CERN/EP/ATE/DQ ROD Busy

"ATLASROD Busy Module"
Technical description and users

manual.

The ROD Busy Modules gather and monitor the busy state of all the ATLAS Experiment
Read Out Drivers. The sumof all Busy signalsis sent to the Central Trigger Processor in
order to control the experiment level onetrigger rate.

RAFT DRAFT DRAF]

o)

Per Gallnd CERN/EP/ATE/dq
per.gallno@cern.ch
August 13, 2001

CERN/EP/ATE/DQ ROD Busy

CERN/EP/ATE/DQ ROD Busy

SPECIFICATIONS......co ettt b bbb a b et b e e st b e et e b e b et b e n et 5
GENERAL DESCRIPTIONoeiitiiiieiiriiietisteie sttt ss sttt s et s et sb st s be e esesne s s 8
INTRODUGCTION ..ottt sttt b st b et sb s st b e st b e s s s be e s e 8
ATLAS Experiment Dead Time CONLIolcocerieiiierinesene e 8
SYSTEM DESCRIPTION ..ottt sttt sbe st e sre e s sreseesesreseeresseeenens 8
Read-Out Driver BuSy HanNdliNgcoooiiiiineeieee e e 8
THE ATLAS ROD-BUSY MODULE DESCRIPTION.......cccitiiiiiieiserieesieseeresresesie e 9
S F S Tol @ o = = [Lo] o IO SRR 9
Manual OpPeration MOOEccci i bbb 10
Circular Buffer Operation MOGE........c..ooiiiiereeiieiee e 10
AditioNal FEAIUIESceiieeeieeeeeeee ettt bbb b se e e 11
Picture of the ROD BUSY MOQUIE.cciiiiiieiie sttt 12
DESIGN DESCRIPTION ...ttt sttt sttt sre st re e ne s 13
Input signal receivers and teSt AriVEN'Scoeieeierierere e 13
OULPUL SIONAl OFIVEIS ...ttt ettt s e b s ae e e e e enae e 13
Busy Input masking and SUMMING..........ceereeieriereresese e 13
(DU = Lo g W @Xo 1N o111 oo [P UTS R 13
Duration Count Buffering and Read-OUL..............cccooiiiireriiieee e 13
Duration Counter/BUffer SEOUENCESoeeeirieriire et 14
Global Busy Time-Out Service REQUESLEYcooiirereeireeieree et 14
VMEDUS Data BUS INEITACE.......c.coireeiie e 14
VMEDUS INLEITUPEL GENEIALON........eeiiie ettt e 14
Module Configuration EEPROMccoiiiiiiiiiiecieneeee e e e 15
ISP Module Firmware programiming..........c.ceeeeeeereeseseesreseseeseessesseseessesessesssssesseses 15
System Clock generation and distribDution ... 15
REFERENCE LITERATURE ..ottt 16
USER'S GUIDE ..ottt b e bttt e bt n e st n e st nn s s 17
FRONT PANEL FUNCTIONS. ..ottt 17
INQICAEON LED'S ..ottt st s sr e s nnennenen 17
BUSY TNPULS ...ttt 17
BUSY OULPULS......cciiiiiiiiiiieciiitesie st st sttt st sbeessbe s st e ssaessnbeessnessnseensaeenens 17
INSTALLATION PROCEDURE..........ccoiiieititieeirieeee et 19
IMPORTANT WARNINGSccoe ittt snesnenens 19
Printed Circuit BOard Lay-0UL..........cccceiiiiriiieiieseesie et eee e ese e sae e e sre e e s 19
Selecting VME hase aareSs.......c.oiviiieiicece ettt sttt ens 20
Programming the Configuration EEPROMcccccooieiiiiinieceesee e 20
INtErcoNNECiNG CADIES......ccue et ettt s saees 20
TEST PROCEDURES.........coooi ittt s s r e enenre e 21
(D0 [gTo s o] o 17 o = TS 21
Module acceptanCe test ProCEAUIES.........ccueieeiiere et 22
PROGRAMMING MODELc.cititiiitiiieieresiee st 23
Register Off SEL MEP.......cceeieeciee et 23
Register bit MaPPING.......c.eieeeieieeeee et s e e e s reesreeneennesnes 23
Configuration EEPROM MEMOIY MEP.......c.ceiuieiueireesieesieesiesieesessseesseesseessessssssessesssenns 26
HARDWARE MANUAL ..ottt n e b e nn e nn e 27
PART S LIST ittt ettt b e b e bRt eb e Rt b e r et b r e e b n s 27
CIRCUIT DIAGRAMS ..ottt ettt r e b e sr e b r e nennennene 29
VHDL SOURCE CODES.cocotiiiitiitieeenieesre st nenen 30
[T oI =10 IS 0 (o (0 =Y o 30
quad_CNt_SEFUCEVNAL ... st enre e 32
fifO_SEQUENCEI.VNG ... 34
(0= oo o N 1 10 TN/ 0 o OSSR 38
sreq timer_StrUCLVNAL ... 39
£ V2001 Y/ 1 o PO 43
ISP FIRMWARE PROGRAMMING ...ttt 49
JEDEC Chain Chip OFQESeeceieeeeeeeee ettt st e s pe s 49
ANNEX A ettt et E e et R e s e a Rt ne R e Rt AR R e R e e R e R e ne R e Rt ne R e R e R e R nneneerennenea 50
COMPONENT DATA SHEETS.....cc oot 50

CERN/EP/ATE/DQ ROD Busy

CERN/EP/ATE/DQ ROD Busy

SPECIFICATIONS

Front panel input signal levels

TRUEisOV and FALSE is+ 0.8 V. Theinput is equipped
with a50Q resistive Thévenin network resulting in anidle
input voltage of 0.8 V.

Busy and Busy Carry-In Inputs

16 coaxia connectors (LEMO® #00). Any Busy input may be
used as a Busy Carry-In input from another ROD Busy module.

Front panel output signal levels

TRUEisOV and FALSE is+ 5.0 V. Thedrivers are of FAST-
TTL open-collector type, able to sink up to 64 mA.

Busy Out Outputs

4 coaxial connectors (LEMO® #00), two are used to drive
following ROD Busy modules or the Central Trigger Processor
Busy input and the other two for monitoring purposes.

Input Test Register
A 16 bit VME register feeding the Busy Inputs via O/C drivers.

Input Monitoring

All 16 inputs may be monitored by reading the
Busy State Register.

Input Enable

Each Busy Input can be enabled/disabled by setting bits in the
Busy Masking Register.

Busy Duration M onitor

Max duration: 2'°* 1/10* 10° = 6.55 ms,
(i.e. 16 bit countersincremented at 10 MHZz)
Counter outputs feed Busy Duration Buffer.
Counter reset viaa global reset command.
Counters not affected by the state of the Input
Masking Register bits.

Busy Duration Buffers

By FIFO 16x512 written every = 6.5 ms.
FIFO s arefull after = 3.3 sec.
FIFO's are reset by global command.

CERN/EP/ATE/DQ ROD Busy

Each of the 16 FIFO's are readable from VME.

» Software Busy Generation
A bit in aregister isimplemented in order to generate a global
test busy under program control.

e Busy Out Generation
The sum of al enabled Busy Inputs.

e Busy Out Time-Out

An interrupt request may be generated when the
Busy Out has been asserted longer than a
programmabl e time-out.

e Busy Out Monitoring

State reflected by abit in the Status Register.

* Internal clock generator frequency
10.00 MHz, 100 ppm

* Back plane protocal
VME Slave: A24,A16/D16 (only VME connector P1 used)

e AddressModifiers
Standard: 39, 3A, 3D, 3E
Short : 29, 2D

e VME Interrupter

ROAK type (release on acknowledge),
programmable IRQ priority level (1to 7),
programmable STATUS I/D D08(odd)

» Configuration ROM
EEPROM to store manufacturer/board/revision 1D

» Power Requirements

12A@+5V

16mA@+12V

10mA @-12V
e ModulePCB size

233.4* 160.0 mm (height * width)

e Front pand size
261.9* 20.0 mm (6U * 4TE)

CERN/EP/ATE/DQ ROD Busy

CERN/EP/ATE/DQ ROD Busy

GENERAL DESCRIPTION

INTRODUCTION

ATLAS Experiment Dead Time Control

The dataflow in the ATLAS sub-detector acquisition systems
needs to be controlled in order to prevent information lossesin
the case the data buffers in the Front End, Read Out Drivers
(ROD) or Read Out Buffers (ROB) get saturated.

Three different mechanisms to control the data flow will be
implemented:

By Back pressure using a XON/X OFF protocol on the read-out
links between the ROD's and the ROB's.

By Throttling to slow down the level one (LVL1) trigger rate
from the CTP when the ROD data buffers are nearly filled.

By Prevention introducing a constant dead-time combined with
one set by a pre-programmed agorithm in the CTP in order to
avoid buffer overflow in the Front End. The constant dead-time
is chosen to be 4 BC's after each LVL1 and the algorithm,
called "leaky bucket", limits the number of LVL1to 8inany
window of 80us.

The introduction of a dead-time by athrottling mechanismis
based on a ROD busy signaling scheme informing the Central
Trigger Processor about the state of the ROD data buffers as
each ROD is ableto produce a ROD-Busy signal when its
buffer isfilled up. The busy signals from each ROD are
summed and monitored in ROD-Busy Modules connected in a
tree structure to finally produce aveto signal for the CTP. The
ROD Busy signaling scheme and associated hardware will be
described in this context.

SYSTEM DESCRIPTION

Read-Out Driver Busy Handling

The Read-Out Drivers (ROD), of which there will be several
hundred in the ATLAS experiment, buffer, process and format
the data from the Front End el ectronics before being sent to the
Read-Out Buffers (ROB).

CERN/EP/ATE/DQ

ROD Busy

Basic Operation

If the data buffersin the ROD are close to get filled up the
Level-1 trigger rate must be reduced. A way of achieving thisis
to send a busy flag to the CTP to introduce a dead-time.

