
Contents

Contents

1 objectID | Di�erent parsed object type identi�ers 2
2 MAX LINE LENGTH | Maximum allowed line length in

input �le . 3

3 TCCparserState | di�erent TCC parser states 4
4 TCCparser | Class which parses the L2 global con�guration

�le . 5

5 L2Gparser | Class which parses the L2 global con�guration
�le . 9

6 HEADER SIZE | Number of bytes in the binary data object
header. 11

7 HEADER NAME | Name of the header �eld (in lower
case) . 12

8 TRAILER SIZE | Number of bytes in the binary data ob-
ject trailer. 13

9 TRAILER WORD | Object trailer word which is used to
con�rm the end of an object . 14

10 NAME NAME | Name of the name �eld (in lower case) 15
11 ObjectParser | Class which parses a given object in the L2

ASCII script �le . 16

12 ToolParser | Class which parses a tool for the L2G from
the TCC script �le . 19

13 ScriptParser | Class which parses a script for the L2G from
the TCC script �le . 21

14 ParseString | Subclass of string with added functionaity for
parsing . 23

15 objptype | Di�erent object parameter types 26
16 ObjectParam | Data for a single object parameter 27

17 MStream | Class which streams data into memory 28

Class Graph . 35

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

1

1 objectID

1

enum objectID

Di�erent parsed object type identi�ers

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

2

2 MAX LINE LENGTH

2

const int MAX LINE LENGTH

Maximum allowed line length in input �le

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

3

3 TCCparserState

3

enum TCCparserState

di�erent TCC parser states

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

4

4 TCCparser

4

class TCCparser : public MStream

Class which parses the L2 global con�guration �le

Inheritance

17

MStream

_
4

TCCparser

>

5

L2Gparser

Public Members

4.1 TCCparser (char *saddr, int size)
Constructor to set up the Memo-
ryStream . 6

4.2 TCCparser (char *saddr, char *eaddr)
Constructor to set up the Memo-
ryStream . 6

4.3 void getLine (ParseString &line)
Reads in a line from the current
input �le . 7

4.4 bool parseFile (char *fname)
Opens the given �le and parses it

7
4.5 void addParser (ObjectParser *oparser)

Adds the code to parse the given
object . 7

4.6 string errorLine (void) Returns a string containing the
line number of the current input
�le . 8

Class which parses the L2 global con�guration �le. It reads the low level ASCII
format and turns it into a binary �le for downloading to the Alpha VME cards.
The writing to memory is done through the MemoryStream class.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

5

4 TCCparser

Author: Roger Moore (moore@pa.msu.edu)

4.1

TCCparser (char *saddr, int size)

Constructor to set up the MemoryStream

Constructor to set up the MemoryStream. The arguments are identical to those
of the MStream class constructor which requires the start address and size of
the available memory block. This constructor calls inherited MStream class
constructor with the given arguments.

Parameters: saddr | start address of memory stream
size | size in bytes of ememory stream bu�er

4.2

TCCparser (char *saddr, char *eaddr)

Constructor to set up the MemoryStream

Constructor to set up the MemoryStream. The arguments are identical to those
of the MStream class constructor which requires the start and end addresses of
the available memory block. This constructor calls inherited MStream class
constructor with the given arguments.

Parameters: saddr | start address of memory stream
eaddr | end address of memory stream

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

6

4 TCCparser

4.3

void getLine (ParseString &line)

Reads in a line from the current input �le

Reads in a line from the current input �le. The routine checks that the current
parser state is open and then reads in the next line using the getline method
of the ifstream class. This character array is used to initialize the ParseString
class and the lower and tidy methods of this class are called to format the line.
Finally the line number of the input �le is increased by one.

