	54
urn OFF all TX except RO Ctrl	42.5	İ	52
urn DFE OFF all links	42.5	İ	49.5
			-

DCDC supplies all have acceptable margin

- Hub FPGA consumes ~38W with IBERT FW design (*prediction was 38W*)
- Core 0.95V supply draws 8A using ~25% of fabric resources. Final Hub FW design anticipated to use <50% of fabric resources, so margin is good (>50% margin).
- MGT rail supply margins are adequate (36% margin for AVTT). Note, this is all the MGTs we <u>can</u> use, so it cannot increase substantially.
- Fanout chips consume 21.8W (~40% margin).

	FPGA_	MGT_	MGT_	SWCH	BULK	FAN_	BULK_
Converter	CORE	AVCC	AVTT	_1V2	_1V8	1V8	3V3
Voltage	0.95 V	1.00 V	1.20 V	1.20 V	1.80 V	1.80 V	3.3 V
Draw	8.04 A	9.38 A	12.7 A	1.94 A	0.62 A	12.1 A	2.25 A
Capacity	40 A	20 A	20 A	12 A	12 A	20 A	12 A

Power Consumption & Cooling

MiniPOD Temperatures

- Hub MiniPOD temps are read via IPbus/AXI interface to I2C
 - Temps are quite low, typically around 30C. The Tx MiniPOD is in the Rx MiniPOD shadow, so a bit warmer.
 - NB: Hub and ROD MiniPODs are not on the sensor I2C bus that the IPMC sees. Rather, they are on an isolated I2C bus accessed via their FPGAs.
 - Thus, while we can read the ROD DCDC supplies, we do not see the ROD MiniPODs directly.

Example read of Hub miniPOD transmitter

MiniPod type verified to be: recyr mpod MiniPod type verified to be: trans mpod Minipod internal temperature is 28.45 C Minipod internal temperature is 32.22 C The voltage on the 2.5 vcc power supply is 2.4807 V The voltage on the 2.5 Vcc power supply is 2.4657 V The voltage on the 3.3 Vcc power supply is 3.2876 V The voltage on the 3.3 Vcc power supply is 3.2596 V The serial number of the current device: recvr_mpod is : A1719407F The serial number of the current device: trans_mpod is : A17285016 The operating time is 3052.0 hours or 127.1666666667 days The operating time is 3038.0 hours or 126.583333333 days Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 0.14646524684 dBm or 1034.3 μW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 0.911039440903 dBm or 1233.4 µW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: -0.00130307891732 dBm or 999.7 μW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 1.06496870139 dBm or 1277.9 μW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 0.137217780511 dBm or 1032.1 μW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 1.09646031091 dBm or 1287.2 μW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 0.152759066819 dBm or 1035.8 µW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 1.0510124455 dBm or 1273.8 µW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: -0.220935723629 dBm or 950.4 μW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 1.3165073809 dBm or 1354.1 µW Optical power for channel number recvr_mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans mpod is: 0.262471814778 dBm or 1062.3 µW Optical power for channel number recvr mpod is: 0 dBm or 0 µW, is module connected? Optical power for channel number trans_mpod is: 1.20080134129 dBm or 1318.5 µW The nominal wavelenght for device trans mpod is 845.0 nm (± 15.015 nm)

Example read of Hub miniPOD receiver

Power Supply Stability

- Hub power supplies are trimmed and checked for accuracy at final assembly on the bench.
 - Critical Ultrascale supplies have a 3% voltage tolerance, and MGT supplies specify noise < 10 mV pk-pk.
 - The DCDC converters have required very little voltage trimming.
 - Multiple ceramic, low ESR tantalum and polymer capacitors are used to ensure stiff supply structures over a wide bandwidth. The MGT_AVTT/AVCC and FAN_1V8 DCDC supplies also include external LC output filters.

 - +12V power feed to the ROD includes a large bank of filter bypass capacitors to minimize input power noise.

W. Fisher, MSU

W. Fisher, MSU

1. Verify that the 25.0 MHz and 40.0787 MHz oscillators are running at the correct frequency and are stable. 2. Verify the 40.0787 and 320.6296 MHz PLLs have the correct LHC frequency tracking range. 3. Verify both sides of the First 40 MHz Fanout to the: Hub FPGA, ROD, 320 MHz PLL, and Second 40 MHz Fanout. 4. Verify both sides of the 13 outputs from the Second 40 MHz Fanout: 12 to the FEXs and 1 to Other Hub. card can correctly receive its LHC Reference Clock from the backplane. remain locked and smoothly transition during the clock-change process.

