
HUB FW overview

- HUB FW development process split into several separate stages.
- **IPbus**

- \rightarrow implemented and tested (passed) \rightarrow implemented and tested (passed)
- Readout Control (@6.4Gbps)
- Combined TTC/Data (@6.4Gbps) \rightarrow implemented and tested (passed)
- GBT (@4.8Gbps)
- Aurora8b/10b (6.4 Gbps)
- \rightarrow implemented and tested (passed)
- \rightarrow initially implemented and tested on the VU095 Internal loopback tests on the HUB module
- Final step \rightarrow merging process to provide the production firmware (HUB1 and HUB2) •
- Slice Tests in Cambridge and MSU good occasion to validate the firmware •
- Very comprehensive HUB diagnostic firmware includes several stages:
- (majority of these configurations are provided):
- config 1: IBERT (all Quads) @ 6.4 Gbps
- config 2: IBERT (all Quads) @10.24 Gbps
- - config 3: IBERT (all Quads) @ 6.4 Gbps; integrated with the IPbus
- config 4: IBERT (all Quads Quad224) @ 6.4 Gbps; integrated with the IPbus and GBT
- - config 5: IBERT (all Quads) @ 6.4 Gbps; integrated with the IPbus and GBT
- config 6: IBERT (all Quads) @10.24 Gbps; integrated with the IPbus and GBT
- - config 7: IBERT (all Quads) @ 6.4 Gbps; integrated with the GBT, IBERT controlled by IPbus
- config 8: IBERT (all Quads) @10.24 Gbps; integrated with the GBT, IBERT controlled by IPbus

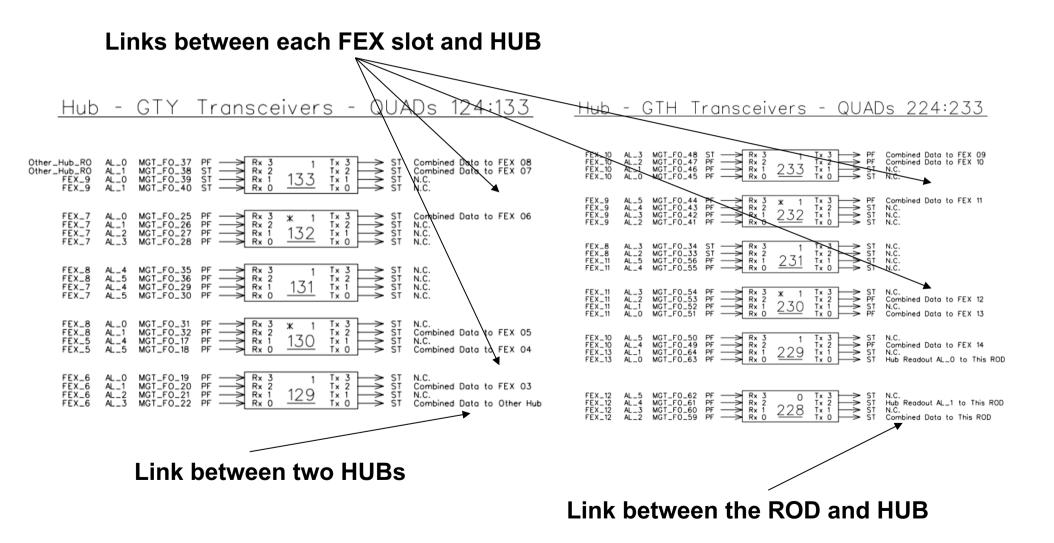
HUB FW diagram

GBT, Combined_TTC/DATA overview

- HUB module is obliged to distribute TTC information throughout the shelf.
- The combined_TTC/DATA bits are defined to provide TTC information as well
- as initialization functions (Aurora). The link is set to run at 6.4Gbps raw rate
- •
- The HUB uses MiniPOD optical receiver to receive TTC signals (GBT) from the FELIX system
- •
- •
- Receive the Reset signal (Aurora Initialization) from the Readout_CTRL stream,
- then merging with the TTC info and distribute it to the appropriate shelf slot
- •
- -
- Several Combined_TTC links within the shelf; each FEX slot (3-14); one between
- each HUB and ROD; links between two HUBs
- •
- Combined_TTC/DATA links on the HUB FPGA is implemented with use of several
- components, including the MGT transceivers (GTH and GTY), control and diagnostic logic

Combined_TTC/DATA Physical Implementation

- The Combined_TTC/Data link on the HUB FPGA is implemented with the use of several components,
- including the MGT transceivers (GTH and GTY), control and the diagnostic logic.
- The Combined_TTC/DATA link is designed to operate at 6.4 Gbps.
- The physical implementation of the Combined_TTC/DATA stream assumes that there are 4 Control Registers on the Hub TX side, and Shadow Registers on the Rx side (Receiver: FEX, ROD and other HUB).
- The transmitter side generates the 128 bit message from 4 Control registers: Word_0, Word_1,
- Word_2, and Word_3. The transmitter side logic is in charge to write control information into these
- Control Registers. The contents of these registers are continuously transmitted to the modules
- (within the shelf) which receives the data into a duplicate set of 4 registers referred to as shadow registers. Anything written into a Control Register at the transmitter side will appear in the corresponding Shadow register at the receiving side within the following LHC clock.
- •
- The least significant byte of Word_0 is reserved for the 8b10b Comma character K28.5.