Parameters: line | parse string in which to return the next input
line

4.4

bool parseFile (char *fname)

Opens the given �le and parses it

Opens the given �le and parses it. The routine loads the
ASCII �le line by line. Each line is then scanned for "new

":Whenthispatternisfoundtheparsercallstheobjectparserassociatedwiththegivenstring:T hisobjectparseristhenresponsibleforreadingtheentireASC

4.5

void addParser (ObjectParser *oparser)

Adds the code to parse the given object

Adds the code to parse the given object. The name of the object and its parser
are stored in the internal object map. This map is used to link the object type
detected in the data with the correct parsing code for that object type.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

7

4 TCCparser

Parameters: name | type name of the object associated with this
parser
oparser | parser class which can read in this type of
object

4.6

string errorLine (void)

Returns a string containing the line number of the current input �le

Returns a string containing the line number of the current input �le. This
routine is intended for use for printing error messages. When called it returns
the string " at line XXXX", where XXXX is the current line number of the
input �le.

Return Value: string containing current input �le line number

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

8

5 L2Gparser

5

class L2Gparser : public TCCparser

Class which parses the L2 global con�guration �le

Inheritance

17

MStream

_
4

TCCparser

_
5

L2Gparser

Public Members

5.1 L2Gparser (char *saddr, int size)
Constructor to set up the class . 9

5.2 L2Gparser (char *saddr, char *eaddr)
Constructor to set up the class . 10

Class which parses the L2 global con�guration �le. This class inherits the pars-
ing functionality from the generic TCCparser class. The new constructor func-
tion creates the tool and script parser objects needed to parse the L2 global
con�guration �les and then registers them with the parser.

Author: Roger Moore (moore@pa.msu.edu)

5.1

L2Gparser (char *saddr, int size)

Constructor to set up the class

Constructor to set up the class. This function calls the generic TCCparser

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

9

5 L2Gparser

constructor function and then creates and registers parsers for the tool and
script objects in the input �le for the L2 global processor.

Parameters: saddr | start address of memory stream
size | size in bytes of ememory stream bu�er

5.2

L2Gparser (char *saddr, char *eaddr)

Constructor to set up the class

Constructor to set up the class. This function calls the generic TCCparser
constructor function and then creates and registers parsers for the tool and
script objects in the input �le for the L2 global processor.

Parameters: saddr | start address of memory stream
eaddr | end address of memory stream

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

10

6 HEADER SIZE

6

const int HEADER SIZE

Number of bytes in the binary data object header.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

11

7 HEADER NAME

7

const string HEADER NAME

Name of the header �eld (in lower case)

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

12

8 TRAILER SIZE

8

const int TRAILER SIZE

Number of bytes in the binary data object trailer.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

13

9 TRAILER WORD

9

const int TRAILER WORD

Object trailer word which is used to con�rm the end of an object

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

14

10 NAME NAME

10

const string NAME NAME

Name of the name �eld (in lower case)

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

15

11 ObjectParser

11

class ObjectParser

Class which parses a given object in the L2 ASCII script �le

Inheritance

11

ObjectParser

>

12

ToolParser

>

13

ScriptParser

Public Members

11.1 ObjectParser (string name, objectID id)
The constructor function for the
class . 17

11.2 bool parse (TCCparser &parser)
Parses the object from the given
input stream 17

string getName (void) Returns the name of the type of
object parsed.

Protected Members

11.3 virtual bool
check (list<ObjectParam> &op)

Checks the list of object parame-
ters found . 18

Class which parses a given object in the L2 ASCII script �le. It is called by the
TCCparse class to read in an object and then right it out to the binary memory
stream.

All subclasses which inherit from this class must be copy-safe since the TC-
Cparser class makes a copy of the parser when a new parser is added to the
class.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

16

11 ObjectParser

Author: Roger Moore (moore@pa.msu.edu)

11.1

ObjectParser (string name, objectID id)

The constructor function for the class

The constructor function for the class. The routine converts the object type
name into lower case and then copies it into internal storage. The ID parameter
is an integer saved in the binary output format which is used to identify the
object type.

Parameters: name | name of object type for this parser
id | object type identi�cation number

11.2

bool parse (TCCparser &parser)

Parses the object from the given input stream

Parses the object from the given input stream. The TCCparser class calls this
function which will then read in the ASCII representation of the object and write
it out to the given memory stream. The function reads in a list of parameters
and then passes these to the virtual check function to ensure that all is well,
before writing it out to the given parser class.