From ROD's in Sub-detector-1
¢15

ROD

Busy
Sub-system-x —p» EAL;(?JE

Busy ROD
Sub-detector-2 »| Busy p CTP
Busy > Module Veto
Sub-detector-3

ROD

Busy

Sub-system-y —P» BUSY
Module

?15

From ROD's in Sub-detector-n

Figure 1. The ROD -Busy tree structure

Each ROD produces aBusy signal, which is sent to aROD-
Busy modul e together with Busy signals from other ROD'sin
the same sub-system. The ROD-Busy module sums the
incoming Busy signals to produce one Busy signal of the
particular sub-system. In turn the sub-system Busy signal is
summed with other sub-system Busy signals in another Busy
module to form a sub-detector Busy signal. Finally all sub-
detector Busy signals are gathered to form a Busy input to the
CTP.

THE ATLASROD-BUSY MODULE
DESCRIPTION

* The ROD-Busy module has been designed to perform the
following functionality:

» Collect and make alogical OR of up to 16 Busy input
signals.

* Monitor the state of any input Busy signal.

» Mask off any input Busy signal inthe case aROD is
generating afalse Busy state.

CERN/EP/ATE/DQ ROD Busy

Measure the integrated duration any Busy input is asserted
for agiven time period.

Store a history of the integrated Busy duration for each
input.

Generate an interrupt if any Busy input is asserted for
longer than a pre-set time limit.

Generate a Busy output serving as an input for a subsequent
ROD-Busy module in the tree structure or as a veto for the

CTP.
N
Test Driver Test Register |«¢—]
P| Monitor Latch
10 MHz clock Sequencer
1
(Oa 16 bit counter FIFO ®
2
w
£2 v s
>0~ 16 bit counter FIFO >
g ;
1 |
|
I |
16 | v
0 16 bit counter FIFO
—>
Mask register [«
~
5
op —0O O
P o |07
@
A 4
VME IRQ-gen

Figure 2. ROD -Busy module block diagram

Manual Operation Mode

In this mode of operation are the resetting and enabling of the
counters, as well as resetting, writing and reading of the FIFO
buffers done entirely under program control. The FIFO empty
and full status flags for each FIFO are available to the VMEDbus.

Circular Buffer Operation Mode

In this mode of operation isthe transfer of data from the
counters to the FIFO controlled by a timed sequencer. Bits may
be set in aregister in order to alow acircular buffer operation,
i.e. aword isread out from the FIFO for each word written
when the FIFO full flag is present. The maximum time between

10

CERN/EP/ATE/DQ

ROD Busy

Additional features

two consecutive data transfers from counter to FIFO is 6.55 ms.
Thistime may be adjusted in a 16 bit VME register.

* Eachinput path may be tested from bitsin aVME test
register.

» A status bit reflects the state of the Busy Out.

e A bit may be set in acontrol register in order to turnon a
global Busy signal on all Busy Outputs.

* TheBusy Time-Out service requester may be controlled by
software functions, i.e. enable, disable, set and clear of the
service request.

 TheVMEbusinterrupter may be tested with a software
function.

* Themodule may be globally reset by a software function.

11

CERN/EP/ATE/DQ ROD Busy

Picture of the ROD Busy Module

12

CERN/EP/ATE/DQ

ROD Busy

DESIGN DESCRIPTION

Input signal receiversand test drivers

The inputs are terminated with a Thévenin network resulting in
a50Q resistive input impedance and calculated to givea+ 0.8
V idlevoltage. A Busy TRUE input correspondsto a0V level
and aBusy FALSE toa+ 0.8V level. Theinput voltage
threshold is set to + 0.4 V and the ultra fast input comparators
have an internal hysteresis circuit producing clean input signals
even when receiving data over long lines. All inputs may be
monitored by reading a 16 bit input status VME register. Each
input may be tested by being pulled down by an internal open-
collector driver connected in turn to a 16 bit VME test register.

Output signal drivers

The four Busy Out outputs are driven by FAST TTL open-

collector drivers. The outputs have the following characteristics

and usage:

0. Pulledupto+ 5V by 10 kQ and should be used to drive a
following Busy Input or the CTP Busy Input.

1. SameasO.

2. Pulledupto+ 5V by 510 Q and should be used for
monitoring purposes, i.e. oscilloscope etc.

3. Sameas?2.

Busy Input masking and summing

Duration Counting

The cleaned up input signals drive the Busy Summing circuit
and the Busy Duration counters. The input signalsto the
Summing circuit may be masked off in order to isolate faulty
ROD units. The Summing circuit produces a global Busy signa
which isfed to the four Busy Out outputs. A control bit may be
set to produce a global Busy Out for system test purposes. This
block isimplemented in a FPGA named ip_reg_structure.

The 16 bit duration counters increment at a speed of 10 MHz as
long as there are Busy In signals on the inputs. There are global
counter enable and reset functions generated by either accessing
VME control bits or by the Buffer Sequencer. The sixteen
counters are implemented in four FPGA's named
guad_count_struct.

Duration Count Buffering and Read-Out

The 512 word deep FIFO's buffer the Duration Counter data
until read out by the VMEbus. There are global FIFO write

13

CERN/EP/ATE/DQ ROD Busy

cycle and reset functions generated by either accessing VME
control bits or by the Buffer Sequencer. The FIFO read cycles
are either done by the VMEDbus or by the Buffer Sequencer.
Control bits enable the FIFO's to be configured as circular
buffer, i.e. they maintain always the history of the 512 last
entered Duration Count figures. If not configured as circular
buffers the FIFO's only will contain the first 512 entered
Duration Count figures.

Duration Counter/Buffer Sequencer

The sequencer, when enabled, handles the control of the
Duration counters and the FIFO's. A 16 bit down counter with a
VME programmable shadow register, clocked by the 10 MHz
clock, isused to set the rate for transferring the duration counts
to the FIFO's. This block isimplemented in a FPGA named
fifo_sequencer.

Global Busy Time-Out Service Requester

The Time-Out circuit monitors the duration of the global busy
signal and generates a service request if acertain timelimitis
reached. Two 16 bit counters, magnitude comparators and

VME programmabl e registers are used for this monitoring
circuitry. An Interval counter/comparator/register circuit sets
the frequency when the two counters are reset. The Limit
counter/comparator/register circuit, where the counter
increments during the Busy is true, generates a service request
if the preprogrammed level is attained before being reset by the
Interval circuit. Both counters are incremented at 10 MHz. The
Time-Out service request may be programmed to trigger a
VMEDbus interrupt. This block isimplemented in a FPGA
named sreq_timer_struct.

VMEbus Data Bus I nterface

The VME bus dlave interfaceis of conventional type and
accepts only 16 bit word data cycles (D16). The addressing can
either be standard or short (A24 or A16). Address pipelining
and address only cycles are accepted. Four hexa-decimal
switches are used for setting the modul€'s base address. This
block isimplemented in a FPGA named vme _if.

VMEbus Interrupt generator

An VMEbus interrupt can be generated when a Time-Out
service request occurs. The interrupt generator is controlled by
acontrol register where the VME Interrupt Request level is
programmed and the interrupter is enabled. Another register
contains the Status/ID information in an 8 bit format (D<7..0>).
Thisblock is also implemented in the FPGA named vme if.

14

CERN/EP/ATE/DQ ROD Busy

Module Configuration EEPROM

Manufacturer identification, module identification and serial
number, as well as module revision number should be stored in
this non-volatile memory chip. There are spare locations for
storing supplementary information. A strap must be installed in
order to program this memory chip.

| SP M odule Firmwar e programming

All ALTERAD FPGA chips, except for the VMEbus interface
chip, are programmed with an In-System Programming scheme,
using a" Byte-Blaster" adapter connected to a PC, where the
ALTERA MAX-PLUSO programming software isinstalled.

System Clock generation and distribution

Aninterna 10 MHz system clock generator is used and a clock
driver fan-out chip is used to drive the seven impedance
matched clock lines, each terminated with a series RC network.

15

CERN/EP/ATE/DQ

ROD Busy

REFERENCE LITERATURE

* ATLASLevel-1 TDR Chapter 20
http://atlasinfo.cern.ch/Atlas GROUPS/ DA QTRIG/TDR/tdr
html

* R. Spiwoks: "Dead-time Generation in the Level-1 Central
Trigger Processor”, ATLAS Internal Note

* P.GalInd:"The ATLAS ROD Busy Module" ATLAS ROD
Workshop, University of Geneva, Nov. 1998
http://mclaren.home.cern.ch/mclaren/atlas/conferences/ RO
D/programme.htm

 ALTERAQO IN-System Programmability Handbook

16

CERN/EP/ATE/DQ ROD Busy

USER'S GUIDE

FRONT PANEL FUNCTIONS

Indicator LED's

The six front panel indicator LED's show the state or activity of
afunction:

* VME - The module respondsto aVME access
* COUNT - The duration counters are enabled

e ISP - In-System Programming is active

» SPARE - Datatransfer from countersto FIFO's
« BUSY - BUSY Outisactive

e TIMEOUT - Thereisaservice request present

BUSY Inputs

16 Busy inputs where input O corresponds to D<0> and input
15 to D<15>in the VME data word. (NB on the prototype
corresponds input 14 to D<0> and input 1 to D<15>)

BUSY Outputs

Use outputs 0 and 1 to drive following BUSY modules or the
CTP and outputs 2 and 3 to drive external equipment or
instruments.

17

CERN/EP/ATE/DQ

ROD Busy

ATLAS
ROD Busy

BUSY INTTL

loYo)
lofo
[ofo
[oYo
lofo
[ofo
lofo
o]0

QO
QO

EP
680-XXX-1

o| |

o|_|

18

CERN/EP/ATE/DQ

ROD Busy

IN

STALLATION PROCEDURE

IMPORTANT WARNINGS

1.

2.

4.

The VME crate must be powered down before inserting or
extracting the ROD BUSY module.

The module must be thoroughly pushed into the VME
crate and secured with the top and bottom fixing screws,
in order to assure proper operation.

Some components on the printed circuit board are
sensitive to electro-static discharges. To avoid damage,
minimize handling and take appropriate precautions
against static discharges.

Any modification to the pre-set adjustments or the
firmware of the module must only be carried out by a
specialist in a laboratory environment.

Printed Circuit Board Lay-out

o

=1L .
=@ .
€.

Figure 3. Board Lay-Out

19

CERN/EP/ATE/DQ ROD Busy

Selecting VME base address

The module VME base address is selected by the hexa-decimal
switches SW<1..4> and correspond to the following VME
address bits:

SW1 23.20
SW2 19.16
SW3 15.12
SW4 11..08

Programming the Configuration EEPROM

The non-volatile memory chip for storing module identification
data can only be programmed when strap ST2 isinstalled. After
each write access to this EEPROM await cycle of at least 5 ms
must be introduced.

