FIC for L2 Inputs?
With Updates and Decisions from Workshop

James T. Linnemann
Michigan State University
UIC Workshop
April 24, 1998
Criteria for Decisions

- Meet Performance Criteria
 bandwidth, deadtime, acceptance, rejection
 - with adequate margin (for occupancy e.g.)
- Acceptable Schedule Risk
 (Includes complexity)
 specification
 resources
 prototype and construction
 commissioning
- Maintenance and Repair
 resources, complexity, card variants...
- Parts and Engineering Costs
 within constraints
- Expansion Capability
 beyond planned scope
New Information from Workshop and Decisions

- New Information at Workshop added in **BLUE**

- Decisions at Workshop added in **RED**
Current Input Formats
L2 Baseline

160MHz Cypress Cu Muon
 SLIC only 16MB/s
160MHz Fiber Global, Cal L2
 (protocol subset of Muon)
"1.3 GHz G-link":
 25 bit frames X 53 MHz = 1.3GHz
20 bit L1 CFT 1060MB/s
16 bit L1 CPS/FPS 848MB/s
16 bit raw (STT, L2PS(?)) 848MB/s
 needs event number tagging
 not integer multiple of 16 Bytes

1.3 GHZ AMCC (53 MHz X 24 bit)
 SCL mezzanine (CU or Fiber?)
 L1 Mu Cu (not seen by L2)
Workshop Strawman
L2 Inputs

• Cypress 212 everywhere
 L1 CFT/PS (32b per track)
 L2 mu

• Serial J2 FIC 53 MHz
 A: G-link in: avoid unless raw data
 B: 16 Cypress Fiber
 C: 16 Cypress Copper

• SCL receiver on each SLIC
MBT

- 16-deep FIFOs all channels
- either G-link or Cypress
- 128b Mbus broadcast
- SCL Mezzanine
 - Send L1 to FIFO
 - Queue L2
 - SCL Initialize
- 2 Cypress Outputs
- Digital I/O (e.g. to Framework)
- VME slave (&Mbus programmed I/O)
 - download
 - control
 - monitor
SLIC

- 16 FIFO’s
- either G-link or Cypress inputs
- FPGA routing
- 4 TI C6x Integer DSP’s per card
- Master DSP for readout
- 2 Cypress outputs
 - hope can send even L3 Unbias data via Cypress outputs

- SCL Mezzanine
 - receive SCL Initialize
 - send L1 SCL (e.g. Qualifiers) to FIFO
 - L2 Accept/Reject?
 - Irrelevant if readout only via Worker Alpha
Serial to Parallel FIC
J2 Backplane Protocol

- 3b Input type
- 64b data
 - G-link: 16b X 4 sources
 - Cypress: 8b X 8 sources
- 1b Cypress_1st_8_Sources
- 8b End_Event
- 8b Data_Strobe

- 84 pins

Question: sure can Mux w/o FIFO?
All FIFOs on FIC
(Saclay Proposal)

- VME slave interface
 monitor (FIFO occupancy scalers)
 which sources active
 test data injection
- data pulled across J2 by SLIC/MBT
- data available only when all pieces of event present
- blocks of 8B from a single source

FIFO on FIC
J2 protocol (75 pins)

- 64 b Data (8B) FB
 FIC to board =FB
- 3b Pad_Byte_Count (0-7) FB
- 4b Source_Address FB
 sources in strict geographical order
 skip inactive sources
- Data_Ready FB
 drop at end of event
- Request_Data BF
 request to present data on next clock
 board must drop if no Data_Ready
- Data Clock (40-53 MHz) BF
 any rate board prefers
 board can skip cycles to think
- SCL Initialize
- ?? Link Error??
FIC Power

- Original FIC 22W
 4 G-link in, 4 Cypress out
 4 FIFO’s
 no VME

 VME is 10 W
 FIFO dominates
 • could use 32 KB FIFO (2 species)?