Combined_TTC/DATA Bit definition

Combined_TTC/DATA bit definitions: The least significant byte of Word_0 is reserved for the 8b10b Comma Character K28.5

word 0		word 1		word 2		word 3	
<u>bit</u>	0XBC = K28.5	bit		bit		<u>bit</u>	
0	0	0	L1ID(0)	0	control channel	0	Link_reset(0)
1	0	1	L1ID	1	control channel	1	Link_reset(1)
~	1	2	L1ID	2	control channel	2	Link_reset(2)
3	1	3	L1ID	3	control channel	3	Link_reset 3
4	1	4	L1ID	4	control channel	4	Link_up(0)
5	1	5	L1ID	5	control channel	5	Link_up(1)
6	0	6	L1ID	6	control channel	6	Link_up(2)
7	1	7	L1ID	7	control channel	7	Link_up(3)
8	version(0)	8	L1ID	8	control channel	8	Link Enable(0)
9	version(0)	9	L1ID	9	control channel	9	Link Enable(1)
10	version(2)	10	L1ID	10	control channel	10	Link Enable(2)
10	version(2)	10	L1ID	10	control channel	10	Link Enable(2)
12	version(5)	11	L1ID	11	control channel	11	ROD XOFF
13		12	L1ID	13	control channel	12	0 (ROD reserved
13		13	L1ID	13	control channel	13	0 (ROD reserved
15	reserved	15	L1ID	15	control channel	15	0 (ROD reserved)
15	leserveu	15	LID	15	control channel	15	U(KOD Teserveu)
16	L1A	16	L1ID	16	control channel	16	0 (ROD reserved)
17	BCR	17	L1ID	17	control channel	17	0 (ROD reserved)
18	ECR	18	L1ID	18	control channel	18	0 (ROD reserved)
19	Privileged Readout	19	L1ID	19	control channel	19	shelf(0)
20	felix backpressure(0)	20	L1ID	20	control channel	20	shelf(1)
21	felix backpressure(1)	21	L1ID	21	control channel	21	shelf (2)
22	felix backpressure(2)	22	L1ID	22	control channel	22	shelf(3)
23	felix_backpressure(3)	23	L1ID(23)	23	control channel	23	CRC (9-bit)
24	faliu hadunaaaura(A)	24		24	control channel	24	
24	felix_backpressure(4)	24	ECRID(0)	24	control channel	24	CRC (9-bit)
	felix_backpressure(5)		ECRID(1)				CRC (9-bit)
26	felix_backpressure(6)	26 27	ECRID(2)	26	control channel	26	CRC (9-bit)
27	felix_backpressure(7)		ECRID(3)		control channel	27	CRC (9-bit)
28	felix_backpressure(8)	28	ECRID(4)	28	control channel	28	CRC (9-bit)
29	felix_backpressure(9)	29	ECRID(5)	29	control channel	29	CRC (9-bit)
30	felix_backpressure(10)	30	ECRID(6)	30	control channel	30	CRC (9-bit)
31	felix_backpressure(11)	31	ECRID(7)	31	control channel	31	CRC (9-bit)

Specification for Readout Control & Combined TTC Serial links in L1Calo (ver.0.5)

Combined_TTC/DATA Link placement

Readout_Control overview

- The HUB module is obliged to receive the Readout Control (Readout_CTRL) information from the ROD via serial link named Readout_CTRL. The HUB module is the only one module within the shelf which gets the Readout Control data from the ROD
- That information is used by the Hub, also fanned out to the rest of the system. The main purpose is to provide resets to all of the data links (Aurora) between the Fex's and the ROD plus HUB module

Readout_Control Physical Implementation

- The Readout_Ctrl link on the HUB module is implemented with the use of MGT Transceiver GTH,
- control and diagnostic logic
- •
- The Readout_Ctrl link is designed to operate at 6.4 Gbps.
- •
- In order to to control message transmission within a single LHC clock period, the length of the message
- is limited to 128 bits
- ٠
 - The HUB Readout Control FW features one receiver (RX). In order to debug the design, the standard
 Xilinx diagnostic components are being used to monitor the data flow (as for example like the ILA and VIO)
- VIO).
- The physical layer is configured with the use of GT wizard
- ٠
- The physical implementation of the Readout_CTRL links assumes that there are Control Registers on
- the Tx ROD side, and Shadow Registers on the Rx HUB side. The transmitter side generates the 128
- bit message from 4 Control registers: Word_0, Word_1, Word_2, and Word_3. The transmitter side
- logic is in charge to write control information into these registers for transmission to the modules
- within the shelf. These registers are continuously transmitted to the HUB which receives the data into
- a duplicate set of 4 registers referred to as Shadow Registers. Anything written into a Control Register
- at the transmitter side will appear in the corresponding Shadow register at the receiving side within the
- following LHC clock.
- •
- 8