I nter connecting cables

Cables between different equipment in the ROD BUSY tree
structure must not exceed 100 m in order to assure proper
operation. Low loss high quality 50Q coaxial cables are
recommended to be used, like the SCEM 04.69.11.XXX.X or
the SCEM 04.61.11.145.5

20

CERN/EP/ATE/DQ

ROD Busy

TEST PROCEDURES

Diagnostics Headers

TESTPAD J2

There are two Test Headers J2 and J4 mounted on the printed circuit
board to be used for test and debugging purposes. The test headers fit
the Hewlett Packard 100 kQ Termination Adapter (part no. 01650-
90920). A suitable Logic State Analyser isthe HP 16500 series, for

which anumber of acquisition set-ups already exist.

Counter/FIFO Sequencer related signals

SIGNAL-NAME PIN POD
NC 1

NC 2

CLK 10 MHz 3 CLK
CLK 10 MHz 4 D15
from test point (spare pin) 5 D14
from test point (spare pin) 6 D13
from test point (spare pin) 7 D12
from test point (spare pin) 8 D11
NC 9 D10
NC 10 D09
RST L 11 D08
FIFFFO_L 12 D07
FIFEFO_L 13 D06
FIFRENO_L 14 D05
FIFOEO_L 15 D04
FIFWENO_L 16 D03
FIFRST_L 17 D02
CNTEN_L 18 D01
CNTRST_L 19 D00
GND 20 GND

21

CERN/EP/ATE/DQ

ROD Busy

TESTPAD J4

Counter/FIFO Sequencer related signals

SIGNAL-NAME PIN POD
NC 1

NC 2

CLK 10 MHz 3 CLK
CLK 10 MHz 4 D15
from test point (spare pin) 5 D14
from test point (spare pin) 6 D13
IACKOUT_L 7 D12
IACKIN_L 8 D11
IACK_L 9 D10
SREQ_L 10 D09
HIADDR_L 11 D08
LOADDR_L 12 D07
DTACK_L 13 D06
WR_L 14 D05
DSO_L 15 D04
AS_L 16 D03
SVAR_2 17 D02
SVAR_1 18 D01
SVAR_O 19 D00
GND 20 GND

M odule acceptance test procedures

To be determined. A test software exist for the functional

debugging and testing of the module.

22

CERN/EP/ATE/DQ ROD Busy

PROGRAMMING MODEL

Register offset map

Addr. offset Register R/W Access Remarks
EE 1110-1110 FIFEF R W 16 FIFO empty flags
EC 1110-1100 FIFFF R W 16 FIFO full flags
EA 1110-1010 SEQREG R/W W 16 Sequencer transfer interval register
E8 1110-1000 FIFRCR R/W W 16 FIFO read control register
E6 1110-0110 FIFWCR R/W W 2 Counter and FIFO write control

register
E4 1110-0100 FIFWEN W W - Transfer all counters to FIFO's
E2 1110-0010 FIFRST w W - Reset all FIFO's ﬁ
EO 1110-0000 CNTRST w W - Reset all counters 2
DE 1101-1110 FIFO-READ-15 R W 16 Busy duration FIFO 15 Lg
DC 1101-1100 FIFO-READ-14 R W 16 Busy duration FIFO 14 8
DA 1101-1010 FIFO-READ-13 R W 16 Busy duration FIFO 13 n
D8 1101-1000 FIFO-READ-12 R W 16 Busy duration FIFO 12 8
D6 1101-0110 FIFO-READ-11 R W 16 Busy duration FIFO 11 o
D4 1101-0100 FIFO-READ-10 R W 16 Busy duration FIFO 10 ;
D2 1101-0010 FIFO-READ-9 R W 16 Busy duration FIFO 9 le)
DO 1101-0000 FIFO-READ-8 R W 16 Busy duration FIFO 8 tLT.
CE 1100-1110 FIFO-READ-7 R W 16 Busy duration FIFO 7
CC 1100-1100 FIFO-READ-6 R W 16 Busy duration FIFO 6
CA 1100-1010 FIFO-READ-5 R W 16 Busy duration FIFO 5
C8 1100-1000 FIFO-READ-4 R W 16 Busy duration FIFO 4
C6 1100-0110 FIFO-READ-3 R W 16 Busy duration FIFO 3
C4 1100-0100 FIFO-READ-2 R W 16 Busy duration FIFO 2
C2 1100-0010 FIFO-READ-1 R W 16 Busy duration FIFO 1
C0 1100-0000 FIFO-READ-0 R W 16 Busy duration FIFO 0
9E 1001-1110
9C 1001-1100 a
9A 1001-1010 BUSYMASK R/IW W 16 SET/CLR Busy mask =
98 1001-1000 BUSYSTATE R/W W 16 Read i/p busy lines / Write test bits
96 1001-0110 IVALREG R/W W 16 Interval Count Register
94 1001-0100 LIMREG R/W W 16 Limit Count Register 8
92 1001-0010 SREQSETCLR W W2 Service Request Set/Clear Functions %
90 1001-0000 SREQCSR R/W W4 Busy/Service Requester CSR
8E 1000-1110
8C 1000-1100
8A 1000-1010
88 1000-1000
86 1000-0110 INTID R/W W 16 VME Interrupter Status/ID register
84 1000-0100 INTCSR R/W W 16 VME Interrupter CSR UEJ
82 1000-0010 SWIRQ W W - VME Interrupt by soft function >
80 1000-0000 SWRST W W - Reset module / data-less function
00 0000-0000 Config. EEPROM R/(W) W 16 LSBytes in every Long Word. See

Specs.

Register bit mapping
VM Ebus I nterrupter

SWRST - Software Reset Function (offset $82):

Writing any data to this address will cause the entire module to
bereset toitsinitia state.

SWIRQ - Software Interrupt Function (offset $84):

23

CERN/EP/ATE/DQ ROD Busy

Writing any datato this address will cause a VMEDbus interrupt
to be generated depending on the settings of the Interrupter
Control Register.

INTID - Status | D Register (offset $86):

Databits D7..DO0 have read/write access and represent the
Status ID or Interrupt Vector Number. Data bits D15..D8 are
unused.

INTCSR - Interrupter Control Register (offset $84):

2 (0w) | 10w | 0 (rw)
Interrupt Request Level
IRQ[7..1]

Bit
Usage

3 (r/w)
IRQ enable
if 'l

Data bits D15..D4 are unused.

NB It must be avoided to use the non-existing IRQ[0] as this,
with the present implementation, will cause the interrupt
generator to hang. A software reset will bring the state machine
back toinitial state.

Service Requester and Timer

SREQCSR - Service Requester Control Register (offset $90):

Bit

3 (1)

2 (riw)

1 (riw)

0 (n)

Usage

SREQ
activeif '1'

SREQ
enable if 1’

SW Busy
setif '1'

Busy status
activeif '1'

Data bits D15..D4 are unused.

SREQSETCLR - Service Request Set/Clear Functions (offset $92):

Bit 1w | 0w
Usage Set SREQ if "2"
Clear SREQiif "1"
NOPif "3" or "0"

Data bits D15..D2 are unused.
LIMREG - Limit Count Register (offset $94):

Data bits D15..D0 have read /write access. This register
contains the limit number for clock pulses counted during the
integrated assertion time of the summed busy signals. Reaching
the limit count before being reset by the Interval Counter circuit
causes the generation of a SREQ), if the counter is enabled by
the SREQ enable bit.

IVALREG - Interval Count Register (offset $96):

24

CERN/EP/ATE/DQ ROD Busy

Data bits D15..D0 have read /write access. This register
contains the number at which point areset is generated to the
Limit Counter. The associated counter is incremented by the
claock and enabled by the SREQ enable bit.

Input, Mask and Test Reqgisters

BUSYSTATE - Busy State and Test Register (offset $98):

Databits D15..D0 have read /write access. Reading the register
show the immediate state of the Busy [15..0] inputs before
masking. Reading a'1' mean "Busy asserted”. However, writing
ones to this register causes the Test outputs to drive the Busy
inputs. The Busy inputs and the Test outputs are connected in a
"wired OR" fashion.

BUSYMASK - Busy Masking Register (offset $9A):

Databits D15..D0 have read /write access. Setting bitsto '1'in
this register enable the Busy inputs to be summed.

Counter and FIFO Sequencer

CNTRST - Counter Reset Function (offset $EO):

Writing any data to this address will cause all the countersto be
reset to zero, if FIFWCR(1) ='0..

FIFRST - FIFO Reset Function (offset $E2):

Writing any datato this address will cause al the FIFO pointers
to be reset in any mode of operation.

FIFWEN - Transfer Data Counter_2 FIFO Function (offset $E4):

Writing any datato this address will cause the contents of all
counter to be transferred to the FIFO's, if FIFWCR(1) ='0'.

FIFWCR - Counter/FIFO Write Control Register (offset $E6):

Bit 1 0 Usage
Value | (r'w) | (rlw)
0 0 0 Sequencer + Counters disabled, CNTRST + FIFRST + FIFWEN enabled
1 0 1 Sequencer disabled, Counters + CNTRST + FIFRST + FIFWEN enabled (Manual op.)
2 1 0 Sequencer idle, Counters + CNTRST + FIFWEN disabled, FIFRST enabled
3 1 1 Sequencer + Counters + FIFRST enabled, CNTRST + FIFWEN disabled (Autom. op.)

FIFRCR - FIFO Read Control Register (offset $E8):

25

CERN/EP/ATE/DQ

ROD Busy

Data bits D15..D0 have read /write access. When abit D(n) is
set to '1' the sequencer will read the first location in the FIFO(n)
if the full flag is present. When the bit D(n) is set to 'O’ only the
VME will be able to read the FIFO(n) at a corresponding
address offset. (see memory map)

SEQREG - Sequencer Transfer Interval Register (offset $SEA):

Data bits D15..D0 have read /write access. Thisis a shadow
register to adown counter. When the count reaches zero the
contents of the Busy Duration Counters are transferred to the
FIFO's. The counter is decremented by the clock.

FIFFF - FIFO Full Flag Register (offset $EC):

Databits D15..D0 have read only access. Bits reflecting the
state of the FIFO full flags. Reading a'1' means corresponding
FIFO isfull.