✓ Done on all cards ✓ Done on 1–7 cards

Clock Tests

5. Verify both sides of the outputs from the 320 MHz Fanout: 8 connections to MGT Reference Inputs and 1 Logic Clock to the Hub FPGA.

6. Verify that when operated as the Other Hub (i.e. the Hub that does not directly receive an optical TTC signal from FELIX), that the Hub

7. Verify that the Hub handles a frequency/phase shift in a manner that allows the recipients of the distributed clock (FEX and ROD) to

Two primary tests:

- Verify all Hub clocks are at the correct frequency, clean and arrive at their destinations
- Verify that the Hub clock circuit is stable during the known frequency sweep of the input master LHC clock. • The fastest frequency sweep in the LHC RF system is 22 Hz/sec • The Hub PLL phase shift for a (up to) 22kHz/sec frequency sweep is 3 degrees, so LHC frequency sweep

 - is ~ 1ps of phase shift.
 - The Hub PLL will "re-lock" following a discontinuous change in clock frequency or phase.
 - The Hub PLL will follow discontinuous changes smoothly and relic without FPGA logic or MGTs needing to take further action.

Clock Bench Tests

As described in previous presentation, we also carefully study the stability of the latency of the LHC master clock in the shelf.

- Full path from VME/TTC to HTM front panel.
 - Green: ECL clock from TTC crate
 - Magenta: CMOS clock from HTM front panel

Clock Shelf Tests

As described in previous presentation, we also carefully study the stability of the latency of the LHC master clock in the shelf.

- Full path from VME/TTC to HTM front panel.
 - Green: ECL clock from TTC crate
 - Magenta: CMOS clock from HTM front panel

Initial Reference

Clock Shelf Tests

As described in previous presentation, we also carefully study the stability of the latency of the LHC master clock in the shelf.

- Full path from VME/TTC to HTM front panel.
 - Green: ECL clock from TTC crate
 - Magenta: CMOS clock from HTM front panel

Clock Shelf Tests

High Speed Link Tests

W. Fisher, MSU

MGT Link Testing

3. Verify that the Hub FPGA can receive 6 lanes of MGT data from all 12 of the FEX slots. 6. Verify that This Hub can Receive Combined Data that was sent out by the Other Hub. 8. Verify that This Hub can send out two lanes of Readout data to the Other Hub. 9. Verify that This Hub can Receive two lanes of Readout data from the Other Hub. 10. 11. Verify that the FPGA on This Hub can send one lane of its readout data to the ROD on This Hub.

✓ Done on all cards ✓ Done on 1–7 cards

- 1. Verify that the 13 Equalization Group Enable Signals are all working OK and routed to the correct sets of MGT Fanout Chips. 2. Verify that the 4 MiniPOD Receiver MGT channels and the 8 MiniPOD Transmitter MGT channels are all working OK.
- 4. Verify that the Hub can receiver 6 lanes of MGT data from all 12 of the FEX slots and correctly pass this data to the ROD. 5. Verify that the Hub FPGA can send out Combined Data to the 12 FEX slots, to the ROD on This Hub, and to the Other Hub.
- 7. Verify that This Hub can Receive the Readout Control data that was sent out by the ROD on This Hub.

 - Verify that This Hub can Receive and correctly pass to its ROD one lane of readout data from the Other Hub.

BER tests have been performed with Xilinx IBERT firmware at a line rate of 6.4 Gbps and using PRBS31 Two separate, long-duration runs have been performed and find the full system capable of BER<6E-17. No errors observed. Eye diagrams have been produced for both Hub and ROD data links. They all look very good.

Hardware: Backplane Link Testing

Hub Slot 2, HTM Module 14, Data Lane 5: DFE off, Fanout Eq on

- During our MGT tests, we study the effects of equalization methods available on the Hub *
 - Decision Feedback Equalization (DFE), which is a feature of the Xilinx MGT receiver. This is the more power 1) hungry of the options they provide. This appears to try to be a good general tool for many applications.
 - Equalization in the Hub FEX data fanout buffers. This is designed to work well for copper signal paths, as we 2) have on the Hub. This can be turned on or off for all lanes of data from a given FEX (HTM).
- While we do not need to rely upon these for good signal integrity, our goal has been to comprehensively understand the degrees of freedom in the problem.
 - Our effort here is not to gain margin, but rather to characterize the board.

