Theory of W and Z boson production at the Tevatron and LHC

Pavel Nadolsky
Southern Methodist University
Dallas, TX

Hadron Collider Physics Conference
Michigan State University, June 15, 2004
“Theoretically clean” features of vector boson production

- Production from quark initial states
 \[ud \rightarrow W, \ u\bar{u} \rightarrow Z, \ d\bar{d} \rightarrow Z \]

 \[\Rightarrow \text{parton distribution functions (PDFs) known from deep inelastic scattering} \]

- Decay into easily identifiable leptonic states
 \[W \rightarrow e\nu, \ W \rightarrow \mu\nu, \ Z \rightarrow e^+e^-, \ Z \rightarrow \mu^+\mu^- \]

- Relatively simple (but sizable) QCD radiative corrections

- Relatively small electroweak radiative corrections
Tevatron and LHC are sensitive to

- initial-state gluons (up to -15% at the LHC)
- recoil from QCD and EW radiation
- Breit-Wigner line shape
- spin correlations between hadrons and leptons
- ...

The framework used in to describe these effects in the Tevatron Run-1 is $\mathcal{O}(\alpha_s)$ QCD with elements of $\mathcal{O}(\alpha)$ EW corrections
Base theory framework in the Tevatron Run-1

QCD corrections

- Full $\mathcal{O}(\alpha_s)$
- Breit-Wigner propagator with a running width $\Gamma_W(Q)$

Electroweak corrections

- $\mathcal{O}(\alpha)$ QED corrections (γ) to the final state (Berends, Kleiss; Wagner)

↑ Calculated in independent computer programs ↑

Adequate for comparison to the Run-1 data
Theory requirements for Tevatron Run-2

Experimental targets:

\[\delta \sigma_{\text{tot}} / \sigma_{\text{tot}} \sim 2 - 3\% \]
\[\delta M_W \sim 30 \text{ MeV} \]

Many factors contribute at a percent level:

- \(\mathcal{O}(\alpha_s^2) \) (NNLO-QCD) corrections
- \(\mathcal{O}(\alpha) \) (NLO-EW) corrections
- uncertainties in parton distributions (PDFs)
- power corrections to resummed cross sections

The near-future challenge: consistent and efficient implementation of these effects
Total W and Z cross sections

- Monitors of the beam and parton luminosity at future colliders
 (Dittmar, Pauss, Zurcher; Khoze, Martin, Orava, Ryskin; Giele, Keller)
Total cross sections: NNLO QCD corrections

\[\sigma_{tot}(p\bar{p} \rightarrow V) = \sum_{\text{partons}} \int dx_1 dx_2 f_{a/p}(x_1) f_{b/\bar{p}}(x_2) \hat{\sigma}_{tot}(ab \rightarrow V) \]

- NNLO hard cross section \(\hat{\sigma}_{tot}(ab \rightarrow V) \)
 (Hamberg, van Neerven, Matsuura, 1991; Harlander and Kilgore, 2002)
- Partial NNLO results for parton distributions \(f_{a/p}(x) \)

Talks by W.-K. Tung and Eric Laenen

- Scale dependence of order 1%
- NNLO \(K \)-factor is about 1.04 at the Tevatron and 0.98 at the LHC (MRST’03)
Precision prediction for σ_{tot} depends on understanding of

- uncertainties in PDF’s
 - W.-K. Tung’s talk

- electroweak effects
 - tree-level approximation
 insufficient!
 - EW corrections, updated
 - EW parameters

- acceptance
 (Frixione, Mangano, 2004)
Cancellation of PDF uncertainties in $\sigma_{tot}(Z)/\sigma_{tot}(W)$: new results from CTEQ

(Huston, P. N., Pumplin, Stump, Tung, Yuan, 2004)

In spite of different quark flavors, a measurement of $\sigma(Z)$ will constrain $\sigma(W)$ (and possibly other quark-dominated cross sections)!
Rapidity distributions and W charge asymmetry
Rapidity distributions at $O(\alpha_s^2)$
(Anastasiou, Dixon, Melnikov, Petriello, 2004)

New method for calculation of two-loop cut diagrams

- Transformation of phase space constraints into propagators via unitarity relations

- Recursive reduction to known integrals (Tkachov; Chetyrkin, Tkachov; Laporta; Gehrmann, Remiddi)
 - using Lorentz invariance
 - integration by parts

- Solution of master integrals with the help of
 - differential equations (Kotikov; Gehrmann, Remiddi; Bern, Dixon, Kosower)
 - Mellin-Barnes method (Smirnov; Tausk)
NNLO rapidity distributions at the Tevatron