FIFEF - FIFO Empty Flag Register (offset $EE):

Databits D15..D0 have read only access. Bits reflecting the

state of the FIFO empty flags. Reading a'1’ means

corresponding FIFO is empty.

Configuration EEPROM memory map

VME Address Offsets
MSBYTE LSBYTE
31 24 23 16 15 8 7 0
20 21 22 23
24 25 26 27 Manufacturer ID (CERN) MSBYTE
28 29 2A 2B Manufacturer ID (CERN)
2C 2D 2E 2F Manufacturer ID (CERN) LSBYTE
30 31 32 33 Board ID / Serial No. MSBYTE
34 35 36 37 Board ID / Serial No.
38 39 3A 3B Board ID / Serial No.
3C 3D 3E 3F Board ID / Serial No.
40 41 42 43 Board Revision No. MSBYTE
44 45 46 47 Board Revision No.
48 49 4A 4B Board Revision No.
4C 4D 4E 4F Board Revision No. LSBYTE

The IEEE Manufacturer ID# for CERN is. 080030 (hex)

26

CERN/EP/ATE/DQ

ROD Busy

HARDWARE MANUAL

PARTSLIST
PART TYPE, VALUE, TOLERANCE | MANUFACTURER SUPPLIER SCEM/Cmd No |Qty
Integrated Circuit FPGA isp | EPM7192SQC160-10 PQFP | ALTERA 1
Integrated Circuit FPGA isp | EPM7160STC100-10 TQFP |ALTERA 6
Integrated Circuit FPGA EPM7128ELC84-10 PLCC [ALTERA 1
Integrated Circuit Clock CDC341DW Texas Instrument Spoerle 1
Driver
Integrated Circuit EEPROM | AT28C16 PLCC 32 Atmel 1
Integrated Circuit FIFO IDT72215LB TQFP 64 Integrated Device 16
Technology
Integrated Circuit OP-Amp YA741CD SOIC8 Texas Instrument Radio Spares |277-1928 1
Integrated Circuit Oscillator | IQXO-70 10MHz 1QD Radio Spares |190-0175 1
Integrated Circuit LT1720CS8 Linear Technology 8
Comparator
Integrated Circuit TTL Fast | 74F07D hex o/c buffer Philips 2
Semiconductors
Integrated Circuit TTL Fast | 74F521D octal eq. 08.56.96.521.6 |2
comparator
Integrated Circuit TTL Fast | 74F545D octal tranceiver 08.56.96.545.8 |3
Integrated Circuit TTL Fast | 74F573D octal latch 08.56.96.573.4 |2
Integrated Circuit TTL Fast | 74F756D octal inv o/c buffer | Philips 2
Semiconductors
Integrated Circuit TTL Fast | 74F760D octal o/c buffer Philips 1
Semiconductors
Integrated Circuit CMOS 74HC365D hex TS buffer Philips 1
Semiconductors
Diode SMD Si PMLL4448 CERN 08.51.10.010.8 |1
LED double Green Type: 1802-8832 MENTOR Novitronic SA 1
LED double Red Type: 1802-2232 MENTOR Novitronic SA 1
LED double Yellow Type: 1802-7732 MENTOR Novitronic SA 1
Capacitor SMD 1206 330pF 50V cl 2 CERN 10.03.04.233.2 |7
Capacitor SMD 1206 10nF 50V cl2 CERN 10.03.04.400.5 |6
Capacitor SMD 1206 47nF 50V cl2 CERN 10.03.04.447.0 162
Capacitor SMD tantal 10uF 25V CERN 10.82.01.570.0 |2
Capacitor SMD tantal A7uF 10V CERN 10.82.01.290.5 |2
Resistor SMD 1206 10K 1% CERN 11.24.05.400.3 |13
Resistor SMD 1206 10M 1% CERN 6
Resistor SMD 1206 15K 1% CERN 11.24.05.415.6 |1
Resistor SMD 1206 1K 1% CERN 11.24.05.300.6 |4
Resistor SMD 1206 270 1% CERN 11.24.05.227.8 |4
Resistor SMD 1206 300 1% CERN 11.24.05.230.3 |16
Resistor SMD 1206 330 1% CERN 11.24.05.233.0 |2
Resistor SMD 1206 4.7K 1% CERN 11.24.05.347.1 |16
Resistor SMD 1206 510 1% CERN 11.24.05.251.8 |3
Resistor SMD 1206 62 1% CERN 11.24.05.162.8 |23
Connector Coaxial Duplex #00 for VME modules [LEMO SA, CH CERN 09.46.11.188.8 |10
Connector Header male 2x5 pins type: 2510- 3M Radio Spares |120-7230 1
6002
Connector Header male 2x10 pins type: 2520- 3M Radio Spares |120-7268 2
6002
Connector VMEbus male 3x32 pins 90° DIN CERN 09.61.33.315.7 |1
41612
Socket PLCC 84 pins Type 3M Radio Spares |203-9498 1
284.7166.75.1157.SMT
Jumper for scope probe grounding CERN 07.88.24.516.1 |2
Straps 2X1 cutto size CERN 09.55.10.708.9 |4
Switch Hexadecimal 230057GB EECO 4
Front Panel + extractor machined & engraved to CERN 06.61.64.704.3 |1

handles

Specs.

27

CERN/EP/ATE/DQ ROD Busy

28

CERN/EP/ATE/DQ

ROD Busy

CIRCUIT DIAGRAMS

The circuit diagrams are presented in a hierarchical fashion,
with an explanatory block diagram at the top level followed by
the detailed design drawings or sub-blocks. (to be added later,
please consult the item page for the ROD Busy Modulein
EDMYS)

29

CERN/EP/ATE/DQ

ROD Busy

VHDL SOURCE CODES

ip_reg_structure.vhd

-- File

-- Title

-- Author
-- Date

-- Updates

-- Description

-- Comments

-- Device :

: ~gallno/rod_busy/vhdl/ip_reg_mask/ip_reg_structure.vhd
: ATLAS Busy module input test, read and mask FPGA
: Per Gallno ATE/EP/CERN
1991108
: 00 09 21 (comments added)
00 11 07 (added LPM's)
1 IP_REG Structure

: Contains VME port, registers and masks.

BUSY_IN and TEST_OUT are in posistive logic ie
inversion is done outside device.

Inputs are read when ADDR(1) ='0'
Test are written when ADDR(1) ='0'
Mask register R/W when ADDR(1) ='1"

Inputs are read by VME before masking.
Mask bits must be '1' to enable the BUSY_IN inputs.

Synthesized in SYNPLIFY and simulated in MAXPLUS-9.6
on 0011 15

As LPM's are not always synthesized properly in
SYNPLIFY, especially counters, a switch was made

to use LEONARDOSJ in the future. The lib/use statements
have to be modified a bit and one can no longer

use the same model for LEAPFROG and LEONARDO due to this.

The LEONARDO give the same results when running
MAXPLUS and simuation works as well. (00 11 17)

Min EPM7096LC84 72% LC's and 88% I/O used
Target EMP7160STC100 41% LC's and 71% 1/O used

-- Packages:
library IEEE;
-- library LPM;

use |IEEE.std_logic_1164.all;
use WORK.Ipm_components.all;
- use lpm_components.all;

entity IP_REG is

port (
VMEDATA :inout std_logic_vector (15 downto 0);
ADDR 1in std_logic; -- VME address bit(1)
CS_ L in std_logic; -- Chip Select
WR_L in std_logic; -- VME write line
CLK 1in std_logic;
RST_L in std_logic;
BUSY_IN 1in std_logic_vector (15 downto 0);
TEST_OUT ;out std_logic_vector (15 downto 0);
BUSY_OUT_L :out std_logic
)

end IP_REG;

architecture STRUCTURE of IP_REG is

-- SIGNAL DECLARATIONS:

signal VMEDIN, VMEDOUT,

INPUTS, MASK : std_logic_vector (15 downto 0);

signal CEN_TEST, CEN_MASK,

CEN_READ, RST : std_logic;

30

CERN/EP/ATE/DQ ROD Busy

begin
-- TRI-STATE OUTPUTS:

VMEDATA <= VMEDOUT when (CS_L ='0") and (WR_L ='1")
else (others =>'Z";

-- CONCURRENT STATEMENTS:

VMEDIN <= VMEDATA;

RST <=not RST_L;

CEN_TEST <='1'when (CS_L = '0) and (WR_L = '0)
and (ADDR ='0")
else '0";

CEN_MASK <='1'when (CS_L = '0) and (WR_L = '0)
and (ADDR ="'1")
else '0";

CEN_READ <='0'when (CS_L ='0") and (WR_L ='1)
and (ADDR ="'0")
else '1";

with ADDR select VMEDOUT <=
INPUTS when '0',
MASK when '1',
MASK when others;

BUSY OUT_L <='0'when ((MASK and BUSY_IN) /= X"0000")

else '1'
-- COMPONENT INSTANTIATION:
TSTREG : LPM_FF
generic map (Ipm_width =>16)
port map (data => VMEDIN,
clock => CLK,
enable => CEN_TEST,
aclr => RST,
q =>TEST_OUT);
MASKREG : LPM_FF
generic map (Ipm_width =>16)
port map (data => VMEDIN,
clock => CLK,
enable => CEN_MASK,
aclr => RST,
q => MASK);
INPREG : LPM_FF
generic map (Ipm_width =>16)
port map (data => BUSY_IN,
clock => CLK,
enable => CEN_READ,
aclr => RST,
q => INPUTS);

end STRUCTURE;

31

CERN/EP/ATE/DQ

ROD Busy

quad_cnt_struct.vhdl

-- File : ~gallno/rod_busy/vhdl/quad_counter/quad_cnt_struct.vhdl
-- Title : ATLAS Busy module quad 16-bit counter

-- Author : Per Gallno ATE/EP/CERN

-- Date 1991110

-- Updates 199 11 15 FF sclr implemented, clock always present to chip
- 00 11 08 New Leapfrog LPM lib; dummy signals removed
-- Description : QUAD_COUNT Structure containing 4 synchronisation F/F
- and four 16-bit binary counters with parallell outputs.

- The counter clocking is enabled by the synchronised

- BUSY signals. The reset of the counters are handled

- by the FIFO_SEQUENCER chip.