- Zone-2 links for Hub and ROD.

 - Lots of interesting features, more on that in the following slides.

BER tests have been performed with Xilinx IBERT firmware at a line rate of 6.4 Gbps and using PRBS31, including all FEX

Two separate, long-duration runs have been performed and find the full system capable of **BER<6E-17**. No errors observed.

Repeated tests of the Hub eye diagrams illustrate very high uniformity over Hub modules.

- Repeated tests of the same card also show zero variation.
- Quality and uniformity of the Hub PCB manufacturing and assembly processes is very high.
- 6 Hubs shown here, 2 remaining in UK will be tested once we can swap them out.

IUB2	05-Dec-2018_a noDFE&EqOFF
IUB2	05-Dec-2018_b noDFE&EqOFF
IUB2	05-Dec-2018_c noDFE&EqOFF
IUB2	06-Dec-2018_a noDFE&EqOFF
IUB2	06-Dec-2018_b noDFE&EqOFF
IUB2	06-Dec-2018_c noDFE&EqOFF

- Repeated tests of the ROD eye diagrams illustrate very high uniformity as well. Each trace is a different Hub/ROD pair.
 - NB: green graph produced with a bad HTM, 2 links were dead.

- Many interesting features in the backplane links to be explo We've gone some way down the rabbit hole.
 - 1) Can we discern differences between GTY vs GTH transce Individual cases yes, on average no.
 - 2) Does activity in the GbE switch reduce eye margin? Noth significant.
 - 3) Do longer backplane traces have reduced margin? Typic Though easier to see once HTM variation is accounted fo
 - 4) Does the fanout equalizer improve margin? Typically, yes
 - 5) Does the Xilinx MGT equalization (DFE) improve margin? *Typically, no.*
 - 6) Do intense random register tests reduce margin? Typical
 - 7) Do we see significant margin loss due to cross talk? Type But 3-5% variations are observed when using 1 HTM vs

Random Register Tests: Random read/write register account in Hub FPGA via II

	1	2	3	4	6	7	
ored.					All Sources 1–Oct	Single Lane 5:9–Oct	
eivers?	Comparison Emphasis	Hub#	нтм	Lane#	% Open Horiz	% Open Horiz	5
ning	Shorter from HTM Longer from HTM	Hub2 Hub2	НТМ10 НТМ13	Lane3 Lane2	58.46 63.08	60.00 63.08	
cally, yes.	Shorter from FanOut Longer from FanOut	Hub1 Hub1	НТМ09 НТМ07	Lane1 Lane0	58.46 56.92	61.54 56.92	
or. S.	GTH GTY	Hub2 Hub2	нтм08 Нтм08	Lane3 Lane4	56.92 61.54	56.92 61.54	
?	Same Crate Side Cross through Hub2	Hub1 Hub1	НТМ09 НТМ10	Lane3 Lane0	58.46 63.08	61.54 60.00	
lly, no.	Out Of FanOut Array	Hub1	HTM14	Lane5	58.46	60.00	
ically, no. 12 HTMs	No IPBus IO While RandRegTest	Hub2 Hub2	НТМ03 НТМ03	Lane0 Lane0	55.38 53.85	53.85 52.31	
12 1111013.	Typical w/Equal OFF Typical w/Equal ON	Hub2 Hub2	нтм09 нтм09	Lane3 Lane3	60.00 60.00	60.00 63.08	
	Weaker Channel Weaker Channel Weaker Channel Weaker Channel	Hub1 Hub1 Hub1 Hub1	HTM03 HTM05 HTM06 HTM08	Lane4 Lane4 Lane4 Lane4	47.69 50.77 43.08 41.54	50.77 50.77 46.15 47.69	
esses Pbus.	Weaker Channel Weaker Channel Weaker Channel Weaker Channel	Hub2 Hub2 Hub2 Hub2	HTM04 HTM10 HTM12 HTM14	Lane4 Lane5 Lane1 Lane0	46.15 50.77 46.15 50.77	50.77 53.85 47.69 50.77	