- Variants with VME interface + FIFO’s:
 (Saclay Proposals)

 - FIC+ A 34W
 4 G-link

 - FIC+ B 73 W
 16 Fiber Cypress
Move inputs to backplane transition card ("FIC") on J2

+ more real estate on SLIC/MBT
+ protect cables
+ replace/ test SLIC/MBT cards without disturbing cabling
+ money and engineering from Saclay (allows financial contribution)

- MBT, SLIC must negotiate backplane protocol (with Saclay?)
- expense: 2 cards wherever 1 card before (FIC not just for G-link inputs)
- more groups required to test prototypes commission maintain

Decision: YES, but not FIC, just inputs accept engineering risk for cabling ease
Common J2 for MBT, SLIC

+ flexibility
 choose G-link, Cypress inputs
 (but Classic FIC allows this too)

- limited number of G-link inputs/card
 unless do classic FIC
- negotiation time risk

Decision: Yes (Serial J2 simple to negotiate)
Common backplane also for STC (FPGA card)

only works for serial-parallel through J2
implies 212 Cypress Fiber

+ flexibility:
 FPGA card more a "component"
 e.g. for receiving raw data
 could use input section as FIC
 if raw data needed for L2PS

- extra layout: VTM uses J3 now, not J2
Decision: Use unaltered VTM
Get rid of Cu Cypress? L2 G, Cal, or L2Mu too?

+ easier to make work than copper
+ uniformity (SLIC, MBT inputs closer)
 single-output FIC?
? better ground isolation
 Cu has transformers
 L2 may be in fixed counting house

- L2 muon already using copper
 change 5 cards or convert 200 cables
- careful handling needed
 1dB loss from fingerprint
- $30/channel more cost
 –add to L2 protocol, or lose testing in mu

Decide: 1) Leave muon Cu
 2) UMd picks: MBT input Cu or Fiber
Speed up L2 Cypress Fiber
160 MHz to 212 MHz

required for serial-parallel J2 scheme

+ more bandwidth than 160 MHz (+ 1/3)
+ avoid extra clock: multiple of 53 MHz
 (SCL mezzanine, and G-link)

- less noise margin
- mu needs to change to 212

Decide: NO, leave at 160 MHz
 (Serial-Parallel J2 protocol dropped)
L1 CFT/PS Output → 212 MHz Cypress Fiber

+ no need for "classic FIC"
 except for raw data
+ system uniformity (fewer input types)

- L1 CFT arrives later at L2STT
 more/earlier buffering?
 \[8\mu s \text{ to xfr} \quad \text{(budget is 10 \mu s)} \]
 L3 readout harder?? same

- L1 CFT needs output buffer
 complexity behind shield wall
- cost? own 100 G-links already?

Decision: Keep G-link
Drop 20-bit G-link mode

+ remove one type of input

- transmission 1.6X slower
 20 bit to 32 bit
 probably only affects L2 STT
 elsewhere in L2 already 32 bit

Decision: Yes, Drop 20 bit mode
Serial Through J2

+ decouples SLIC/MBT from input type
+ most flexibility

- engineering risk, especially at high speeds
 IF tests correct, lose month to decide and cost of custom backplane
- need active extender for J2 Serial?

Decision: Accept backplane inputs, Serial J2 as best of these protocols
Serial to Parallel thru J2

Decide: NO
STC uses VTM--no economy of scale

- FIFO's on main card
data push @53 MHz, not data pull
requires 212 Cypress

+ reduce need for 40MHz clock
+ recoup VTM engineering (esp. Raw)
 - SLIC/MBT see multiple input protocols
 - 4 G-link max; 16 Cypress is muxed
 - negotiation time for details
 - event synchronization assumed!
 add event tags?
 - transmission time degraded
 transmit until last source of event?
 - thin FIFO's to synch source clocks
 as complex to control as full FIFO's?
 must guarantee can't be overrun
 no problem if out speed >= input
 - Clumsy for SLIC
FIFO on FIC
Advantages and not
SEE NEXT SLIDE

+ standard building block
+ no extra FIFO just to shift speed
+ reduce number of MBT's (could raise to 16 inputs each)
+ maximize Saclay contributions

- negotiation time:
 more control required across J2?
- raise number of cards in system
 (common to all backplane proposals)
- lots of heat on transition card
- extra VME interfaces (management)
- extra VME bus loads (readout speed?)

MAIN ISSUE IS R/O reliability
last run: hang/15 min in 20-card crates
unacceptable: more MB/s, evt loss
- L1 SCL: extra Cypress out on MBT
FIFO on FIC
Decision (2)

- not optimal for both SLIC and MBT
 SLIC: 32-bit wide memory to feed
 MBT: whole events, 128b Mbus

Notes:
 1” from bus in VME spec
 beat on Alpha card
 Modify VBD’s to be less sensitive
 tradeoff readout speed, but do it
 could use 32KB FIFOs on some cards
 Serial VME? Not implemented on Bit3