- Synthesized in SYNPLIFY on 00 11 15 but F/F's not found

-- As LPM's are not always synthesized properly in

- SYNPLIFY, especially counters, a switch was made

- to use LEONARDOSJ in the future. The lib/use statements

- have to be modified a bit and one can no longer

- use the same model for LEAPFROG and LEONARDO due to this.
- The LEONARDO give the same results when running

- MAXPLUS and simuation works as well. (00 11 17)

-- Target EPM7160STC100-10:

- Total dedicated input pins used: 2/4 (50%)
- Total I/0 pins used: 73/80 (91%)
- Total logic cells used: 68/160 (42%)
- Total shareable expanders used: 0/160 (0%)
- Total Turbo logic cells used: 68/160 (42%)
- Total shareable expanders not available (n/a): 0/160 (0%)
- Average fan-in: 11.05
- Total fan-in: 752
-- Comments : Using LPM's
-- Packages:

library IEEE;

use |EEE.std_logic_1164.all;
use WORK.Ipm_components.all;

entity QUAD_COUNT is

port (
CLK,RST_L,EN_L :in std_logic;
BUSY 1in std_logic_vector (3 downto 0);

QA, QB, QC, QD : out std_logic_vector (15 downto 0)
)

end QUAD_COUNT;

architecture STRUCTURE of QUAD_COUNT is

-- SIGNAL DECLARATIONS:
signal IBUSY :std_logic_vector (3 downto 0);
signal RST : std_logic;

begin
-- CONCURRENT STATEMENTS:
RST <=not RST_L;
-- COMPONENT INSTANTIATION:
FF4: LPM_FF -- BUSY synchronisation F/F

generic map (Ipm_width =>4)

32

CERN/EP/ATE/DQ

ROD Busy

CNTO :

CNT1:

CNT2:

CNT3:

port map

LPM_COUNTER
generic map
port map

LPM_COUNTER
generic map
port map

LPM_COUNTER
generic map
port map

LPM_COUNTER
generic map
port map

end STRUCTURE;

(data
sclr
clock
aclr

(Ipm_width
(clock
cnt_en
aclr

q

(Ipm_width
(clock
cnt_en
aclr

q

(Ipm_width
(clock
cnt_en
aclr

q

(Ipm_width
(clock
cnt_en
aclr

q

=> BUSY,

=>EN_L, --clearFFEN_L=1
=> CLK,

=> RST,

=> IBUSY);

=> 16)

=> CLK,

=> [BUSY(0),
=> RST,

=> QA);

=>16)

=> CLK,
=>IBUSY(1),
=> RST,
=>QB);

=>16)

=> CLK,
=>|BUSY(2),
=> RST,
=>QC);

=>16)

=> CLK,

=> IBUSY(3),
=> RST,
=>QD);

33

CERN/EP/ATE/DQ

ROD Busy

fifo_sequencer.vhd

-- File

-- Title

-- Author
-- Date

-- Updates

-- Comments

: ~gallno/rod_busy/vhdl/sequencer/fifo_sequencer.vhd
: ATLAS Busy module FIFO Sequencer

: Per Gallno ATE/EP/CERN
1991116

1 99 11 24 State decoding moved outside if/CLK statement,
as otherwise f/f's are created.
99 11 26 Status register for FIFO FULL/EMPTY implemented
00 11 30 Continuing on project / using LEONARDOS5J
00 12 01 Remove comparator, do count down, since errors

in maxplus

01 06 19 FIFO flag read faulty address offset corrected
- "Manual VME" operation modified
-- Description: FIFO Sequencer Structure

: Contains VME port, registers and control logic

-- FIFWCR register bit map:
-- (1) : FIFO write by sequenser if '1', write by VME function if ‘0’

-- (0) : Counter[15:0] enabled if '1', disable counting if ‘0’

-- Packages:
library IEEE;

use |IEEE.std_logic_1164.all;
use WORK.Ipm_components.all;

entity FIFO_SEQ is

port (
VMEDATA rinout std_logic_vector (15 downto 0);
ADDR 1in std_logic_vector (5 downto 0);
CS L 1in std_logic;
WR_L 1in std_logic;
RST_L in std_logic;
CLK in std_logic;
FIFFF_L ;in std_logic_vector (15 downto 0);
FIFEF_L 1in std_logic_vector (15 downto 0);
FIFWEN_L :out std_logic;
FIFOE_L :out std_logic_vector (15 downto 0);
FIFRST_L :out std_logic;
CNTRST_L :out std_logic;
CNTEN_L :out std_logic;
FIFREN_L :out std_logic_vector (15 downto 0);
DUMMY_OUT :out std_logic
)

end FIFO_SEQ;

architecture STRUCTURE of FIFO_SEQ is

-- CONSTANT DECLARATIONS:

constant
constant
constant
constant
constant
constant
constant
constant

CCNTRST : std_logic_vector (7 downto 0) := x"20";
CFIFRST : std_logic_vector (7 downto 0) := x"22";
cFIFWEN : std_logic_vector (7 downto 0) := x"24";
cFIFWCR : std_logic_vector (7 downto 0) := x"26";
cFIFRCR : std_logic_vector (7 downto 0) := x"28";
CcSEQREG : std_logic_vector (7 downto 0) := x"2A";
cFIFFF . std_logic_vector (7 downto 0) := x"2C";
cFIFEF : std_logic_vector (7 downto 0) := x"2E";

-- SIGNAL DECLARATIONS:

signal
signal
signal
signal
signal
signal
signal
signal
signal

IADDR
VMEDOUT,VMEDIN,FIFO
FIFRCR,SEQREG,SEQCNT
FIFWCR16,FIFEF,FIFFF
FIFWCR

CS,RST,CNTRST
FIFWCR_CEN,FIFRCR_CEN
FIFFF_CEN,FIFEF_CEN
FIFWEN,FIFREN,CNTEQZERO

: std_logic_vector (7 downto 0);

: std_logic_vector (15 downto 0);
: std_logic_vector (15 downto 0);
: std_logic_vector (15 downto 0);
: std_logic_vector (1 downto 0);

: std_logic;

: std_logic;

: std_logic;

: std_logic;

34

CERN/EP/ATE/DQ

ROD Busy

signal SEQREG_CEN,SEQCNT_CEN : std_logic;
-- COMPONENT DECLARATIONS:

component DECOD_FIFO

port (
address :in std_logic_vector (7 downto 0);
fifo_no : out std_logic_vector (15 downto 0)

)

end component;
begin
-- TRI-STATE OUTPUTS:
VMEDATA <= VMEDOUT when (CS_L ='0") and (WR_L ='1)
and (IADDR >= cCNTRST)
else (others =>'Z");
-- CONCURRENT STATEMENTS:
VMEDIN <= VMEDATA; -- int VME data i/p bus

IADDR <="00" & ADDR (5 downto 1) & '0";
-- make a byte wide internal address bus

DUMMY_OUT <= ADDR(0); -- for easy simulation

with IADDR select -- VME o/p data bus mux
VMEDOUT <= FIFWCR16 when cFIFWCR,
FIFRCR when cFIFRCR,
SEQREG when cSEQREG,
not FIFFF when cFIFFF,
not FIFEF when cFIFEF,
(others =>'-") when others;

FIFWCR16 (1 downto 0)
<= FIFWCR,;

FIFWCR16 (15 downto 2)
<= (others =>'-);

CNTRST_L <="0' when (((CS_L ='0) and (WR_L ='0")
and (IADDR = cCNTRST) and (FIFWCR(1) = '0))
or ((CNTRST ='1') and (FIFWCR(1) = '1%)))

or (RST_L ='0")
else '1";
RST <=not RST_L,;
FIFRST_L <="'0"when ((CS_L ='0") and (WR_L ='0")
and (JADDR = cFIFRST))
or (RST_L ='0")
else '1

FIFWCR_CEN <='1"when ((CS_L = '0") and (WR_L ='0)
and (IADDR = cFIFWCRY))
else '0"

FIFRCR_CEN <="1"when ((CS_L ='0") and (WR_L ='0"
and (IADDR = cFIFRCR))
else '0";

SEQREG_CEN <='1'when ((CS_L ='0) and (WR_L ='0)
and (IADDR = cSEQREG))
else '0"

FIFFF_CEN <="0'when ((CS_L ='0") and (WR_L ='1)
and (IADDR = cFIFFF))
else '1'; -- freezes data during read cycle
FIFEF_CEN <='0'when ((CS_L ='0") and (WR_L ='1')
and (IADDR = cFIFEF))

35

CERN/EP/ATE/DQ ROD Busy
else '1"
CNTEN_L <="'0"when (((SEQCNT_CEN ='1") and (FIFWCR(1) ='1")
or ((FIFWCR(0) ='1") and (FIFWCR(1) ='0%))
else '1"
CNTEQZERO <="'1'when (SEQCNT = x"0000") else '0";
FIFOE_L <= not FIFO when ((CS_L ='0") and (WR_L ='1")
else (others =>'1";
FIFWEN_L <="'0"'when (((FIFWEN ='1") and (FIFWCR(1) ='1"))

or ((CS ='1") and (IADDR = cFIFWEN)
and (WR_L ='0") and (FIFWCR(1) ='0"))
else 'l

GFIFREN : for | in 15 downto O generate
FIFREN_L(I) <="'0"when (((FIFREN ="1") and (FIFRCR(I) ='1")
and (FIFFF_L(l) ='0")
or ((CS ="1") and (FIFO(I) ='1")
and (WR_L ='1") and (FIFRCR(l) ='0"))

else '1';
end generate;
-- SEQUENTIAL STATEMENTS:
CSPULSER: process (CS_L,CLK,RST)
variable PULS : std_logic_vector (1 downto 0); -- := "00";

begin
if RST ='1' then PULS :="00";
elsif rising_edge(CLK) then
case PULS is
when "00" =>

if CS_L='0"then PULS :="01";
end if;
when "01" => PULS :="10";
when "10" =>
if CS_L="1"then PULS :="00";
end if;
when others => PULS :="00";
end case;
end if;

CS <= PULS(0);
end process;