DFE Performance: DFE On, Fanout Eq Off

DFE Performance: DFE Off, Fanout Eq On

Other MGT Effects

Hub Production Readiness Review, 12/2018

Structure in ROD/Hub eye diagrams correlates with HTM/backplane variations *

- HTM lane4 is systematically lower than lane5 (nb, Hub1 and Hub2 see different HTM MGTs)
- Hub1 vs Hub2 backplane traces can also be discerned

- Study of Hub fanout equalizers and MGT "Decision Feedback Equalization"
 - DFE is not always helpful and can add some noise, especially with longer backplane traces.
 - Equalization feature on Hub fanout uniformly improves MGT eye margin.

- Study of Hub fanout equalizers and MGT "Decision Feedback Equalization"
 - DFE is not always helpful and can add some noise, especially with longer backplane traces.
 - Equalization feature on Hub fanout uniformly improves MGT eye margin.

If you would like to look at more plots, there are many many more on the Hub and HTM websites: *

https://web.pa.msu.edu/hep/atlas/l1calo/hub

https://web.pa.msu.edu/hep/atlas/l1calo/htm

Ethernet Switch Testing

W. Fisher, MSU

- Base Interface to the GbE Switch on the Other Hub).
- ✓ 2. Verify that all 22 GbE Switch Ports that are used on the Hub card carry GbE traffic OK.
- ✓ 3. Verify that the Hub's Front Panel GbE connection and GbE Magnetics for the ROD are all working OK.
- 4. Verify that the Hub's Front Panel GbE connection and GbE Magnetics for the IPMC are all working OK.

1. Verify that both GbE links to the Hub's FPGA are working correctly (link to the GbE Switch on This Hub and link via the backplane)

GbE Switch Configuration

Hub provides a 16-port GbE switch using three 8port Broadcom BCM53128 chips

- The chips can be interlinked to act as 1, 2 or 3 independent switches.
- Our goal is to choose a single configuration that will satisfy all L1Calo use case needs, while minimizing the total number of external links to be maintained.
 - Maintaining shelf-specific or slot-specific Hub module spares is not a wise choice.

Use case degrees of freedom

- eFEX, jFEX, L1Topo shelves
- DCS/Config and IPMC networks
- Preferences tend towards higher bandwidth, thus 3-switch or 2-switch configurations.

Hub-Module All Ethernet Connections

GbE Switch Configuration

Hub provides a 16-port GbE switch using three 8port Broadcom BCM53128 chips

- The chips can be interlinked to act as 1, 2 or 3 independent switches.
- Our goal is to choose a single configuration that will satisfy all L1Calo use case needs, while minimizing the total number of external links to be maintained.
 - Maintaining shelf-specific or slot-specific Hub module spares is not a wise choice.

Use case degrees of freedom

- eFEX, jFEX, L1Topo shelves
- DCS/Config and IPMC networks
- Preferences tend towards higher bandwidth, thus 3-switch or 2-switch configurations.

Three 1GbE Switch up-links per Hub

Shelf Manager

27-Oct-2017

GbE Switch Configuration

Hub provides a 16-port GbE switch using three 8port Broadcom BCM53128 chips

- The chips can be interlinked to act as 1, 2 or 3 independent switches.
- Our goal is to choose a single configuration that will satisfy all L1Calo use case needs, while minimizing the total number of external links to be maintained.
 - Maintaining shelf-specific or slot-specific Hub module spares is not a wise choice.

Use case degrees of freedom

- eFEX, jFEX, L1Topo shelves
- DCS/Config and IPMC networks
- Preferences tend towards higher bandwidth, thus 3-switch or 2-switch configurations.

Configuration is flexible and can be decided once L1Calo plan is finalized.

Two 1GbE Switch up-links per Hub

Shelf Manager

27-Oct-2017

- We have leveraged our network diagnostic tools * used for our US-ATLAS Tier-2/3 cluster here at MSU
 - In addition to standard ping-based test, include perfSONAR network tools
 - <u>www.perfsonar.net</u>
- Tests performed with 16 linux computers, 12 HTMs and 2 Hubs
 - Hub 1 switch backplane ports to linux running the perfSONAR toolkit
 - Hub 2 switch backplane ports to HTM Zynq 7000 with **IPbus FW**
- There are the primary categories of tests
 - Single port packet drop tests using ping 1)
 - Single port throughput test using perf 2)
 - Concurrent full-mesh one-way ping 3)

Network Connections for Hub Tests (Switch Tests et al.)

