
PC164 Documentation Compiling Programs Page 1
R. Moore 21/04/98

Compiling Programs for PC164 Board

System Setup
Directory Structure
The system administrator needs to install the Digital PC164 Software Development Kit
(SDK) within the directory structure shown below:

The ebsdk directory contains the SDK files as unpacked from the tar file which the
distribution comes in. The lib and include directories contain library and header files
respectively. These must be named as shown unless the Makefile.rules file is edited. The
choice of the root directory, level2 in the figure above, is completely arbitrary and must
be inserted into the rules file as described below.

Adapting the Rules File
The rules file contains the default rules for building a downloadable application. It
specifies the location of the SDK as well as the various directories to search for libraries,
header files etc. The variables which will need to be edited for a given system
configuration are:

• TOPDIR = root directory for the whole system directory structure
• TFTPDIR= directory to copy the executables to for TFTP transfer to the board
• BOARDNAME = IP name of the board (or it’s IP address)

These are all found at the top of the rules file and must be altered to the correct locations.
Users who are going to download programs to the board must also be given permission to
write to the TFTP directory. Other variables might need tweaking for different compiler
versions, executable locations etc.

level2/ ebsdk/

ebtools/

ebfw/

lib/

boot/

include/

Makefile.rules

PC164 Documentation Compiling Programs Page 2
R. Moore 21/04/98

User Setup
Standards
The new makefiles enforce several standards for compiling programs. The most
noteworthy are the directory structure for each application, which is outlined below, and
the use of the C++ compiler to compile all C program code as well as C++.

The choice to use the C++ compiler for C code is based on several factors:

• C++ compiler enforces strong prototyping and typecasting on programmers which
allows errors to be detected by the compiler. The standard DEC C compiler will just
assume functions return integers if no prototype is given which leads to run time
errors if header files are omitted.

• When compiling code without compiler optimizations the C++ compiler produces
significantly (approximately 30%) faster code that the C compiler.

• The standard D0 offline environment will be C++. By ensuring our C code is C++
compatible it will make integration into the offline environment for simulations much
more straightforward.

There are now two types of applications which you can compile: a library or an
executable. The library application option is meant for standard routines which will be
linked into several executables. With this option the makefile will archive all the object
files into a single library file. If you choose the executable option then the makefile will
link the object files produced into an executable and then copy this to the correct system
location for TFTP download to the board.

Directory Structure
To compile programs for downloading to the PC164 board you need to create the
following directory structure:

pc164/ application/

library/

src/

depends/

inc/

obj/

src/

depends/

inc/

obj/

PC164 Documentation Compiling Programs Page 3
R. Moore 21/04/98

The names of the pc164, application and library directories are chosen by the user,
however the src, obj, inc and depends directories must be given those precise names.
Only one library or application directory is needed per application or library the user
wishes to compile.

The contents of the four directories for each application/library are the following:
src - source code
obj - compiled object code
inc - header files
depends - automatically generated file dependencies

In addition each application directory contains a “Makefile”. This makefile must define
the application directory, the type of the application (executable or library) and any user
defined flags required to compile the program correctly.

Customizing the Makefile
The makefile for compiling the application contains several variables to allow the user to
define the application’s directory, name and type as well as providing a means to add
extra flags to the various compilation stages. The variables the user must define are:

• APP = name of the application
• APPTYPE= type of the application. This must be either ‘lib’ or ‘exe’
• APPDIR = base directory of the application containing the src, obj, etc. directories
• SRCS = list of source files separated by spaces e.g. “code1.c code2.c code3.c… ”

As well as these required variables there are several optional ones which give extra
compile flags to the various compiler stages.

• APPLIBDIR = extra library directories to search
• APPLIBS = extra libraries to link with
• APPASFLAGS = flags for the assembler
• APPCXXFLAGS= flags for the C++ compiler (also used to compile C code)
• APPCPPFLAGS = flags for the C pre-processor
• APPDEBUG = flags for the ladebug debugger

These optional flags are passed to the relevant commands without any formatting being
done. Consequently they must contain valid compiler flags i.e. The APPLIBDIR variable
must contain ‘-L’ in front of the directory name e.g. –L/user/lib.

As well as defining the variables above the user must also ensure that their makefile
includes the Makefile.rules file contained in the system directory for the PC164 board.
This is achieved by adding the command:

include /level2/Makefile.rules

PC164 Documentation Compiling Programs Page 4
R. Moore 21/04/98

at the end of the application’s makefile. The ‘/level2’ part of the filename must be altered
to the directory containing the Makefile.rules file on the system where the application is
to be compiled.

Using the Makefile
The makefile implements several different rules to make compiling, debugging and
tidying up easier. The primary use of the makefile is to compile only the parts of your
application that have been altered and then to link these to produce a new executable
which is then placed in the correct directory for TFTP transfer to the board. This is
achieved with the command:

> gmake

As well as this several other commands are implemented. To help remove unwanted files
created by the emacs editor there is the

> gmake purge

command which deletes all files ending with a tilde (~) in the application’s root, src and
inc directories. These files are backup files generated by the emacs editor. There are also
the commands

> gmake clean and > gmake spotless

which both delete the application’s object and executable files. The command “gmake
spotless” also deletes the dependency files created in the depends directory. The final
command implemented is

> gmake debug

which starts the debugger and attempts to connect it to the board. For this command to
work the board should already have the code downloaded to it and be waiting for a
connection from a ladebug client.

PC164 Documentation Compiling Programs Page 5
R. Moore 21/04/98

Example Makefile
Included below is an example of a makefile to compile the C++ test framework on
alfa-m.pa.msu.edu at Michigan State.

#
Makefile for C++ Framework for Level 2 Global Trigger
#
RWM 13/4/98
#

Applications name
APP = cpptest
APPTYPE = exe

Application directory
APPDIR = .

Source code files
SRCS = Tool.C ElectronTool.C frame.C \
 InputBuffer.C Electron.C Buffer.C

Application specific flags/libraries :
APPLIBDIR : library directories to search eg. -L/user/fred/lib
APPLIBS : Libraries to include eg. -lfred
APPASFLAGS : Flags for compiling assembly code
APPCXXFLAGS : Flags for compiling C/C++ code eg. -g, or -O4
APPCPPFLAGS : Flags for the C pre-processor eg. -I/user/fred/include
APPDEBUG : Flags for the Ladebug debugger program
APPLIBDIR =
APPLIBS =
APPASFLAGS =
APPCXXFLAGS = -O2
APPCPPFLAGS =
APPDEBUG =

default:
gmake $(APP)

include ../Makefile.rules