SEQFSM : process (CLK,FIFWCR(0),CNTEQZERO,RST)
variable STATE : std_logic_vector (1 downto 0); -- := "00";
begin
if RST = '1' then STATE := "00";
elsif rising_edge(CLK) then
case STATE is

when "00" => -- idle, counters stopped + reset
if FIFWCR(0) = '1' then STATE :="01";
end if;

when "01" => -- counters and sequenser enabled
if CNTEQZERO ='1'then STATE :="10";

end if;
when "10" => -- read FIFOs
STATE :="11";
when "11" => -- write FIFOs
STATE :="00";
when others => STATE :="00"
end case;
end if;
case STATE is
when "00" => -- idle, counters stopped + reset
SEQCNT_CEN <='0]
CNTRST <="1"
FIFWEN <='0%
FIFREN <="'0"
when "01" => -- counters and sequenser enabled
SEQCNT_CEN <='1"
CNTRST <='0"%
FIFWEN <='0"
FIFREN <='0}

36

CERN/EP/ATE/DQ

ROD Busy

when "10" => -- read FIFOs
SEQCNT_CEN <='0"
CNTRST <='0"
FIFWEN <='0"
FIFREN <="'1"

when "11" => -- write FIFOs
SEQCNT_CEN <='0"
CNTRST <='04
FIFWEN <="'1"
FIFREN <='0"

-- when others => null;
end case;

end process;
-- COMPONENT INSTANTIATION:

DECODER: DECOD_FIFO
port map
(address
fifo_no

LFIFWCR: LPM_FF
generic map (Ipm_width
port map (data
clock
enable

q

LFIFRCR: LPM_FF
generic map (Ipm_width
port map (data
clock
enable

q

LSEQREG: LPM_FF
generic map (Ipm_width
port map (data
clock
enable

q

LSEQCNT: LPM_COUNTER
generic map (Ipm_width

Ipm_direction

LPM_HINT
port map (data

clock

cnt_en

sload

q

LFIFFF: LPM_FF
generic map (Ipm_width
port map (data
clock
enable

q

LFIFEF: LPM_FF
generic map (Ipm_width
port map (data
clock
enable

q
end STRUCTURE;

=> IADDR,
=> FIFO);

=> 2)

=>VMEDIN (1 downto 0),
=> CLK,

=> FIFWCR_CEN,

=> FIFWCR);

=>16)

=> VMEDIN,

=> CLK,

=> FIFRCR_CEN,
=> FIFRCR);

=>16)

=> VMEDIN,

=> CLK,

=> SEQREG_CEN,
=> SEQREQG);

=> 16,

=>"DOWN",
=>"CARRY_CNT_EN")
=> SEQREG,

=> CLK,

=> SEQCNT_CEN,

=> CNTRST,

=> SEQCNT);

=> 16)
=> FIFFF_L,

=> CLK,

=> FIFFF_CEN,

=>16)

=> FIFEF_L,

=> CLK,

=> FIFEF_CEN,

37

CERN/EP/ATE/DQ

ROD Busy

decod_fifo.vhd

-- File : ~gallno/rod_busy/vhdl/sequencer/decod_fifo.vhd

-- Title : ATLAS Busy module FIFO Sequencer - FIFO decoder

-- Author : Per Gallno ATE/EP/CERN

-- Date 1991123

-- Updates 1 99 11 24 Rewritten as prev version wouldn't synthesise!

-- Description : FIFO decoder bahavior

-- Comments : Created due to problems between LPM and IEEE.numeric

- packages. (this version should work in all cases)

-- Problems : The full story: A decoder was implemented in the

- style that was proposed in the DOULOS course (ex10)
- and was implemented as a process in the top structure.
- There were however conflicts between packages.

- (see problems in fifo_sequencer.vhd) To cure the

- problem the decoder was moved to a separate entity,
- without LPM elements and then instatiated as a

- component in FIFO_SEQ. This tree structure compiled
- OK in Leapfrog and Synplify, only with a warning

- that the Address lines not connected. Checking the

- schematics in Synplify revealed that the DECODER

- box was empty !!!

-- Cure : A traditional (see below) address decoder was
- implemented.
-- Packages:

library IEEE;

use |IEEE.std_logic_1164.all;

entity DECOD_FIFO is

port (
ADDRESS 1in std_logic_vector (7 downto 0);
FIFO_NO :out std_logic_vector (15 downto 0)

);
end DECOD_FIFO;

architecture BEHAVIOR of DECOD_FIFO is

begin
with ADDRESS select

FIFO_NO<= b"0000_0000_0000_0001" when Xx"00",
b"0000_0000_0000_0010" when x"02",
b"0000_0000_0000_0100" when x"04",
b"0000_0000_0000_1000" when X"06",

b"0000_0000_0001_0000" when Xx"08",
b"0000_0000_0010_0000" when X"0A",
b"0000_0000_0100_0000" when X"0C",
b"0000_0000_1000_0000" when X"0OE",

b"0000_0001_0000_0000" when Xx"10",
b"0000_0010_0000_0000" when x"12",
b"0000_0100_0000_0000" when x"14",
b"0000_1000_0000_0000" when X"16",

b"0001_0000_0000_0000" when x"18",
b"0010_0000_0000_0000" when X"1A",
b"0100_0000_0000_0000" when x"1C",
b"1000_0000_0000_0000" when X"1E",
b"0000_0000_0000_0000" when others;

end BEHAVIOR,;

38

CERN/EP/ATE/DQ ROD Busy

sreq_timer_struct.vhdl

-- File : ~gallno/rod_busy/vhdl/sreq_timer_1/sreq_timer_struct.vhdl
-- Title : ATLAS Busy module service request timer

-- Author : Per Gallno ATE/EP/CERN

-- Date 1001103

-- Updates : 00 11 21 preserve signal attr. on LPM_CMP eq o/p
- and split comparators to make job fit

-- Description: SREQ_TIMER Structure

-- Comments : Using LPM's

- One bit vectors since data/q to f/f must be vectors

-- Packages:
library IEEE;
use |IEEE.std_logic_1164.all;
use work.l[pm_components.all;

entity SREQ_TIMER is

port (
CLK,RST_L in std_logic;
VMEDATA rinout std_logic_vector (15 downto 0);
ADDR 1in std_logic_vector (2 downto 1);
CS L in std_logic; -- Chip Select
WR_L in std_logic; -- VME write line
BUSY_IN_L in std_logic;
BUSY_OUT L :out std_logic;
SREQ_L :out std_logic

);
end SREQ_TIMER;

architecture STRUCTURE of SREQ_TIMER is
-- CONSTANT DECLARATIONS:

-- Corresponding to the internal registers VME address offsets,
-- when addressing during simulation these values should be divided by 2

constant CINTVALREG : std_logic_vector (3 downto 0) := x"6";
constant cLIMITREG : std_logic_vector (3 downto 0) := x"4";
constant cSREQCLR : std_logic_vector (3 downto 0) := x"2";
constant cCSR : std_logic_vector (3 downto 0) := x"0";

-- CSR Bit Map

- bit 3: SREQ Status set if '1' R

-- bit 2: SREQ Enable if '1' R/W

- bit 1: SWBUSY Set if '1' R/W

- bit O: BUSY_OUT Status set if '1' R

-- SREQ set & clear functions

- bit 1: SREQ set if '1' (for testing) w
- bit O: SREQ clear if '1' w
-- SIGNAL DECLARATIONS:
signal IADDR : std_logic_vector (3 downto 0);
signal VMEDIN,VMEDOUT: std_logic_vector (15 downto 0);
signal RST : std_logic;
signal LIMIT_REG : std_logic_vector (15 downto 0);
signal LIMIT_CNT : std_logic_vector (15 downto 0);
signal LIMITREG_CEN : std_logic;
signal LIMIT_EQ : std_logic;
signal LIMIT_EQ_T : std_logic;
signal LIMIT_EQ_B : std_logic;

signal INTERVAL_REG : std_logic_vector (15 downto 0);
signal INTERVAL_CNT : std_logic_vector (15 downto 0);
signal INTVALREG_CEN : std_logic;

signal CSR : std_logic_vector (3 downto 0);
signal CSR16 : std_logic_vector (15 downto 0);
signal CSR_WCEN : std_logic;

signal CSR_RCEN : std_logic;

39

CERN/EP/ATE/DQ ROD Busy

signal SW_BUSY : std_logic_vector (0 downto 0);
signal IBUSY : std_logic_vector (0 downto 0);
signal SREQ : std_logic_vector (0 downto 0);
signal SREQ_EN : std_logic_vector (0 downto 0);
signal SREQ_D : std_logic_vector (0 downto 0);
signal SREQ_D1 : std_logic;
signal CLR_SREQ : std_logic;
signal SET_SREQ : std_logic;
signal CNT_ARST : std_logic;
signal CNT_SRST : std_logic;
signal CNT_SRST_T : std_logic;
signal CNT_SRST_B : std_logic;

-- EXEMPLAR/LEONARDO ATTRIBUTES:

attribute preserve_signal : BOOLEAN;
attribute preserve_signal of CNT_SRST_T : signal is TRUE;
attribute preserve_signal of CNT_SRST_B : signal is TRUE;
attribute preserve_signal of LIMIT_EQ_T : signal is TRUE;
attribute preserve_signal of LIMIT_EQ_B : signal is TRUE;
attribute preserve_signal of SREQ_D1 : signal is TRUE;
begin

-- TRI-STATE OUTPUTS:

VMEDATA <= VMEDOUT when (CS_L ='0") and (WR_L ='1")
else (others =>'Z");

-- CONCURRENT STATEMENTS:

RST <=not RST_L;
VMEDIN <= VMEDATA;
IADDR <='0"'& ADDR & '0"; -- make nibble wide int ADDR bus

CSR16 (3 downto 0)
<= CSR;

CSR16 (15 downto 4)
<= (others =>"-;

CSR(2) <= SREQ_EN(0);
CSR(1) <= SW_BUSY(0);
IBUSY(0) <= SW_BUSY(0) or not(BUSY_IN_L);

BUSY_OUT L <= not IBUSY/(0);

CNT_ARST <= RST or not(SREQ_EN(0)) or CLR_SREQ;

CNT_SRST <= CNT_SRST_T and CNT_SRST_B;

SREQ L <= not SREQ(0);

SREQ D1 <= LIMIT_EQ or SREQ(0);

SREQ_D(0) <= SREQ_D1;

LIMIT_EQ <= LIMIT_EQ_T and LIMIT_EQ_B;

with IADDR select -- VME o/p data bus mux

VMEDOUT <= CSR16 when cCSR,
LIMIT_REG when cLIMITREG,
INTERVAL_REG when cINTVALREG,
(others =>'-') when others;