Public Network pa.msu.edu

Single port packet loss using adaptive ping

- ping -A -q -c 10000000 -s 512 -l 4 <target>
- Vary packet size to maximum MTU 1500 byte size
- 100M packet test for each run
- Can compare linux nodes and FPGA/IPbus *
 - Linux nodes never drop packets (this is a 540 byte test)
 - FPGA/IPbus packet loss is extremely small until you reach 1500 byte packets: 12/100M dropped on average
 - Hub switch is not in question, so we plan to investigate IPbus FW options to further characterize performance.

+			+		
	to IPh	ous on HTM 1	to linux	PS node	
Date->	12-Oct	23-Oct	26:31-Oct	15-Oct	19-Oct
Hub ->	Hub2 SN6	Hub2 SN6	Hub2 SN7	Hub1 SN7	Hub1 SN7
HTM	sent	sent	sent	sent	sent
Slot	minus	minus	minus	minus	minus
V	received	received	received	received	received
3 4 5 6 7 8 9 10 11 12	0 0 0 2 - 0 1 2 3	1 2 4 1 3 1 0 0 1 2	2 0 1 1 0 1 1 2 2 4	0 0 0 0 - 0 0 0 0	0 0 0 0 0 0 0 0
13	0	1	2	0	0
14	-	83		-	0

W. Fisher, MSU

Hub Production Readiness Review, 12/2018

Hub 2: S/N 7 HTM 3-14: S/N 9,6, 1,7,4,8,5,11,10,12,3.13 FW: IBERT+IPbus rev 07-Sep-2018 HTM03 to 07 tested 26- to 28-Oct-2018 HTM08 to 14 tested 29- to 31-Oct-2018 Plot Rev: 1-Nov-2018

- In addition we test single port throughput using iperf tools
 - Use perfSONAR to run iperf3 and sequentially measure throughput between any two PS nodes • Tests both directions
 - Results on all switch ports are highly uniform and yield expected maximum throughput of >900 Mpbs

iperf Throughput Test Summary

Test Date:		Dec 5,	2018
Hub in Slot	1:	SN08	
each iperf3	transfers:	15 mn	

from	to	Mbps	Mbps	Mbps
PS Node	PS Node	Minimum	Maximum	Average
	+	+		
hubps03	hubps15	910.2	916.5	912.5
hubps04	hubps15	910.2	918.6	912.5
hubps05	hubps15	910.2	916.5	912.4
hubps06	hubps15	922.7	929.0	925.4
hubps07	hubps15	922.7	931.1	925.4
hubps08	hubps15	922.7	933.2	925.4
hubps09	hubps15	929.0	933.2	931.0
hubps10	hubps15	929.0	937.4	931.0
hubps11	hubps15	929.0	937.4	931.0
hubps12	hubps15	929.0	937.4	931.0
hubps13	hubps15	929.0	937.4	931.0
hubps14	hubps15	929.0	935.4	930.8
hubps16	hubps15	924.8	935.3	926.1
hubps17	hubps15	922.7	935.3	925.4
hubps18	hubps15	924.8	943.7	926.2
	+	++	+	
hubps15	hubps03	910.2	920.6	912.9
hubps15	hubps04	910.2	918.6	912.9
hubps15	hubps05	910.2	914.4	912.8
hubps15	hubps06	912.2	935.3	921.2
hubps15	hubps07	922.0	931.1	925.8
hubps15	hubps08	922.7	933.2	925.8
hubps15	hubps09	929.0	939.4	930.7
hubps15	hubps10	929.0	935.3	930.8
hubps15	hubps11	929.0	935.3	930.8
hubps15	hubps12	929.0	933.2	930.8
hubps15	hubps13	929.0	941.6	930.8
hubps15	hubps14	929.0	935.3	930.8
hubps15	hubps16	924.8	931.0	926.3
hubps15	hubps17	924.8	931.2	925.8
hubps15	hubps18	924.8	929.0	926.3
	+			i

