1
DØ Note
Trigger Definition Language V1.0
06/11/98

DØ Run II Trigger Definition Language

A. Boehnlein, D. Claes, S. Fuess, J. Linnemann, R. Moore, C. Silva

Abstract

This document sets out the basics of the language which will be used to program the trigger in run II. It is meant as a working document which means it will evolve over time as more details are resolved and parts are implemented.

Introduction

The trigger definition language for Run II will be used to configure the Level 1, 2 and 3 triggers for data taking as well as diagnostic and test runs. The program will be stored in a single text file which will then go through several levels of processing before being downloaded to the hardware.

Overall System

The scheme of the configuration system is shown in Figure 1. The text file which describes the configuration will be generated by a Graphical User Interface (GUI). This interface will obtain information from a database about the current setup of the hardware to ensure the user generates a compatible file. It will also be possible to generate this text file by hand from an editor.

The next stage is to parse and check the language which is done by the TrigParse program. This program performs a rigourous check of the syntax and ensures that the file is consistent with the current hardware and software configuration which is stored in the database.

The final phase of combined processing is to pass the script to COOR. Here the resources which the script requests are checked against those in use and the state of the resources in are then updated in COOR.

After processing by COOR the script is split into three parts, one for each of the trigger levels. These subscripts are then passed to the individual machines which are responsible for configuring the hardware.

[image: image1.wmf]GUI

Interface

Text

Editor

TrigParse

COOR

Database

Level 2

Level 1

Level 3

Figure 1: Diagram showing how the configuration file will be parsed. The function of the various components is described in the text.

Data Types

There are four different data types supported in the configuration file. These are:

i) Floating Point : These are recognized as a string containing numerals and a decimal point. For example '123.' and '123.45' would be accepted as floating point numbers but '123' or '123.a' would not.

ii) Integer : These are defined as a string only containing numerals. For example '123' and '12345' are valid integers whereas '123.' and '1aB' are not.

iii) String : String values must always be enclosed by double quotes. Any alphanumeric character is acceptable except for a space. However to avoid confusion with other data types it is recommended that you avoid starting strings with numerals.

iv) Reference : These are similar to strings but are not enclosed by quotes. They must refer to the name of another object in the configuration file otherwise a syntax error will be generated.

Anatomy of the Configuration File

The global trigger configuration file is split into several sections as shown in Figure 2. The initial sections define and then configure the objects used by the actual trigger scripts, which is contained in the final section. Each section is described in detail below.

[image: image2.wmf]D

Ø Trigger Script

Structure definitions

(from database)

Tool/Object

configurations

Scripts for each

trigger bit

Figure 2: Internal layout of the trigger configuration script. The first section is optional and can be dropped once the online database is fully functional.

Structure Definitions

The first part of the configuration file deals with defining the structure of the objects used by the various trigger levels. This information is added to the head of the file to make it easier to parse, although it is envisaged that the primary source for this data will be the online database when that is added to the system.

There are three sections of definitions; one for each of the three trigger levels. Each starts and ends with the lines:

L#_STRUCTURES
and
END_L#
respectively, where the hash (#) is replaced by the trigger level, e.g. L2_STRUCTURES and END_L2.

The level 2 structure definitions consist of the tool types as well as the generic arguments. For level 3 there are no generic arguments and so only the tools themselves need to be defined. Each definition starts and ends with the lines:

DEFINE L2Tool
and
END_DEFINE

The text after the define keyword is the name of the structure being defined. For level 2 structures this must start with 'L2', and for level 3 it must start with 'L3'.

Level 2 Tools Only

Following the header there is a list of level 2 pre-processors which are required by this tool. This is specified using the syntax:

PREPROCESSORS
L2pp1,L2pp2
where pp1 and pp2 are the names of one of the level 2 pre-processors e.g. L2CAL. The pre-processors specified here will have their needed qualifiers set for all events in which this tool is used. This field must not be included when defining a level 2 pre-processor structure because the parser uses this field to distinguish between L2 tools and L2 pre-processors.

Contained inside each structure definition is the list of fields within the structure. Each field is given on a separate line, the format of which is:

NAME
type
default
min
max

NAME is the name of the field, e.g. 'EMFRAC' or 'DETA'. The data type of the field is given by the type argument. This must be one of 'I', 'F', 'S' or 'R' for integer, float, string or reference respectively. The default value of the field is given next. If there is no default for the given field then '--' must be entered. This will force all instances of the structure to explicitly specify this field. The other possible value for a default is '*' which is discussed below. Finally min and max give the range of allowed values for the field. Again if there is no minimum or maximum then '--' must be entered.