CSR_WCEN

<="'1"when (CS_L ='0") and (WR_L ="07)

40

CERN/EP/ATE/DQ

ROD Busy

and (IADDR = cCSR)
else '0

CSR_RCEN
<='0"when (CS_L ='0") and (WR_L ='1")
and (IADDR = cCSR)
else 1

LIMITREG_CEN
<="'1"when (CS_L ='0") and (WR_L ='0")
and (IADDR = cLIMITREG)
else '0

INTVALREG_CEN
<="1"when (CS_L ='0") and (WR_L ='0")
and (IADDR = cINTVALREG)
else '0

CLR_SREQ
<='1"when (CS_L ='0") and (WR_L ='0")
and (IADDR = cSREQCLR)
and (VMEDIN (1 downto 0) = "01")
else '0;

SET_SREQ
<="1'"when (CS_L ='0") and (WR_L ='0")
and (IADDR = cSREQCLR)
and (VMEDIN (1 downto 0) = "10")

-- COMPONENT INSTANTIATION:

CSR3

CSR2

CSR1

CSRO

LIMCNT

else '0
: LPM_FF -- SREQ status bit in CSR
generic map (Ipm_width =>1)
port map (data => SREQ,
clock => CLK,
enable => CSR_RCEN,
aclr => RST,
q => CSR(3 downto 3));
: LPM_FF -- SREQ_EN control bit in CSR
generic map (Ipm_width =>1)
port map (data => VMEDIN(2 downto 2),
clock => CLK,
enable => CSR_WCEN,
aclr => RST,
q => SREQ_EN);
. LPM_FF -- SW_BUSY control bit in CSR
generic map (Ipm_width =>1)
port map (data => VMEDIN(1 downto 1),
clock => CLK,
enable => CSR_WCEN,
aclr => RST,
q => SW_BUSY);
: LPM_FF -- BUSY status bit in CSR
generic map (Ipm_width =>1)
port map (data => |BUSY (0 downto 0),
clock => CLK,
enable => CSR_RCEN,
aclr => RST,
q => CSR(0 downto 0));

: LPM_COUNTER -- Limit Counter

generic map (Ipm_width =>16)
port map (clock => CLK,
cnt_en => IBUSY(0),

41

CERN/EP/ATE/DQ

ROD Busy

INTVALCNT

LIMREG

INTVALREG

LIMCMPT

LIMCMPB

INTVALCMPT

INTVALCMPB

SRQ_FF

end STRUCTURE;

aclr
sclr

q

: LPM_COUNTER

generic map (Ipm_width
port map (clock

aclr

sclr

q

: LPM_FF-- Limit Register

generic map (Ipm_width
port map (data
clock
enable
q

: LPM_FF-- Interval Register

generic map (Ipm_width
port map (data
clock
enable
q

=> CNT_ARST,
=> CNT_SRST,
=> LIMIT_CNT);

-- Interval Counter

=>16)

=> CLK,

=> CNT_ARST,

=> CNT_SRST,

=> INTERVAL_CNT);

=>16)

=>VMEDIN,

=> CLK,

=> LIMITREG_CEN,
=> LIMIT_REG);

=>16)

=> VMEDIN,

=> CLK,

=> INTVALREG_CEN,
=> INTERVAL_REG);

: LPM_COMPARE -- Limit Comparator top

generic map (Ipm_width
port map (dataa
datab
aeb

=> 8)

=> LIMIT_CNT (15 downto 8),
=> LIMIT_REG (15 downto 8),
=> LIMIT_EQ_T);

: LPM_COMPARE -- Limit Comparator bottom

generic map (Ipm_width
port map (dataa
datab
aeb

=> 8)

=> LIMIT_CNT (7 downto 0),
=> LIMIT_REG (7 downto 0),
=> LIMIT_EQ_B);

: LPM_COMPARE -- Interval Comparator top

generic map (Ipm_width
port map (dataa
datab
aeb

= 8)

=> INTERVAL_CNT (15 downto 8),
=> INTERVAL_REG (15 downto 8),
=> CNT_SRST_T);

: LPM_COMPARE -- Interval Comparator bottom

generic map (Ipm_width

port map (dataa
datab
aeb
: LPM_FF -- SREQ flip/flop
generic map (Ipm_width
Ipm_avalue
port map (data
clock
aclr
aset
q

=> 8)

=> INTERVAL_CNT (7 downto 0),
=> INTERVAL_REG (7 downto 0),
=> CNT_SRST_B);

=> 1’

=>"1")

=> SREQ_D (0 downto 0),
=> CLK,

=> CNT_ARST,

=> SET_SREQ,

=> SREQ (0 downto 0));

42

CERN/EP/ATE/DQ

ROD Busy

vme_if.vhd

-- File : ~gallno/rod_busy/vhdl/ivme_ifivme_if.vhd
-- Title : ATLAS Busy module VMEDbus interface
-- Author : Per Gallno ATE/EP/CERN
-- Date 19912 06
-- Updates : 00 11 01 continuing on project
-- Description : VME slave interface and interrupt generator
-- Comments
-- Packages:

library IEEE;

use IEEE.std_logic_1164.all;

entity VME_IF is

port

end VME_IF;

(
VMEDATA

VMEADDR
AM
SYSRST L
POWUPRST_L
CHIPRST_L
CLK

WR_L

AS L

DSL L
DSO_L
LW L
IACK_L
IACKIN_L
HIADDR_L
LOADDR_L
ID_ENWR_L
SREQ L
DTACK_L
IACKOUT _L
IRQ_L
RST_OUT L

RST_MODUL_L

EN_DBUFF_L
LATCH_IP_L
ID_CS_L
ID_OE_L
STATEVAR
BUSY_CS L
TIMER_CS_L
DUMMY_OUT
SEQ_CS_L

);

:inout std_logic_vector (7 downto 0);
in
in
1in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
out
rout
out
rout
: inout
T out
out
T out
out
:out
out
T out
:out
T out

std_logic_vector (7 downto 0);
std_logic_vector (5 downto 0);
std_logic;

std_logic;

std_logic; -- dedicated reset pin
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector (7 downto 1);

std_logic; -- connected to CHIPRST_L

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector (2 downto 0);
std_logic;

std_logic;

std_logic; -- to keep unused i/p AO,AM2
std_logic

architecture BEHAVIOR of VME_IF is

-- CONSTANT DECLARATIONS:

constant
constant

constant
constant
constant
constant

constant
constant
constant
constant

constant
constant
constant
constant

cIDPROM_LL
cIDPROM_UL

cSW_RST
cSW_IRQ
cINT_CSR
cINT_VECT

cTIMER_CSR
cTIMER_CLR
cTIMER_LIM

cTIMER_IVAL

cBUSY_STATE
cBUSY_MASK
cSEQ_LL
cSEQ_UL

: std_logic_vector (7 downto 0) := x"00";
: std_logic_vector (7 downto 0) := X"7E";

: std_logic_vector (7 downto 0) := x"80";
: std_logic_vector (7 downto 0) := x"82";
: std_logic_vector (7 downto 0) := x"84";
: std_logic_vector (7 downto 0) := x"86";

: std_logic_vector (7 downto 0) := x"90";
: std_logic_vector (7 downto 0) := x"92";
: std_logic_vector (7 downto 0) := x"94";
: std_logic_vector (7 downto 0) := x"96";

: std_logic_vector (7 downto 0) := x"98";

: std_logic_vector (7 downto 0) := x"9A";
: std_logic_vector (7 downto 0) := x"C0";
: std_logic_vector (7 downto 0) := X"EE";

43

CERN/EP/ATE/DQ

ROD Busy

-- SIGNAL DECLARATIONS:

signal iADDR,iAM

signal VMEDOUT,VMEDIN
signal VECT_REG

signal CSR_REG

signal STATE

signal RST,IRQ,SREQ,IRQ_EN
signal iAS,iDS,iDS0

signal AMSTD,AMSHORT
signal SLAV_DTACK

signal SW_RST,SW_IRQ
signal IDROM_CHIP,SEQ_CHIP
signal TIMER_CHIP

signal BUSY_CHIP,RD,WR,DS
signal VME_OK,OE_DATA
signal INT_VECT,INT_CSR
signal INT_MATCH,ADDR_OK
signal EN_VECT,INT_DTACK
signal IRQ_RELEASE

signal DEL

signal IRQ_LEV

signal iIRQ_L

: std_logic_vector (7 downto 0);
: std_logic_vector (7 downto 0);
: std_logic_vector (7 downto 0);
: std_logic_vector (3 downto 0);
: std_logic_vector (2 downto 0);
: std_logic;

: std_logic;

: boolean;

: boolean;

: boolean;

: boolean;

: boolean;

: boolean;

: boolean;

: boolean;

: boolean;

: boolean;

: boolean;

: std_logic_vector(0 to 3);

: std_logic_vector(2 downto 0);
: std_logic_vector(7 downto 1);

begin

-VME SLAVEINTERFACE -

-- RESET GENERATION:

-- This output should be connected to the dedicated RESET input

-- of the chip called here CHIPRST_L:

RST_OUT_L <='0"when (SYSRST_L ='0") or (POWUPRST_L ='0")
else '1';
-- Chip internal global reset line:
RST <=not CHIPRST_L;

-- Module general reset line to other chips on board:
-- (should be buffered outside chip to increase fan-out)

RST_MODUL_L

<='0"when (CHIPRST_L ='0") or SW_RST

else 1

-- EXTERNAL/INTERNAL SIGNAL/FUNCTION INTERFACING:

-- Tri-state data output drive:

VMEDATA

-- Internal data out bus mux:

VMEDOUT

-- Internal data in bus:

VMEDIN

<= VMEDOUT when
(RD and (INT_CSR or INT_VECT))
or EN_VECT
else (others =>'Z");

<= VECT_REG when INT_VECT or EN_VECT
else "00" & SREQ & IRQ & CSR_REG;

<= VMEDATA,

-- Control signal interface and synchronisation:

RD <= (WR_L="1"; -- boolean
WR <= (WR_L ='0); -- boolean
DS <=(DS1_L ='0") and (DSO_L ='0Y; -- boolean

CTLSYNC:
begin

process (CLK,DS1_L,DSO _L,AS L)

CERN/EP/ATE/DQ ROD Busy

if rising_edge(CLK) then
iAS <=not AS_L;
iDS <= (not DS1_L) and (not DSO_L);
iDSO <=not DSO_L;
end if;
end process CTLSYNC;