Parameters: parser | TCC parser which is reading the input �le

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

17

11 ObjectParser

11.3

virtual bool check (list<ObjectParam> &op)

Checks the list of object parameters found

Checks the list of object parameters found. This function varies depending on
the type of object being parsed. If it returns false then the ObjectParser will
likewise return false to its calling routine.

Return Value: true if no errors found, false otherwise
Parameters: op | list of object parameters found in �le

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

18

12 ToolParser

12

class ToolParser : public ObjectParser

Class which parses a tool for the L2G from the TCC script �le

Inheritance

11

ObjectParser

_
12

ToolParser

Public Members

12.1 ToolParser (void) The constructor function for the
class . 19

12.2 bool check (list<ObjectParam> &op)
Checks the parameter list for the
tool object . 20

Class which parses a tool for the L2G from the TCC script �le. The class is
called from the TCCparser class when it �nds an object type of type "TOOL"
in the input �le. This object is then parser and the parameters checked by this
class.

Author: Roger Moore (moore@pa.msu.edu)

12.1

ToolParser (void)

The constructor function for the class

The constructor function for the class. The routine calls the ObjectParser base
class constructor function with "tool" as the object name.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

19

12 ToolParser

12.2

bool check (list<ObjectParam> &op)

Checks the parameter list for the tool object

Checks the parameter list for the tool object. All tools must have the TYPE
�eld as the �rst parameter and the INDEX �eld as their second paramter. If
not this routine will stop the parser and print an error message.

Return Value: true if no errors found, false otherwise
Parameters: op | list of object parameters

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

20

13 ScriptParser

13

class ScriptParser : public ObjectParser

Class which parses a script for the L2G from the TCC script �le

Inheritance

11

ObjectParser

_
13

ScriptParser

Public Members

13.1 ScriptParser (void)
The constructor function for the
class . 21

13.2 bool check (list<ObjectParam> &op)
Checks the parameter list for the
script object . 22

Class which parses a script for the L2G from the TCC script �le. The class is
called from the TCCparser class when it �nds an object type of type "SCRIPT"
in the input �le. This object is then parser and the parameters checked by this
class.

Author: Roger Moore (moore@pa.msu.edu)

13.1

ScriptParser (void)

The constructor function for the class

The constructor function for the class. The routine calls the ObjectParser base
class constructor function with "script" as the object name.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

21

13 ScriptParser

13.2

bool check (list<ObjectParam> &op)

Checks the parameter list for the script object

Checks the parameter list for the script object. All scripts must have the BIT
�eld as the �rst parameter. If not this routine will stop the parser and print an
error message.

Return Value: true if no errors found, false otherwise
Parameters: op | list of object parameters

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

22

14 ParseString

14

class ParseString : public string

Subclass of string with added functionaity for parsing

Inheritance

string

_
14

ParseString

Public Members

14.1 ParseString (char *value)
Constructor taking a character ar-
ray to initialize the string 24

14.2 ParseString (void)
Constructor taking no arguments

24
14.3 void tidy (void) Removes preceeding and excess

spaces . 24

14.4 void lower (void) Converts the entire string to lower
case letters . 25

14.5 string token (int n, char delim=' ')
Returns the given token in the
string using the delimiter 25

Subclass of string with added functionaity for parsing. The added functions are
to simplify the task of parsing strings to look for speci�c keywords. The new
routines can convert the string to lower case, tidy up the spacing and then split
the string according to a given delimiter.

Author: Roger Moore (moore@pa.msu.edu)

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

23

14 ParseString

14.1

ParseString (char *value)

Constructor taking a character array to initialize the string

Constructor taking a character array to initialize the string. The routine simply
calls the base class string constructor function which takes a character array as
an argument.

14.2

ParseString (void)

Constructor taking no arguments

Constructor taking no arguments. The routine simply calls the base class string
constructor function which requires no arguments.