An example of a complete L2 tool structure is given below:

DEFINE L2Electron

PREPROCESSORS L2CFT,L2CAL

TYPE

I
2
2
2

INDEX
I
*
0
9

DETA

F
0.2
0.
3.2

DPHI

F
0.2
0.
3.2

EMFRAC
F
0.9
0.
1.

END_DEFINE

This example shows a possible L2 electron tool. Note the special field called 'INDEX'. Unlike other fields the parser will automatically generate and insert the correct value for this field in all instances of the tool. The '*' as a default value tells the parser that it should recognize this field as requiring special treatment and behave accordingly.

Level 2 Tools Only

Every level 2 tool requires an INDEX field as well as a TYPE field, both of which are integers. If these are not included the parser will generate an error. The TYPE field should have a default, minimum and maximum value which are all equal and unique to that tool. This ensures that each tool has a unique identifier which cannot be overridden.

The INDEX field is the number of the tool in the online software array. The field will have a value of zero for the first tool of a given type and will be increased by one for each instance of the tool. The minimum should always be set to one and the maximum should be set to the C array index number of the last tool in the online software, e.g. if there is an array of 10 tools the maximum of INDEX should be set to 9. The minimum should always be zero.

Level 2 Pre-processors Only

Every level 2 pre-processor is required to specify an integer L2READOUT field, if this is not included the parser will generate an error. The default value of this field should be zero and the minimum and maximum should be 0 and 1 respectively as shown below:

L2READOUT

I
0
0
1

This field determines whether the pre-processor is required to write data to the level 2 global crate: 0 means no readout, 1 means readout required.

It is also possible to specify an array as a field. This is achieved using the syntax:

SIZE

I
0
0
9

ARRAY[SIZE]
R
--
--
--

This specifies an array of references with 'SIZE' entries. As is shown the length of the array can be specified as a separate field or can be given as a constant value , e.g. ARRAY[10]. Note that the C/C++ style of array indexing is used, hence in the example above the maximum value of SIZE is 9 corresponding to an array of maximum length 10 (0(9).

As well as special fields there is also one special structure called 'L2ToolArgs'. This structure defines the calling interface used by the script for all level 2 tools. An example is given below:

DEFINE L2ToolArgs

COUNT
I
--
1
--

MINIMUM
F
--
--
--

MAXIMUM
F
--
--
--

END_DEFINE

The reason for including such a structure, rather than hard coding it into the parser, is that it allows flexibility in the calling interface to level 2 tools without needing to rewrite the parser.

Object Definitions

Having now specified all the structures which will be used in the trigger configuration it is now necessary to actually fill the structures with the required values to achieve the triggers required. The middle section of the trigger configuration file therefore includes the specific tool configurations for the level 2 and 3 triggers.

The tools are defined in two different sections. The level 2 objects must be enclosed by the commands:

L2_OBJECTS

and

END_L2

Similarly the level 3 objects must be enclosed by the commands:

L3_OBJECTS

and

END_L3

To further differentiate between the level 2 and 3 objects, all object names must start with "L2_" or "L3_" for level 2 and level 3 tools respectively. The object definition syntax is shown below:

L2_Name L2Tool(FIELD1=value1, FIELD2=value2)

In this case the line defines a level 2 tool, called "L2_Name", which is of type "L2Tool". The text inside the brackets says that the default value (if any) of FIELD1 should be replaced by value1 and similarly for FIELD2. The remaining fields for the given tool type will be filled in using the default values. Any fields for this tool type which do not have a default value must be specified here or an error will be generated. The fields can be split over multiple lines but must always be enclosed inside brackets and separated from each other by commas. Examples of a couple of level 2 electron tools are given below:

L2_ETight L2Electron(DETA=0.1, DPHI=0.1)

L2_ELoose L2Electron(EMFRAC=0.8)

Level 2 Pre-processors Only

The syntax for specifying L2 pre-processor configurations is almost the same as for other objects with only two important differences. Firstly the object name must be "L2_PP" and secondly there is only one definition allowed for each pre-processor type. For example the level 2 calorimeter pre-processor could be configured by the line:

L2_PP L2Cal(L2READOUT=1, CLUSTERSIZE=3)

Trigger Scripts

There is one trigger script format which sets up each of the 128 trigger bits for all three trigger levels. Each trigger starts with the line:

TRIGGER number "name"

where number is the bit number, starting at 0 and going up to 127, and name is a string enclosed in double quotes which can be used to refer to this trigger in the logger. The trigger definition is concluded with the line:

END_TRIGGER

after which another trigger can be defined. Failure to end the definition like this will result in a syntax error.