Concurrent full-mesh one-way ping

- Use OWAMP (One Way Active Measurement Protocol) to measure packet loss from one perfSONAR node to another
 - Setup concurrent/mesh tests on the 16 perfSONAR nodes • Plus one collector node with MaDDash collect tool
- Each OWAMP test sends 10x 1450-byte (plus header) packets per second
 - Total ~55 Mbps sent and received on each on all Hub switch ports
 - Longest test ran for 5 days with a total of 3 packets dropped

p	erfSONAR t	est results							
S H	ource hubps03 lost info ~					Desti hubps Host i	nation 17 info ~		
1	put (TCP)	Tput (UDP)	Loss (UDP)	Loss (owamp)	Loss (ping)	Retrans 😐	Latency	Latency (ping)	12/02/2018 13:0
Throughout (jpv4)	1.0 800m - 600m - 400m - 200m - 0.0								□ Loss - ipv4 -> 0.00277778% <- 0% lost (0 of 3 □ Latency - i -> -0.18 ms (owar <- 0.01 ms (owar
Packet Loss % (ipv4)	0.00 - 0.00 - 0.00 - 0.00 - 0.00 -								
	800m —		W.	Fisher, MSl	J				l Hub Productior

53 (GMT-5)

Report range

Slow Control & Monitoring

W. Fisher, MSU

Hub Production Readiness Review, 12/2018

- that run to the Hub's FPGA.
- that the ROD's FPGA also appears in this JTAG string.

- power On and Off.

✓ Done on all cards ✓ Done on 1–7 cards

IMPC, Slow Control

1. Verify that the three I2C buffers in the overall Sensor I2C Bus are working and be enabled or disabled via their control lines.

2. Verify that the Front Panel JTAG connector has access to the Hub's FPGA and that when the ROD is installed and powered up

Verify that the two MiniPOD serial control & monitoring I/O buses are working and communicating with the Hub's FPGA.

4. Verify that the IPMC can negotiate via the IPMB Buses with the Shelf Manager and turn On or Off the Hub card appropriately.

5. Verify that the IPMC can detect the front panel handle switch position and correctly follow the protocol to turn the Hob module

12C Monitoring & Multimastering

- operations.
 - Outside debugging, commissioning and bench testing, only the IPMC will master the I2C bus.
- All Hub & ROD components on the I2C bus are able to be accessed & monitored
 - DCDC converters, FPGA sysmon are primary targets.

- We have tested our ability to perform I2C arbitration with the IPMC
 - Successfully able to detect bus busy and data FIFO status on the I2C bus.
 - Hub IPbus/I2C software reliably detects IPMC cycles, with a state machine designed to wait for successful I2C mastering arbitration.
 - O(300k) cycles executed without I2C error in a long test run.

The Hub I2C bus can be isolated from the IPMC I2C bus and we do not require I2C multimastering during "normal" L1Calo

Example read of Hub miniPOD transmitter

FILITFOR LYPE VEITITED TO DE. CLAUS_INDOR
Minipod internal temperature is 32.22 C
The voltage on the 2.5 Vcc power supply is 2.4657 V
The voltage on the 3.3 Vcc power supply is 3.2596 V
The serial number of the current device: trans_mpod is : A17285016
The operating time is 3038.0 hours or 126.583333333 days
Optical power for channel number trans_mpod is: 0.14646524684 dBm or 1034.3
Optical power for channel number trans_mpod is: 0.911039440903 dBm or 1233.
Optical power for channel number trans_mpod is: -0.00130307891732 dBm or 99
Optical power for channel number trans_mpod is: 1.06496870139 dBm or 1277.9
Optical power for channel number trans_mpod is: 0.137217780511 dBm or 1032.
Optical power for channel number trans_mpod is: 1.09646031091 dBm or 1287.2
Optical power for channel number trans_mpod is: 0.152759066819 dBm or 1035.
Optical power for channel number trans_mpod is: 1.0510124455 dBm or 1273.8
Optical power for channel number trans_mpod is: -0.220935723629 dBm or 950.
Optical power for channel number trans_mpod is: 1.3165073809 dBm or 1354.1
Optical power for channel number trans_mpod is: 0.262471814778 dBm or 1062.
Optical power for channel number trans_mpod is: 1.20080134129 dBm or 1318.5
The nominal wavelenght for device trans_mpod is 845.0 nm (\pm 15.015 nm)

*

- Due to limitations in obtaining IPMC software, however, this area has not been fully explored.
- L1Calo uncertainty in IPMC choice has not helped clarify how to proceed in this area.
- We are working with both LAPP and CERN IPMCs, possess sufficient LAPP IPMCs for the production run.