- Tiny scale dependence (< 1%)
- For $|y| < 2$, NNLO leads to a uniform enhancement

$$\sigma_{NNLO} \approx K \cdot \sigma_{NLO}$$

$K(Z) \sim 3 - 5\%$, $K(W) \sim 2.5 - 4\%$

- Larger corrections in forward regions
Charge lepton asymmetry

\[A_{ch}(y_e) = \frac{d\sigma^{W^+}_{y_e} - d\sigma^{W^-}_{y_e}}{d\sigma^{W^+}_{y_e} + d\sigma^{W^-}_{y_e}} \]

- related to the boson Born-level asymmetry \((y_W=\text{rapidity of } W)\)

\[A_{ch}(y_W) \quad y_W \rightarrow y_{\max} \quad \frac{r(x_b) - r(x_a)}{r(x_b) + r(x_a)}, \quad r(x) = \frac{d(x, M_W)}{u(x, M_W)} \]

- constrains the PDF ratio \(d(x, M_W)/u(x, M_W)\) at \(x \rightarrow 1\)

- In experimental analyses, a selection cut \(p_{Te} > p_{Te}^{\text{min}}\) is imposed
Charge asymmetry: CDF Run-2 vs. CTEQ6.1 and ResBos

(Stump et al; Balazs, Yuan; Brock, Landry, P. N., Yuan)

\[A(y_e) \]

\[0 \leq \mu \leq 2M \]

\[\sqrt{s} = 1.96 \text{ TeV} \]

\[\mu = M_e \]

\[40 \text{ extreme pdfsets} \]

\[C. \text{ Balazs, C.-P. Yuan, Phys. Rev. D56, 5558 (1997)} \]

\[pT_e \text{ cut introduces dependence of } A_{ch}(y_e) \text{ on QCD corrections} \]
Measurement of W boson mass M_W and width Γ_W

- Test of the standard model (SM)
Standard model relates M_W, top mass m_t, and Higgs boson mass M_H:

\[M_W = 80.3827 - 0.0579 \ln\left(\frac{M_H}{100 \text{ GeV}}\right) - 0.008 \ln^2\left(\frac{M_H}{100 \text{ GeV}}\right) + 0.543 \left(\left(\frac{m_t}{175 \text{ GeV}}\right)^2 - 1\right) - 0.517 \left(\frac{\Delta \alpha_{\text{had}}(M_Z)}{0.0280} - 1\right) - 0.085 \left(\frac{\alpha_s(M_Z)}{0.118} - 1\right) \]

- Measurement of M_W and m_t constrains $\log M_H$ in SM
 \[\delta M_W \sim 30 \text{ MeV} \quad \delta m_t \sim 2 \text{ GeV} \quad \Rightarrow \quad \frac{\delta M_H}{M_H} \sim 35\% \]

- Measurement of M_W, m_t and M_H tests consistency of SM
Observables sensitive to M_W

1. Leptonic transverse mass

$M^{\ell\nu}_T \equiv 2 |\vec{p}_{Te}| |\vec{p}_{T\nu}| - 2 (\vec{p}_{T\ell} \cdot \vec{p}_{T\nu})$

Sensitivity region

- M_W: $M^{\ell\nu}_T \sim 60 - 100$ GeV
- Γ_W: $M^{\ell\nu}_T > 100$ GeV

2. Transverse momentum of the charged lepton ($p_{T\ell}$)

- M_W: $p_{T\ell} \sim 35 - 45$ GeV

3. p_T of the neutrino (E_T)

4. $M^{e\nu}_T(W)/M^{\ell\ell}_T(Z)$ (Rajagopolan, Rijssenbeek; Giele, Keller; Shpakov)

5. $\sigma_{tot}(W)/\sigma_{tot}(Z)$ (R. Brock et al., 2001)
Determination of M_W from distributions of transverse momenta

Kinematical (Jacobian) peaks...
...located exactly at M_W ($M_W/2$)
at Born level
...smeared by EW and QCD radiation
...sensitive to

- EW radiative corrections
- PDF parametrizations
- the shape of q_T distributions

↑ Sources of the largest theory uncertainties on M_W (tens of MeV) in Run-1
NLO electroweak corrections to W boson production