L1 Configuration
The L1 section must be placed directly after the start of the block. The section is started and ended with the lines:

L1CONFIG

and

END_L1

respectively. (Details of the L1 configuration should be inserted here)

L2 Configuration
The level 2 trigger script contains three types of objects: event qualifiers, pre-defined tools from the header section and high level tools which are created on demand. The high level tools are tools which use the results of other tools as their inputs, for example a mass tool. The reason that these tools are generated on demand is to reduce the complexity of script writing. The disadvantage is that the results of these tools cannot be reused by other scripts in the same event, because each script will have its own tool. However it is unlikely that there will be two identical high level tools in different trigger scripts so the impact of this on performance should be minimal.

The L2 configuration data starts with the line:

L2SCRIPT "name"

where name is the name of the script, generally only used in error log messages. Following this there are the low level tool definitions. These take the form:

L2_Tool
"name"
num
low
high

L2_Tool is replaced by the name of the tool being used e.g. L2_Etight. In all cases the name must be prefixed by "L2_". After the tool instance name comes the name for the parameter set, name. This is used by the high level tools to reference this tool with these given parameters. Following that there is the parameter num which gives the number of objects sought. Finally low and high are floating point values which give the low and high thresholds for the objects returned by the tool. If either threshold is not desired then it should be set to "-1.".

The high level tools have a very similar syntax:

L2_Tool
"name"
tool1
tool2
num
low
high

In this case we don't have a tool name so now L2_Tool refers to the actual tool type. The extra arguments, tool1 and tool2, refer to the tools and parameter sets from which the high level tool will obtain its input data. As before num, low and high refer to the number of objects sought , the lowest threshold and the highest threshold respectively.

An example of a complete L2 trigger definition block is included below for the decay Z(e+e-:

L2SCRIPT "Z->ee"

L2_ETight
"Ze1"
1
25.
-1.

L2_ETight
"Ze2"
2
10.
-1.

L2_Mass
"Zee"
Ze1
Ze2
1
80.
100.

END_L2

Note that the tool "L2_ETight" must be defined in the L2 header section. As is shown the end of the L2 configuration is denoted by "END_L2".

L3 Configuration
The final section of the trigger script describes the L3 configuration. Unlike the L1 and L2 sections the flexibility of the L3 trigger design allows multiple scripts to be associated with a single trigger bit. Accordingly there can be multiple L3 filters included in a single trigger bit script. Each of these sections begins with:

L3FILTER
"name"

where name is the name of the particular filter. Following this there are a list of tools, much the same as the L2 definition. (More detail on L3 syntax needed here….)

The end of each of the L3 filter blocks is denoted by the line:

END_L3

Appendix A:

Level 2 Event Qualifiers

The level 2 event qualifiers are designed to control the readout of level 2 crates on an event by event basis while ensuring that the level 2 global MBT receives data from all input sources for every event which requires a level 2 decision. This synchronization is required because the Magic Bus Transceiver card (MBT) cannot switch input channel configurations on an event by event basis.

[image: image3.wmf]New Event

Arrives

Own

n

eeded

qualifier

set?

Wait for

Next Event

Write Data

to Global

Process

Event

L

2 Global

readout

parameter

set?

L2 Global

qualifier

set

?

Create Null

Data

Yes

No

No

No

Yes

Yes

Figure 3: Flowchart showing the output decision making process for level 2 pre-processor crates.

There is one qualifier for each level 2 crate i.e. one for each pre-processor and one for global. The pre-processor qualifiers denote whether the crate in question needs to process data for the associated event. If the qualifier is not set the crate does not need to spend time processing the event but may still needs to write empty headers to the level 2 global and/or the level 3. The global crate qualifier is set for all events where the global crate is readout.

The decision making process to decide whether to write to the level 2 global crate is shown in Figure 3. The result of the decision depends on three different quantities:

i) Level 2 readout parameter

ii) Pre-processor needed qualifier

iii) Level 2 global qualifier

The last two quantities are determined on an event by event basis whereas the level 2 readout parameter is set in the start-of-run configuration data which each crate receives and remains fixed for all events.

First the crate decides whether it needs to process the event in question. This is determined solely by its own event qualifier. If the qualifier is set then the crate must process the event, if it is not set the crate may choose not to process the event, and just produce empty headers.