Electrical connections present, no alarm tests yet.	Alarm Signal from the Power Entry Module	>	
Accesses same signals seed on Hub FPGA	Hardware Slot Address from the Backplane Zone 1	>	Me
Operates as expected, hot swap demonstrated.	Front Panel Handle Switch	>	
Start-up and shutdown operations successful.	IPMC_3V3 Management Power from the Power Entry Module	>	

Hardware: IPMC

We have successfully tested all relevant electrical connections to/from the IMPC, and verified their proper operation.

Other Hardware Aspects

W. Fisher, MSU

Miscellaneous / Other

✓ 1. Verify that all 66 Front Panel LEDs are working and are of the correct color.

- ✓ 2. Verify the Physical aspects of this Hub card:
 - a. Dimensions look correct (e.g. none of the brackets are in backwards).
 - b. The board's corners are in good shape.
 - c. The Insertion and Extraction forces feel correct and are smooth.
 - d. The Front Panel Labels are clear and not scratched.
 - e. All of the backplane connectors line up in a straight row and are fully inserted.
 - filter comps).
 - g. MiniPOD and FPGA heat sinks are correctly installed.
 - h. The MiniPODs are fully seated and screwed down. i. The MiniPOD Fiber Optic Ribbon Cables are correctly routed and not blocking air flow.

3. Verify that all 9 ESD ground points are correctly connected so that the card is safe to handle. 4. Verify that the card auto-configures its FPGA from its Flash memory at power up 5. Verify that the ROD can control the open collector output signals from the Hub's Front Panel LEMO Connector. 6. Verify the correct operation of the 4 Power Control signals and the 8 Spare TBD signals between the Hub and ROD cards. 7. Verify the correct fuses are installed.

8. Verify that both Front Panel FPGA output Access Signals are working OK.

f. Nothing is loose or likely to vibrate in the air flow (e.g. the discrete power wires or fiber optic ribbons, or power supply LC

Fiber Management

- The Hub/ROD routes fibers for six MiniPODs through Zone-3
 - The four ROD MiniPOD fiber ribbons cleverly bundle to one MPO, as seen in the picture.
 - The two Hub fiber ribbons are kept separate to simplify cabling in USA15.
 - Rx signals are required. External Tx link can be added in RTM in the future if required without disturbing the Rx optical fibers that bring the TTC signal.

W. Fisher, MSU

Hub Production Readiness Review, 12/2018

- The Hub/ROD routes fibers for six MiniPODs through Zone-3
 - The four ROD MiniPOD fiber ribbons cleverly bundle to one MPO, as seen in the picture.
 - The two Hub fiber ribbons are kept separate to simplify cabling in USA15. • Rx ribbon is required, Tx ribbon can be added if needed in the future.

Fiber Management

W. Fisher, MSU

Front Panel

Front Panel

LEDs for each GbE connection: Each FEX slot, both connections on each Hub, connections between switch chips.

ATCA-required LEDs for IPMC

5 ROD-defined LEDs, 3 Hub "spare" LEDs

Hub power indicators

RJ45 protrusions

LEMO and JTAG/I2C protrusions

[
	0H 0000 3 4 0000 5 6 0000 7 8 0000 9 10 0000 11 12 0000 13 14 0000 TH BA 0000 BC AB 0000 CB HTS 0000 HDS
	○ ATCA 005 ○ ATCA 2 ○ ATCA 3
	HUB MODULE
	© ©
	ATLAS L1CALO
	ROD IPMC
	SW-A6 SW-C6
	SW-B6 SW-B7
	J2 ACCESS

LE5:LE8 LE9:LE12 LE13:LE16 LE17:LE20 LE21:LE24 LE25:LE28 LE29:LE32 LE33:LE36 LE37:LE40 LE41:LE44 LE1 LE2 LE3 LE45:LE48 LE49:LE52 LE53 LE54	
RJ1	
RJ2	
RJ3	