Control and Shadow Register

There are Control Registers on the TX side and Shadow Register on the RX side

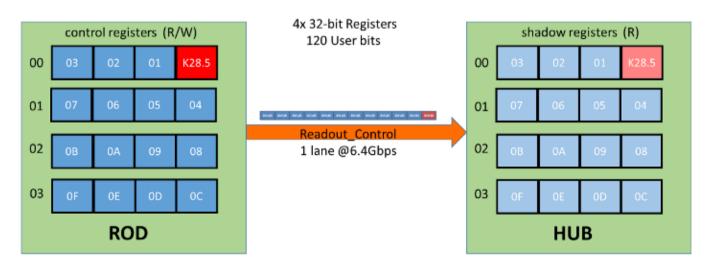


Figure 1: Control and Shadow Registers

Readout_Control Bit definition

- The bits within the Readout Control words are primarily defined to provide initialization functions for
- all of the FEX data links

und 0.		amod 1		and 2		und 3	
<u>hit</u>	OX8C = K285	<u>hit</u>		<u>hit</u>		hit.	
0	0	0	slot 3 link eset	0	slot 3channel up	0	slot 3LinkEnable
1	0	1	slot 4 link reset (0)	1	slot4channel.up(0)	1	slot4LinkEnable
2	1	2	slot5 link reset (0)	2	slotS channel up (0)	2	slot5LinkEnable
3	1	3	slot 6link reset	3	slot 6channel up	3	slot 6LinkEnable
4	1	4	slot7 link reset	4	slot7 channel up	4	slot7LinkEnable
5	1	5	slot8 link reset (0)	5	slotSchannel up(0)	5	slot8LinkEnable
6	0	6	slot 9 link reset (C)	6	slot9 channel up (0)	6	slot9 LinkEnable
7	1	7	slot 10 link reset	7	slot10channel up	7	slot 10 Link Enable
8	version0	8	slot 11 link reset	8	slot11 channel up	8	slot 11 Link Enable
9	version1	9	slot12linkreset (0)	9	slot12channel.up(0)	9	slot 12 Link Enable
10	version 2	10	slot13linkreset (0)	10	slot13channel.up(0)	10	slot 13 Link Enable
11	version 3	11	slot 34 link reset	11	slot14 channel up	11	slot 14 Link Enable
12	0	12	0	12	0	12	0
13	0	13	slot 4 link reset (1)	13	slot4channel up (1)	13	0
14	ROD XOFF (to all slots)	14	slot 4 link reset (2)	14	slot4channel up (2)	14	0
15	Global Link Reset	15	slot 4 link reset (3)	15	slot4channel.up(3)	15	0
16	0	16	slot5 link reset (1)	16	slotS channel up (1)	16	0
17	0	17	slot 5 link reset (2)	17	slot5 channel up (2)	17	0
18	0	18	slot5 link reset (3)	18	slot5 channel up (3)	18	0
19	0	19	slot8 link reset (1)	19	slot8 channel up (1)	19	shelf(0)
Ð	0	ZD	slot8 link reset (2)	20	slot8 channel up (2)	D	shelf(1)
21	0	21	slot8 link reset (3)	21	slot8 channel up (3)	21	shelf (2)
22	0	22	slot9 link reset (1)	22	slot9 channel up (1)		shelf(3)
23	0	23	slot9 link reset (2)	23	slot9 channel up (2)	23	CRC (9- bit)
24	0	24	slot9 link reset (3)	24	slot9 channel up (3)	24	CRC (9- bit)
z	0	Z	slot12linkreset (1)	Z	slot12channel up (1)	25	CRC (9- bit)
26	0	26	slot12linkreset (2)	26	slot12channel up (2)	26	CRC (9- bit)
27	0	27	slot12link <i>r</i> eset (3)	27	slot12channel up (3	27	CRC (9- bit)
洒	0	25	slot13link <i>r</i> eset (1)	26	slot13channel up (1)	28	CRC (9- bit)
Э	0	Э	slot13linkreset (2)	29	slot13channel up (2)	Э	CRC (9- bit)
30	0	30	slot13link <i>r</i> eset (3)	30	slot13channel up (3	30	CRC (9- bit)
31	0	31	0	31	0	31	CRC (9- bit)

Specification for Readout Control & Combined TTC Serial links in L1Calo (ver.0.5)