-- Delay generator implemented as a shift register w synchr clear:

DELAY: process (VME_OK,CLK)
begin
if rising_edge(CLK) then
if (not VME_OK) then DEL <= "0000";

else
DEL(0) <='1,
DEL(1) <= DEL(0);
DEL(2) <= DEL(1);
DEL(3) <= DEL(2);
end if;
end if;

end process DELAY;
-- DTACK GENERATION:

SLAV_DTACK <= TRUE when
(IDROM_CHIP and (DEL(3) = '1") or

(SEQ_CHIP and (DEL(2) ='1")) or
(BUSY_CHIP and (DEL(2) = '1")) or
(TIMER_CHIP and (DEL(2) ='1")) or
(SW_RST and (DEL(3) ='1)) or
(SW_IRQ and (DEL(1) ='1")) or
(INT_VECT and (DEL(2) = '1)) or
(INT_CSR and (DEL(2) ='1Y))

else FALSE;

DTACK_L <='0' when (INT_DTACK and (DSO_L ='0")) or

(SLAV_DTACK and (DSO_L ='0") and (DS1_L ='0%)

else '1

-- ADDRESS BUS AND AM CODE HANDLING AND COMPARASION:
-- Make byte wide internal address and AM busses:

IADDR(7 downto 0)
<= VMEADDR(7 downto 1) & '0';

iAM <="00" & AM(5) & AM(4) & AM(3) & '0' & AM(1) & AM(0);

DUMMY_OUT <= VMEADDR(0) or AM(2); -- waisting 2 pins for the
-- sake of easy simulation

-- Responding AM codes:
with iAM select AMSTD <= TRUE when x"09"|x"0A"|x"0D"|x"OE"|
X"39"|x"3A"|x"3D"|x"3E",
FALSE when others;

with iIAM select AMSHORT <= TRUE when x"29"|x"2D",
FALSE when others;

-- Adress comparasion:
ADDR_OK <= TRUE when
(AMSTD and (HIADDR_L ='0") and (LOADDR_L = '0"))
or (AMSHORT and (LOADDR_L = '0"))
else FALSE;
-- EXTERNAL CONTROL, ADDRESS AND DATA BUS CONTROLS:
EN_DBUFF_L <='0'when OE_DATA else '1";

LATCH_IP_L <='0"when OE_DATA else '1,
-- FUNCTION (BOOLEAN) ADDRESS DECODING:

SW_RST <= VME_OK and DS and (IADDR = cSW_RST) and WR;

45

CERN/EP/ATE/DQ ROD Busy

SW_IRQ <= VME_OK and DS and (IADDR = cSW_IRQ) and WR;
INT_VECT <= VME_OK and DS and (iADDR = cINT_VECT);
INT_CSR <= VME_OK and DS and (IADDR = cINT_CSRY);

IDROM_CHIP <= VME_OK and DS and
((IADDR >= cIDPROM_LL) and (iADDR <= cDPROM_UL));

SEQ_CHIP <= VME_OK and DS and
((IADDR >= cSEQ_LL) and (JADDR <= cSEQ_UL));

BUSY_CHIP <= VME_OK and DS and
((IADDR = cBUSY_STATE) or (IADDR = cBUSY_MASK));

TIMER_CHIP <= VME_OK and DS and
((IADDR = cTIMER_CSR) or
(iADDR = cTIMER_CLR) or
(iADDR = cTIMER_LIM) or
(iADDR = cTIMER_IVAL));

-- EXTERNAL CHIP SELECT GENERATION:

ID_CS_L <="0' when IDROM_CHIP and (iADDR(1) = '1') and
(RD or (WR and (ID_ENWR_L ='0")
and (DEL(0) = '1') and (DEL(3) = '0')))

else '1
ID_OE_L <="'0"' when IDROM_CHIP and RD
else 1
BUSY_CS_L <='0"'when BUSY_CHIP and
(RD or
(WR and (DEL(0) = '1') and (DEL(2) ='0"))
else 1
SEQ CS L <="'0"when SEQ_CHIP and
(RD or
(WR and (DEL(0) ='1") and (DEL(2) ='0"))
else 'l

TIMER_CS_L <='0"' when TIMER_CHIP and
(RD or
(WR and (DEL(0) = '1") and (DEL(2) ='0"))
else '1

-VME INTERRUPTER --

-- INTERRUPTER VECTOR AND CONTROL REGISTERS

VECTREG:

CSRREG:

process (CLK,RST,VMEDIN,WR,INT_VECT)
begin
if (RST ="1") then VECT_REG <= x"00";
elsif rising_edge(CLK) then
if (WR and INT_VECT and (DEL(0) = '1") and (DEL(1) = '0")
then VECT_REG <= VMEDIN;
end if;
end if;
end process VECTREG;

process (CLK,RST,VMEDIN,WR,INT_CSR)
begin
if (RST ='1') then CSR_REG <= x"0";
elsif rising_edge(CLK) then
if (WR and INT_CSR and (DEL(0) = '1") and (DEL(1) = '0")
then CSR_REG <= VMEDIN (3 downto 0);
end if;
end if;
end process CSRREG;

IRQ_EN <= CSR_REG(3):

46

CERN/EP/ATE/DQ ROD Busy

IRQ_LEV <= CSR_REG(2 downto 0);

-- INTERRUPT REQUEST FLIP/FLOP

INTREQ: process (CLK,SREQ,IRQ_EN,SW_IRQ,IRQ_RELEASE,RST_MODUL_L)
begin
if (RST_MODUL_L ='0")
or (IRQ_EN ="0"
or IRQ_RELEASE
then IRQ <='0";
elsif rising_edge(CLK) then
if (SREQ ="1") or SW_IRQ
then IRQ <="1";
end if;
end if;
end process INTREQ;

-- DRIVING INTERRUPT REQUEST LINES:

with IRQ_LEV select ilIRQ_L <= "1111110" when o"1",
"1111101" when 0"2",
"1111011" when 0"3",
"1110111" when 04",
"1101111" when 0"5",
"1011111" when 0"6",
"0111111" when 0"7",
"1111111" when others;

IRQ L <=ilRQ_L when (IRQ ='1") else "1111111";
-- MATCHING REQUEST LEVEL AND ADDRESS LINES:

INT_MATCH <= (IRQ_LEV = iADDR(3 downto 1)) and (IRQ = '1');
-- MISC:

SREQ <=not SREQ_L;

-VME SLAVE +IRQ FSM --

-- STATE MACHINE:

IRQFSM : process (CLK,RST,iAS,iDS,iDSO,LW_L,IACK_L,IACKin_L,ADDR_OK,
SLAV_DTACK,INT_MATCH,IRQ)
begin
if RST ='1' then STATE <= 0"0";
elsif rising_edge(CLK) then
case STATE is

when 0"0" => -- idle state

if (IAS ='1") and (LW_L ='1") and (IACK_L ='1")

and ADDR_OK
then STATE <= 0"2"; -- do slave cycle !
elsif (IAS ='1") and (LW_L ='1") and (IACK_L ='0")
then STATE <=0"1"; -- do IACK cycle!
end if;
when 0"2" => -- slave: DS assert ?

if (IAS = '0") and (iDS = '0")

then STATE <= 0"0"; -- was an address only cycle !
elsif (iDS ='1")

then STATE <= 0"6"; -- continue in slave cycle !
end if;

when 0"6" => -- slave: DTACK assert ?

if iDS ='0")

then STATE <= 0"2", -- problem: BERR - go back !
elsif SLAV_DTACK

then STATE <= 0"4"; -- thisis OK -goon!
end if;

47

CERN/EP/ATE/DQ

ROD Busy

when 0"4" =>
if IAS ='0") and (iDS ='0")
then STATE <= 0"0";
end if;

when 0"1" =>
if IACKin_L ='0") and INT_MATCH
then STATE <= 0"3";
elsif (IAS ='0")
then STATE <= 0"0";
end if;

when 0"3" =>
if iDS0 ="1")
then STATE <= 0"7";
end if;

when 0"7" =>
if (IAS ='0") and (iDS0 ="0")
then STATE <= 0"5";
end if;

when 0"5" =>
if IRQ="0")
then STATE <= 0"0";
end if;

when others => STATE <= 0"0";

end case;
end if;
end process IRQFSM;

-- STATE VARIABLE TO OUTPUT DECODING:

end BEHAVIOR,;

with STATE select VME_OK

with STATE select OE_DATA

with STATE select EN_VECT

with STATE select INT_DTACK

with STATE select IRQ_RELEASE

-- slave: AS*DS negate ?

-- end cycle - go back to idle !

-- irg: match ? / IACKin ?

-- this irq cycle is for me !

-- this irg cycle wasn't for me !

-- irg: DSO assert ?

-- continue in cycle !

--irg: DSO * AS negate ?

-- continue in cycle !

--irg: IRQ negate ?

-- end cycle - go back to idle !

<= TRUE when 0"6"[0"4",

FALSE when others;

<= TRUE when 0"2"[0"6"[0"4"[0"3"|0"7",
FALSE when others;

<= TRUE when 0"3"[0"7",

FALSE when others;

<= TRUE when 0"7",

FALSE when others;

<= TRUE when 0"5",

FALSE when others;

IACKout_L <="'0"' when (IACKin_L ='0") and (STATE = 0"1")
and not INT_MATCH
else '1'
STATEVAR <= STATE;

-- to ext monitor state machine

48

CERN/EP/ATE/DQ

ROD Busy

ISP FIRMWARE PROGRAMMING

JEDEC Chain chip order

Thefilesinthe JTAG Chain File (.jcf) must have the following

order:

[JTAG CHAI N]

DEVI CE_1=EPM7160S
DEVI CE_2=EPM7160S
DEVI CE_3=EPM7192S
DEVI CE_4=EPM7160S
DEVI CE_5=EPM7160S
DEVI CE_6=EPM/160S
DEVI CE_7=EPM7160S

i p_reg_s. pof
sreqg_ti m pof
fifo_seq. pof
quad_cnt . pof
guad_cnt . pof
quad_cnt . pof
guad_cnt . pof

49

CERN/EP/ATE/DQ ROD Busy

ANNEX A

COMPONENT DATA SHEETS

(to be added later, please consult the item page for the ROD
Busy Modulein EDMYS)

50