LE4

 $\mathsf{J2}$ and LEMO

Core Firmware Aspects

W. Fisher, MSU

ROD Power Up

- Hub controls ROD power up sequence using a state machine
 - There are currently three states considered
 - ROD Present (pull-down resistor on the ROD)
 - ROD Power Ctrl2 (ROD controlled power status)
 - ROD Power Request (IPbus register option)
 - NB: this is used for Hub testing and can be removed for final FW if desired.
 - There are currently two additional states that can be included as needed
 - ROD Power Ctrl3 (ROD configuration ready)
 - ROD SMB Alert (ROD power supply error)

Signals that are being used by the power up engine

1.a ROD_PRESENT_B_TO_FPGA

This signal is a pull-down resistor on the ROD. When the ROD is NOT present this signal goes HI on the Hub.

1.b ROD_Power_Control_2_FPGA

This is an input to the Hub's FPGA. When HI this signal indicates that all power supplies on the ROD are operating correctly.

ROD_Power_Enable ROD_Power_Enable_B

> These two signal are outputs from the Hub FPGA that through some hardwired logic on the Hub tell the ROD when it may turn ON its power supplies.

1.c ROD power request is controlled by the IPbus register

2. Signals that are not being used by the power up engine

2.a ROD_Power_Control_3_FPGA

This is an input to the Hub's FPGA. When HI this signal indicates that the ROD is Configured and fully ready for normal L1Calo operation.

2.b FPGA_RODs_SMBALERT_B

This is an input to the Hub's FPGA that when LOW indicates a power supply problem on the ROD. During normal operation this signal should always be HI.

- As stated previously, the LHC clock is recovered from the TTC signal provided via FELIX and decoded via the GBT firmware.
 - 120 MHz reference clock generated at MGT quad QPLL
 - All features of the firmware behave as expected
 - Stable, deterministic latency clock recovered and fanned out. 0

https://indico.cern.ch/event/489996/contributions/2291863/attachments/1345764/2028939/GBTTutorial_-_TWEPP2016.pdf

GBT/TTC Clock Recovery

Hub Production Readiness Review, 12/2018

TTC/Combined Data Fanout

- To define the phase of the arrival of the TTC/Combined data, we use the LHC master clock as the reference. This minimizes the variation across the system and provides an easily-to-verify, stable reference.
 - 128 bits of control data are received from the ROD at a 6.4 Gbps line rate • This data is translated and merged with TTC data in the Hub (L1A, ECR, BCR)
 - 128 bits of TTC/Combined data are transmitted from the Hub at a 6.4 Gbps line rate • At the receiver, the data is transferred into a parallel register
 - The 128 bits of the TTC/Combined data are provided to the users at the output of a 128 bit wide D register.
 - The D register is updated on the positive edge of the FPGA's 40.08 MHz clock that is locked to the LHC backplane reference clock.
 - These 128 bits are stable at all times except during the update.

Receiver FPGA requirements

- MGT reference clock to receive the 6.4 Gbps link
- 40.08 MHz clock locked to the LHC backplane reference clock

** The Readout Control and Combined TTC Specification (v0.5) is linked to the indico page.

Extended tests of the Hub PCB have been presented

- - Additional test results are available for those interested.
 - <u>https://web.pa.msu.edu/hep/atlas/l1calo/hub/</u>
 - https://web.pa.msu.edu/hep/atlas/l1calo/htm/

Eight Hub modules have been produced (+1 without an FPGA)

- Six Hub modules have been tested in a full shelf with HTMs, and we plan to characterize the remaining 2 boards currently in the UK when possible.
 - \circ Very high level of uniformity over the prototype run.
 - No residual issues identified in tests thus far.
 - No MGT errors of any kind observed on Hub or ROD.

Next presentation will cover the schedule goals for the Hub build.

Summary

Focus here on core functions of the Hub in the L1Calo system, as related to the hardware design

W. Fisher, MSU

Fiber Management

W. Fisher, MSU

Hub GbE Switch Layout

W. Fisher, MSU

Fex Hub Module : Gigabit Ethernet Switches and Ports

13-Mar-2018

Hub Readout Path

W. Fisher, MSU

FEX Hub Module in Slot 1: High Speed Data Readout

12-Mar-2018