14.3

void tidy (void)

Removes preceeding and excess spaces

Removes preceeding and excess spaces. The routine loops over the string re-
moving any spaces in front of the text. It then reduces spacing in the string
to single space characters. For example the string " hello there" would become
"hello there" after a call to tidy.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

24

14 ParseString

14.4

void lower (void)

Converts the entire string to lower case letters

Converts the entire string to lower case letters. Loops over the string elements
and if they are capital letters it converts them to the lower case equivalent.

14.5

string token (int n, char delim=' ')

Returns the given token in the string using the delimiter

Returns the given token in the string using the delimiter. The routine loops
over the string elements looking for the delimiter character. When it is found
it will mark the beginning of the token and continue looping until it �nds the
next delimiter or end of the string which marks the end of the token. It then
uses the substr method inherited from string to return the token substring.

Token zero starts at the begining of the string and ends at the �rst delimiter
or end of the string.

Parameters: n | number of token requested
delim | delimiter character used to divide the string

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

25

15 objptype

15

enum objptype

Di�erent object parameter types

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

26

16 ObjectParam

16

class ObjectParam

Data for a single object parameter

Public Members

16.1 ObjectParam (string name, string value)
Constructor function which �lls
the data �elds 27

string name name of the object parameter

string value value of the paramter

objptype type type of the parameter

Data for a single object parameter. This class stores the data for one parameter
of an object. The constructor also uses the value �eld to determine the type of
the parameter and �lls the type �eld accordingly.

Author: Roger Moore (moore@pa.msu.edu)

16.1

ObjectParam (string name, string value)

Constructor function which �lls the data �elds

Constructor function which �lls the data �elds. The type �eld is �lled by exam-
ining the value �eld passed. If the value starts and ends with a double quote (")
the parameter type is set to STRING and the quotes are removed. If a decimal
point is found then the type is set to FLOAT, otherwise the type defaults to
INT.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

27

17 MStream

17

class MStream

Class which streams data into memory

Inheritance

17

MStream

>

4

TCCparser

Public Members

17.1 MStream (char *start, int size)
Constructor which requires the
maximum memory available 29

17.2 MStream (char *start, char *end)
Constructor which requires the
start and end memory locations

30
17.3 char* start (void) Function which returns the �rst

memory location of the stream . . 30

17.4 char* end (void) Function which returns the cur-
rent internal pointer value 30

17.5 MStream& operator<< (int i) Operator to write an integer into
the stream . 31

17.6 MStream& operator<< (oat f)
Operator to write a oat into the
stream . 31

17.7 MStream& operator<< (double d)
Operator to write a double into the
stream . 31

17.8 MStream& operator<< (const char *s)
Operator to write a constant null
terminated string into the stream

32
17.9 MStream& operator>> (int &i)

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

28

17 MStream

Operator to read an integer from a
memory stream 32

17.10 MStream& operator>> (oat &f)
Operator to read a oat from a
memory stream 33

17.11 MStream& operator>> (double &d)
Operator to read a double from a
memory stream 33

17.12 MStream& operator>> (char *s)
Operator to read an integer from a
memory stream 33

Class which streams data into memory.The class will only take int, oat or string
(char * only) variables and streams them into memory. Care is taken to ensure
that all data is aligned on 4 byte boundaries since otherwise Alpha CPUs will
produce unalign exception errors. Padding of strings is taken care of by the
class so that the user need not worry about such things.

At initialization time the class will also perform a simple check on the byte
order of the host machine. If this di�ers from the Alpha architecture standard
then all integers and oats will be byteswapped to the Alpha standard before
being stored in the memory bu�er.

The class is written without inheritance from the STL because it must be
capable of running online on the Alpha VME hardware. This also precludes use
of dynamic memory allocation except.

Author: Roger Moore (moore@pa.msu.edu)

17.1

MStream (char *start, int size)

Constructor which requires the maximum memory available

Constructor which requires the maximum memory available. This constructs
the stream in cases when the maximum available memory is known. The limits
are checked everytime something is read from or written to the stream.

Parameters: start | memory location where the stream will start
size | available memory size in bytes

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

29

17 MStream

17.2

MStream (char *start, char *end)

Constructor which requires the start and end memory locations

Constructor which requires the start and end memory locations. This constructs
the stream such that all the data will lie between the two locations given. Each
time data is written to or from the stream these limits are checked.