Born-diagram:

\[\begin{array}{c}
q_1(p_1) & W^+ (q) & \nu_\ell (p_1) \\
\bar{q}_\ell (p_\ell) & W^+ (p_\ell) & l^+ (p_\ell) \\
\end{array} \]

pure weak contribution:

\[\begin{array}{c}
Z & W^+ & Z \\
\vdots & \vdots & \vdots \\
Z & \gamma & Z \\
\end{array} \]

virtual γ contribution:

\[\begin{array}{c}
\gamma & W^+ & \gamma \\
\gamma & \gamma & \gamma \\
\gamma & \gamma & \gamma \\
\end{array} \]

real γ contribution:

\[\begin{array}{c}
W^+ & \gamma & W^+ \\
\gamma & \gamma & \gamma \\
\gamma & \gamma & \gamma \\
\end{array} \]
Hierarchy of electroweak radiative corrections

- Effective Born approximation (EBA)
 - used in QCD programs in Run-1
- NLO corrections in the pole approximation
 - large effect at $Q \sim M_V$
 - Can be classified into initial-state, final-state, and interference terms
- Final-state QED radiation dominates (Baur, Keller, Wakeroth, 1998)
- Full NLO (including non-resonant terms)
 - required at $Q \gg M_V$
- Radiation of two (Baur, Stelzer, 2000) and many photons (Placzek, Jadach, 2003; Carlone Calame et al., 2003)

\[
\delta M_{W}^{EW} = -65 \pm 20 \, \text{MeV} \quad \text{and} \quad -168 \pm 10 \, \text{MeV}
\]
Factorization at small q_T
(resummation)

☞ E. Laenen’s talk

Relevant momentum scales:
$Q^2 \gg 1 \text{ GeV}^2, q_T \ll Q, x \sim 1$

Trouble:
The series $\frac{1}{q_T^2} \alpha_S^n \ln^m \frac{q_T^2}{Q^2}, \ m = 0, ..., 2n - 1$ lose convergence

Solution: summation of logarithms through all orders of α_S
q_T resummation: mainstream approaches

- Formalism in impact parameter (b) space \textit{(Collins, Soper, Sterman)}
 - theory symmetries preserved automatically
 - conservation of momentum
 - fast and accurate evaluation of Fourier-Bessel transform possible \textit{(ResBos, Balazs, P. N., Yuan)}

- Formalism in q_T space \textit{(Altarelli, Ellis, Greco, Martinelli; Ellis, Ross, Veseli)}
 - straightforward identification of logs for matching with the fixed-order result
Recent developments

- Hybrid methods:
 - analytical evaluation of Fourier-Bessel transform \((\text{Kulesza, Stirling})\)
 - threshold-\(q_T\) resummation \((\text{Kulesza, Sterman, Vogelsang})\)
 - \(q_T\) resummation for \(c, b\) quarks in a variable-flavor number (ACOT) scheme \((\text{Berge, P.N., Olness})\)
 * flavor dependence of \(W\) and \(Z\) cross sections
 - \(q_T\) resummation with small-\(x\) effects \((\text{Berge, P.N., Olness, Yuan})\)
 * broadening of \(d\sigma/dq_T\) at the LHC

- Structure of the resummed form factor
 \((\text{Collins, Soper; CSS; Catani, de Florian, Grazzini})\)

- Application to polarized \(W\) and \(Z\) production at RHIC
 \((\text{Weber; P.N., Yuan})\)
Sensitivity of q_T cross sections to nonperturbative contributions

Resummed $d\sigma/dq_T^2$ is expected to include a universal nonperturbative function $S_{NP}(b, Q)$ (analogous to universal PDF’s)

$S_{NP}(b, Q)$ is non-negligible in any non-pert. model at $q_T < 10$ GeV

Comparison of models for nonpert. terms (b_* and extrapolation)

Variation of non-pert. terms moves the peak of $d\sigma/dq_T$ by 200-500 MeV

* Valid models for $S^{NP}(b, Q)$ must provide accuracy comparable to $\delta M_W \sim 30$ MeV
Models for nonperturbative contributions

- b_* anzatz (CSS, 1985)
 - simultaneous agreement with all fixed-target Drell-Yan and Z^0 boson data (Landry, Brock, P. N., Yuan, 2002)
 - strong evidence for universality of $S_{NP}(b, Q)$

- freezing $\alpha_s(\mu)$ at $\mu \sim \Lambda_{QCD}$
- renormalon analysis (Korchemsky, Sterman, 1995)
- extrapolation of leading power terms (Qiu, Zhang, 2000)
- principal value resummation (Sterman; Kulezsa, Sterman, Vogelsang, 2002)
- dispersive equations (Guifanti, Smye, 2000)
- k_T-dependent factorization (X. Ji, J. Ma, F. Yuan, 2004)