After producing the processed event data, or empty headers, the pre-processor must examine its level 2 readout parameter. If the level 2 readout parameter is not set then the pre-processor in question must never write any data to the level 2 global crate, otherwise it must write data to the global crate every time the global event qualifier is set.

Requirement on COOR
Unfortunately the restrictions which the L2 Global MBT places on the readout of pre-processor crates cannot be handled entirely within the bounds of the trigger definition language. The language only controls the trigger configuration and does not say anything about the crate readout. For this reason the COOR program must ensure that all pre-processor crates which have their level 2 readout parameter set must be readout for every event in which the level 2 global qualifier is set (and hence the L2 global crate is readout). This is required because if a crate is not in the readout list for a given event it is not notified of the event and hence cannot act on any relevant qualifiers. If a pre-processor, which had its level 2 readout parameter set, were not in the readout list for such an event it would not write any data to the level 2 global. This would result in a buffer synchronization error in the global MBT and the global crate would request an SCL_INITIALIZE for every such event!

Appendix B:

An Example Trigger File

Given below is an example trigger file. The file is not meant to show the correct parameters and fields for each object but instead is meant to show the overall structure of the file and to act as a template for real configuration files.

Example Trigger Definition File

#

#**********************************

#* Structure Definitions *

#**********************************

Level 1 Structures

L1_STRUCTURES

*** L1 Structures go here ***

END_L1

Level 2 Structures

L2_STRUCTURES

Level 2 calorimeter pre-processor

DEFINE L2CAL

L2READOUT
I
0
0
1

MAXCLUSTER
I
10
1
100

CLUSTERSIZE
I
2
1
5

END_DEFINE

Level 2 CFT pre-processor

DEFINE L2CFT

L2READOUT
I
0
0
1

MAXTRACKS
I
10
1
100

END_DEFINE

Level 2 Muon pre-processor

DEFINE L2MUON

L2READOUT
I
0
0
1

MAXMUONS
I
10
1
100

Level 2 Electron tool

DEFINE L2Electron

PREPROCESSORS L2CAL,L2CFT

TYPE

I
2
2
2

INDEX
I
*
0
9

DETA

F
0.2
0.
3.2

DPHI

F
0.2
0.
3.2

EMFRAC
F
0.9
0.
1.

END_DEFINE

Level 2 Mass tool

DEFINE L2Mass

PREPROCESSORS # None required directly by this tool

NTOOL

I
0
0
4

TOOL[NTOOL]
R
--
--
--

END_DEFINE

END_L2

Level 3 Structures

L3_STRUCTURES

Level 3 Electron tool

DEFINE L3Electron

DETA

F
0.05
0.
3.2

DPHI

F
0.05
0.
3.2

EMFRAC
F
0.95
0.
1.

ISOLATION
F
0.5
0.
3.2

END_DEFINE

END_L3

#**********************************

#* Object Definitions *

#**********************************

Level 1 Objects

L1_OBJECTS

Level 1 object specifications go here

END_L1

Level 2 Objects

L2_OBJECTS

Pre-processors

L2_PP L2CAL(L2READOUT=1, MAXCLUSTER=15, CLUSTERSIZE=3)

L2_PP L2CFT(L2READOUT=1)

L2_PP L2MUON(MAXMUON=20)

Tools

L2_ETight L2Electron(DETA=0.1, DPHI=0.1)

L2_ELoose L2Electron(EMFRAC=0.8)

END_L2

Level 3 Objects

L3_OBJECTS

L3_ETight L3Electron(EMFRAC=0.99, ISOLATION=0.2)

L3_Eloose L3Electron(DETA=0.1, DPHI=0.1)

END_L3

#**********************************

#* Trigger Scripts *

#**********************************

Trigger on Z going to two electrons

TRIGGER 0 "Z->ee"

L1CONFIG

L1 stuff goes here

END_L1

L2SCRIPT "Z->ee"

L2_ETight
"Ze1"
1
25.
-1.

L2_ETight
"Ze2"
2
10.
-1.

L2_Mass
"Zee"
Ze1
Ze2
1
80.
100.

END_L2

L3FILTER "Zee1"

First L3 filter

END_L3

L3_FILTER "Zee2"

Second L3 filter

END_L3

END_TRIGGER

Trigger on SUSY event

TRIGGER 1 "SUSY"

Trigger script goes here

END_TRIGGER

1

_972127348.unknown

_972285137.unknown

_971696851.unknown