DECISION
 FIFO on FIC will not be pursued
Classic FIC: G-link to FIFO to Cypress

+ isolates receiving card from G-link input

+ build only where needed
 L1CFT/PS or raw

+ protocol negotiation simple

- extra FIFOs in system to monitor and control

- complex if receiving raw data: event tag

Decision: Retain Classic FIC for G-Link
G-link FIC as standalone card

+ allows > 4 G-link inputs to SLIC or MBT
+ G-links a danger to serial J2 protocol
- extra slot somewhere
 for every 4 G-link inputs (6?)
+ room exists in tracking crates 2nd floor
- 20-30 W on transition card is acceptable
 so could do as transition card, even
 with 2-4 Cypress outputs

WILL use VTM in STT input crate

Advice: do as standalone VME card, not transition card to allow flexible # inputs
Event Tagging in FIC
Not Discussed

[requires new FIFO interface for any scheme]

- local clock control
 - same scheme as muon (and L1 CFT)
 - new interface not needed by other cards in crate
 - need VME interface to manage, resynchronize? or self-synch every turn?

- inject L1 SCL into FIFO's as header
 - need filtered L1 SCL information to process event anyway
 - automatically arrives before new event and after old one

- critical ONLY for G-link raw data input:
 L2 PS needs raw STT with SLIC clustering ("Fortner")

- STC card scheme uses Road Card to fan out SCL information?
SCL Fanout to SLIC
Not Discussed

- SCL Initialize
 force clearance of buffers, even if partial events

- L1 Qualifiers
 how to process this event
 probably needs to get in FIFO

- L1 Accept number
 enough to be sure event synched

- L2 accept/reject info? probably NOT needed if
 - Administrator in full control of L3 readout
 - L3 readout only from alphas, not SLIC
Classic SFO

- Special Card
 made of blocks from MBT design
 Fan out via Cypress

+ uses simple interface (Cypress)
+ naturally FIFO'd for processing of event

- extra card to build just for SLIC crates
- cables running across cards
-? if needed to steer processing

treat differently from other inputs
read first
SFO by backplane bus

- 16b qualifiers
- 1b SCL initialize
- 4b L1 Accept

+ eliminate SFO card
+ ? Naturally different from other inputs

- more function on MBT
- pins on J2 scarce
- NO bussed pins on J2
 hand-bus on J2
 or front-panel cable bus
- time to negotiate bus protocol
SCL Receiver on SLIC

+ eliminate SFO card

- $500 per SLIC for Mezzanine
- more for extra modules at hub end
- bend SCL protocol even further
- more function on SLIC
Road Card/SFO merge?

+ eliminate SFO card
+ share function with L1 CFT Fanout?

- Conflicts with Mbus on J3
 if road fanout in STT crate on J3
STT Baseline

- L1 CFT input on G-link via J3 (as in VTM card)
- Fiber road card fans out to STC's on J2 road bus
- STC FPGAs perform cluster and road match
- Clusters to fitter card on 40 MHz J3 output (cluster) bus
- Fitter card track output:
 - Cypress hotlink (160 MHz) to L2CFT for L2 data
- VME accessible output memory for L3 readout of full data set
- Storage of input data on Unbiased Event Qualifier for VME readout.
- VBD for readout; fiber road card as controller
STT Baseline +
L1CFT on Cypress

- STC receives SMT data through J2 from a FIC.
- 16-deep input fifos for each input channel (location moved)
- L1CFT information arrives 212 MHz fiber instead of G-link
- Output Cypress hotlink now 212 MHz fiber
STT with SLIC clustering ("Fortner Proposal")

- G-link FIC for SLIC
- need event tagging on FIC (or SLIC)
- fan-out of L1 CFT information to SLIC
- complexity rises if limited to 4 G-link inputs per SLIC
- SLIC does clustering
- Fitting done in Alpha
- Bit3 + Alpha Administrator for download/monitoring/readout
STT with Fitting in SLIC
(Strawman)

- STC as with L1 CFT on Cypress
- Clusters to SLIC via Cypress Fiber 212
- crate = 9 STC 2 SLIC 1 fiber road card
- Fitting in SLIC
- issues:
 - transfer times in and out of STC
 - passive fanout enough for L1 CFT?
 - connectivity of SLIC:
 - assignment of DSPs to tracks
 - timing and number of DSP's per card
- download/control/monitoring/readout:
- Fiber Road card vs Bit3/Alpha Admin
Other L2-STT Commonality

- similarity of road card and SCL Fanout?
- if raw input needed for preshower:
 G-link FIC (as SLIC clustering)?
 STC with Fiber output as G-link FIC?