
TCC Low Level Parser
Purpose
The TCC low level parser is designed to convert the low level ASCII based
configuration files into a binary format which can then be downloaded to the
Alpha processor boards. This parser only performs a very minimal check on the
data because it assumes the high level parser has already done this.

Input File Syntax
The parser expects the input file to be divided into objects. Each object must start
with the declaration:

new Object {

where “Object” is the type of object being declared. The end of an object
definition is a line containing a single “}” symbol.

Between the pairs of brackets there must be a series of fields keyword/value
pairs which are defined using the syntax:

KEYWORD = value

The parser program requires at least one space between the keyword, the equal
sign and the value. Three data types are permitted as values. These are:

• String – any series of non-space characters enclosed by double quotes
• Float – any non-string value containing a decimal point
• Integer – any non-float and non-string value

These rules show how the program determines the field type. Integers and floats
are evaluated using the “atoi()” and “atof()” library routines. This means that if
they are passed a non-numeric value the result will be read as zero.

Multiple values may be declared for a single keyword by separating them with
commas. For example:

KEYWORD = value1,value2,value3,value4

Is an allowable syntax, with each value potentially being of a different data type.
The parser then associates each value with the given keyword.

Each object must have as its first keyword “HEADER” and this must contain the
number of each data type which is in the object encoded into a single 32-bit word
as illustrated below:

This header is compared against the actual number of each data type which are
found and if there is a difference and error is generated.

Further checking of parameters is performed by the relevant object parser. This is
passed a list of keyword/value pairs and then performs minimal checking to
ensure the object is valid. If the object is not valid and error is generated and the
parser will abort.

Not
Used

No. of
Strings

No. of
Floats

No. of
Integers

00 030201HEADER = 0x

Example
An example of a possible level 2 global configuration file is given below. This file
contains two types of objects, scripts and tools.

new Tool {
 HEADER = 0x010203
 TYPE = 1
 INDEX = 2
 NAME = "Loose_Electron"

DPHI = 0.3
 EOPMIN = 0.8

}

new Tool {
 HEADER = 0x010203
 TYPE = 2
 INDEX = 2
 NAME = "Loose_Jet"
 DPHI = 0.3
 DETA = 0.3

}

new Tool {
 HEADER = 0x010008
 TYPE = 3
 INDEX = 1
 NAME = "e/Jet_Mass"
 NTOOL = 2
 TOOL = 1,2
 TOOL = 2,2

}

new Script {
 HEADER = 0x01030c
 BIT = 1
 NAME = "e/Jet/Mass_Script"
 NTOOL = 3
 TOOL = 1,2,10.0,2
 TOOL = 2,2,10.0,1
 TOOL = 3,1,50.0,1

}

Technical Implementation
The class diagram for the TCC parser program is shown below with the specific
classes need to interpret the Level 2 global configuration file added.

The floats and integers are all stored as 32-bit quantities in the Alpha processor
byte order. Strings are stored as null terminated character arrays which are
padded up to the next multiple of 4 bytes. This is to ensure that all integer and
float quantities are stored on 4-byte aligned memory locations as required by the
Alpha processor.

The MStream class performs the conversion into binary as well as swapping the
data into Alpha byte order (if needed) and padding strings to 4-byte multiples. It
is written without using the STL library so that it can also be compiled on the
Alpha board and used for reading in the binary data.

The TCCparser class controls the input of ASCII file and checks each line for the
start of a new object. When a new object is found the relevant ObjectParser class is
called to read in and then check the object. Specific parsers for different input file
formats inherit from the generic TCCparser class and declare specific ObjectParsers
to the inherited TCCparser class. It is these ObjectParsers which are passed the
object found in the input file. If no parser is found for a given object then a error
will be generated.

The specific object parsers all implement the virtual method check() which is
passed a list of ObjectParam classes. There is one instance of this class for each
object parameter found and the class stores the keyword, the value and the data
type. The purpose of the check function is to ensure that the basic fields required
for all objects of that type are present. If they are the routine returns “true”
otherwise it must return “false” which will cause the parser to abort.