Parameters: start | memory location where the stream will start
end | highest memory location the stream can use

17.3

char* start (void)

Function which returns the �rst memory location of the stream

Function which returns the �rst memory location of the stream. The function
is a simple inlined call returning the value of the `som' internal pointer.

Return Value: pointer to the start of the stream's memory block

17.4

char* end (void)

Function which returns the current internal pointer value

Function which returns the current internal pointer value. The function is a
simple inlined call returning the value of the `ptr' internal pointer. When writing
data to the stream this de�nes the end of the currently valid data and so can
be used to �nd out which region of memory needs to be written to a �le.

Return Value: pointer to one byte beyond the end of the valid data

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

30

17 MStream

17.5

MStream& operator<< (int i)

Operator to write an integer into the stream

Operator to write an integer into the stream. If the host's byte order di�ers
from that of an Alpha processor the bytes will be swapped before writing. If
the stream size is exceeded then no data will be written.

Return Value: reference to the memory stream being used
Parameters: i | integer value to write into the stream

17.6

MStream& operator<< (oat f)

Operator to write a oat into the stream

Operator to write a oat into the stream. If the host's byte order di�ers from
that of an Alpha processor the bytes will be swapped before writing. If the
stream size is exceeded then no data will be written.

Return Value: reference to the memory stream being used
Parameters: f | oating point value to write into the stream

17.7

MStream& operator<< (double d)

Operator to write a double into the stream

Operator to write a double into the stream. The routine casts the double as a
oat and then writes out the single precision value this will result in a loss of
precision but does reduce the variable toa 4 byte quantity.

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

31

17 MStream

Return Value: reference to the memory stream being used
Parameters: d | variable to write into the stream as a oat

17.8

MStream& operator<< (const char *s)

Operator to write a constant null terminated string into the stream

Operator to write a constant null terminated string into the stream. This oper-
ator will also pad the string out to the next 4-byte boundary. This is to ensure
correct alignment for Alpha processors.

Return Value: reference to the memory stream being used
Parameters: s | pointer to the character string to write into the

stream

17.9

MStream& operator>> (int &i)

Operator to read an integer from a memory stream

Operator to read an integer from a memory stream. This routine reads the data
at the current pointer to the memory stream and returns it in the integer given.
The pointer is also advanced 4 bytes.

Return Value: reference to the memory stream being used
Parameters: i | reference to integer variable to be read from the

stream

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

32

17 MStream

17.10

MStream& operator>> (oat &f)

Operator to read a oat from a memory stream

Operator to read a oat from a memory stream. The routine reads data pointed
to by the internal stream pointer and returns this as the given oating point
variable. The pointer is advanced by 4 bytes.

Return Value: reference to the memory stream being used
Parameters: f | reference to oat variable to be read from the

stream

17.11

MStream& operator>> (double &d)

Operator to read a double from a memory stream

Operator to read a double from a memory stream. The routine reads data
pointed to by the internal stream pointer as a 4 byte oating point value. this
4 byte value is then cast into the given double precision variable and returned.
The internal pointer is advanced by 4 bytes by this function.

Return Value: reference to the memory stream being used
Parameters: d | reference to double variable to be read from the

stream

17.12

MStream& operator>> (char *s)

Operator to read an integer from a memory stream

Operator to read an integer from a memory stream. The routine reads data

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

33

17 MStream

pointed to by the internal stream pointer and puts it into the given string array.
The pointer is then advanced by the length of the string rounded to the next
largest multiple of four. (This is to ensure correct int and oat byte alignment
for alpha processors.)

Return Value: reference to the memory stream being used
Parameters: s | pointer to character string to be read from the

stream

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

34

Class Graph

Class Graph

11

ObjectParser . 16

>

12

ToolParser . 19

>

13

ScriptParser . 21

14

ParseString . 23

16

ObjectParam . 27

17

MStream . 28

>

4

TCCparser . 5

>

5

L2Gparser . 9

This page has been automatically generated with DOC++

DOC++ is c1995 by Roland Wunderling
Malte Z�ockler

35