In all models, incalculable power correction terms are required for agreement with data ($\sim \exp{-gb^2}$, with $g \sim 0.8$ (2.7) in extrapolation (b_*) model)
Combined effects of electroweak corrections, resummation, and PDF uncertainties

(Active ongoing work)
QCD resummation + final-state QED radiation
(Q. Cao, C.-P. Yuan, 2004)

- New version of the resummation program ResBos (ResBos-A)

- Includes the dominant EW contribution from final-state QED radiation

- Without detector smearing, QCD and QED corrections to M_T are of similar magnitude and opposite sign

Detector smearing reduces QED correction without strong effect on QCD corrections
CTEQ error analysis for W and Z observables
(Huston, P. N., Pumplin, Stump, Tung, Yuan, in progress)

1. Effect of PDF uncertainties on W and Z distributions

2. Nonperturbative corrections to q_T distributions
 - explore form and universality of $S_{NP}(b, Q)$
 - determine “tolerance range” for $S_{NP}(b, Q)$ and uncertainties in $d\sigma/dq_T$, etc.

3. Simultaneous global analysis of PDF’s and q_T distributions
 - correlated errors for the PDF’s and $d\sigma/dq_T$
Vector boson production as the background for new physics

- Searches for contact interactions, W' and Z', extra dimensions...

- WW and ZZ production
 - background for heavy Higgs production ($M_H > 160$ GeV)

- $\gamma\gamma$ production:
 - background for light Higgs production ($M_H \sim 120 – 140$ GeV)
 - soft gluon radiation in gg channel
 - photon fragmentation contributions
Conclusions

1. NNLO for σ_{tot} & rapidity distributions
 - global effect: rescaling of σ_{NLO} by $K \sim 2.5 - 5\%$
 - full NNLO is needed to describe details (forward rapidity, high p_T, angular distributions (?))

2. Requirements for the Tevatron Run-2 and LHC ($\delta \sim 1\%$)
 - Simultaneous implementation of leading NNLO-QCD and NLO-EW effects
 - Reduction of uncertainties in nonperturbative inputs (PDF’s, p_T power corrections)
 - Correlated theory uncertainties (PDF’s vs. p_T)
 - Attention to minor details: old electroweak parameters or low computer accuracy can now make big difference!
Backup slides
q_T resummation for vector boson production

Resummation: W boson production at the Tevatron

- No QCD radiation
- QCD radiation

Needed to precisely measure W-boson mass

Resummation describes all q_T range in one unified framework
QCD factorization in hard and soft regions (CSS)

Finite-order (FO) factorization
\[\Lambda_{QCD}^2 \ll q_T^2 \sim Q^2 \]

Small-\(q_T\) factorization
\[\Lambda_{QCD}^2 \ll q_T^2 \ll Q^2 \]

Solution for all \(q_T\) (matching):
Factorization at $q_T \ll Q$

Realized in the space of the impact parameter b (conjugate to q_T)

$$\frac{d\sigma_{AB\rightarrow VX}}{dQ^2 dy dq_T^2} \bigg|_{q_T^2 \ll Q^2} = \sum_{a,b=\text{g, u, d},\ldots} \int \frac{d^2 b}{(2\pi)^2} e^{-i\vec{q}_T \cdot \vec{b}} \tilde{W}_{ab}(b, Q, x_A, x_B)$$

In the perturbative region ($b \ll 1 \text{ GeV}^{-1}$):

$$\tilde{W}_{ab}(b, Q, x_A, x_B) = \sum_j |\mathcal{H}_j|^2 e^{-S(b,Q)} \overline{P}_a(x_A, b) \overline{P}_b(x_B, b)$$

\mathcal{H}_j is the hard vertex, S is the soft (Sudakov factor), $\overline{P}_a(x, b)$ is the unintegrated PDF,

$$\overline{P}_a(x, b) = \int d^{n-2}k_T e^{-i\vec{k}_T \cdot \vec{b}} P_a(x, \vec{k}_T)$$

$\overline{P}_a(x, b)$ factorizes as

$$\overline{P}_a(x, b) \equiv \sum_{i=g,u,d\ldots} [C_{ai} \otimes f_i](x_A, \mu_F, b)$$

$S(b, Q)$, $\overline{P}_a(x, b)$, and $C_{ai}(x_A, \mu_F b)$ are calculable in perturbative QCD