L2 Protocol: Decisions at Last?

James T. Linnemann
Michigan State University
Trigger Meeting
December 17, 1998
Updated Jan 27, 1999
L2 Hardware Issues after Workshop

- L2 Header, Trailer finally?
- FIFO sizes OK
- 2 state vs stateless inputs 2(optional)
- re-framing protocol for G-link, Cypress OK
- G-link control characters? OK
- VTM vs Finnisar (FIC) VTM
- VME decisions: FIC? Other issues VME
- shortened Mbus? yes
- Revised GS (L2) Definition check/propose
- Purchasing, spares, part counts tomorrow
Current situation

- All items for L1CFT, MBT are agreed to
- for FIC, some items being looked into
 - if it changes from this, I will notify
In Other News

- **Prototype Alphas at U Mich**
 - first problems found and fixed
 - have talked with debugger, PCI

- **Draft 4 MBT spec/TDR**
 - heavy iteration with JTL
 - some holes shaken out of specs
 - Arbitrary Data Download by separate card

- **Draft 2 FIC spec soon**
 - successful iteration with JTL
 - all concerns fixed, or at least agreed to try in January
Standard Crate
VME Slot Assignments

- 1: Bit3 (Crate Controller) no J3
- 2: VBD (2 signals from J3 to Admin)
 - through connector (or hole in blank MBus)
- 3-6 J3 connector for VTM
 - up to 4 FIC’s, or any non-MBus cards (SLIC/SFO)
- 7-21 J3 Magic Bus:
 - 21 Pilot MBT (preproc. : 1MBT for 2 Workers)
 - 20 [Assistant MBT]
 - 18-19 Administrator
 - 16-17 Worker [need MBT/2 Workers]
 - 7-15 +4 Workers or non-MBus cards
VME

- A32/D32 slave for MBT, FIC (SLIC A24/D16)
 - able to read back whatever is settable status
 - registers (L1_busy for FIC, state, error, ...)
 - Geo Address: J1 5th row for setup: G*step+addr

- Hope: Bit3 MPM optical 618 instead of 412
 - prototype in January; have PCI Extender Crate
 - direct view of full crate address space from TCC
 - requires PCI extender crate
L2 Maximum Event Sizes

- Length = 16B (min) ... 4KB (max) X 16 events
 - includes 12B header and 4B trailer
 - source pads to multiples of 16B with zeros after trailer
 - VRB: 32KB or 64KB, but currently no raw data to L2!
 - 5 KHz max (Cypress) is 16B/μs X 200 μs = 3.2KB
 - clearly issue of max, not mean!

- Actual Max Event

<table>
<thead>
<tr>
<th>Source</th>
<th>FIFO “event”</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIC/CFT/PS</td>
<td>.5KB</td>
<td>8KB</td>
</tr>
<tr>
<td>Cal/MBT</td>
<td>4KB</td>
<td>64KB</td>
</tr>
<tr>
<td>Mu/SLIC</td>
<td>.5KB</td>
<td>8KB</td>
</tr>
<tr>
<td>Global/MBT</td>
<td>4KB</td>
<td>64KB</td>
</tr>
</tbody>
</table>

=255 tracks*8B

(255*16B = 4KB = STT?)
G-Link to FIC:
L1 CFT/PS, L1 Cal

- Little Endian [Alpha] (b0 is LSb, b15 is MSb)
 - send B0 = b0-7 first on FIC
- 2*16 bit frames Glink (B0-1, then B2-3)
 - 16b data in 20b frames; b16=BEGIN, b17=END
- 12B header, 4B trailer, then 0 pads [to 16B]
 - last 0 pad or last trailer frame tagged with End
 - 2 B long parity in trailer
 - Use Standard L2 Header/Trailer format
 - as adjusted to address L1CFT concerns
- Timing may force fewer than 47 tracks max
L2 Header

REARRANGED!

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td># objects (NOT IN HEADER)</td>
<td>[note 255 max!]</td>
</tr>
<tr>
<td>B1</td>
<td>Header Length in 4B words (1B)</td>
<td>[=3 for default]</td>
</tr>
<tr>
<td>B2</td>
<td>Object Length in 4B words (1B)</td>
<td>[ALL same size!]</td>
</tr>
<tr>
<td>B3</td>
<td>Header/Trailer Format # (hi 3 bits)</td>
<td>[ONLY changes if new format]</td>
</tr>
<tr>
<td></td>
<td>Object Format # (lo 5 bits)</td>
<td>[ONLY changes if new format]</td>
</tr>
<tr>
<td>B4</td>
<td>Data Type # (1B)</td>
<td>[unique in all L2 MBT inputs]</td>
</tr>
<tr>
<td>B5</td>
<td>Bunch # (1B)</td>
<td></td>
</tr>
<tr>
<td>B6-7</td>
<td>Rotation# (2B)</td>
<td>[B6 is LSB of rotation]</td>
</tr>
<tr>
<td>B8</td>
<td>Algorithm Major Version (1 B)</td>
<td>[e.g. 7 from Version 7.1]</td>
</tr>
<tr>
<td>B9</td>
<td>Algorithm Minor Version (1B)</td>
<td>[e.g. 1 from 7.1]</td>
</tr>
<tr>
<td></td>
<td>or Processor Specific Bits (1B)</td>
<td>[esp. if hardware data source]</td>
</tr>
<tr>
<td>B10</td>
<td>Processor Specific Bits (1B)</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>Status Bits</td>
<td>[b7 on means some error]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[some standard for L2 Proc]</td>
</tr>
</tbody>
</table>
Standard Status Bits

b7, b0 for all; others if L2proc

7 error on event (any kind): use at own risk
6 no processing attempted (none required)
5 object list truncated (any reason)
4 Receiver error on some input physical trailer
3
2
1 more data-type info (processor-specific)
0 0 for real data, 1 for MC data
L2 Trailer
REARRANGED!

B0 Bunch # (1B) = B5 of Header
B1 Data Type # (1B) = B4 of Header
 (Swapped even/odd from Header)
B2 Longitudinal Parity of even Bytes
B3 Longitudinal Parity of odd Bytes
 or--if parity too slow to calculate, Turn # (B6-7 of Header)
 MBT Out, SLIC, FIC will append physical trailer with 8-bit
 hardware-generated longitudinal parity

Zero padding to 16 B group Follows trailer, before End of Event
L2 Physical Trailer

- FIC, SLIC, MBT Out: add a physical 2B trailer
 - after logical trailer, before End Event
 - This BREAKS 16B boundary, but handled by MBT
 - B0 8 bit longitudinal parity of received data
 - B1 Status Bits [b7 on if any receive error]
 - not included longitudinal parity!
 - b0, b1 are type ID: 0 = FIC, 1 = SLIC, 2 = MBT
- MBT inputs place this in B0, B1 of 16B physical trailer
 - adds B14, its own longitudinal parity of everything received
 - B15 its own Error Bits [b7 on if any receive error]
 - reserves 4B for incoming, may give error locations in B4-13
 - MBT Outs produce 2B physical trailer like FIC
L1 CFT/PS Headers

- Standard, Except:
 - L2CFT input has header length = 4
 - 4B extra to pass track counts in each bin
 - FPS has object length = 2
 - 6B per cluster min needed, so send 8B per cluster

- Pt organized like a signed byte:
 - MBS: sign next Pt Bin
 - next extended pt or cluster

- Q for Rob’n’Roger:
 - fmt numbering by source, not system-wide?
L2G Header/Trailer

- Mu raw data from SLIC after trailer
 - Unbiased Sample and Forced Write events
 - doesn’t really fit single-object-size format
 - tagged in processor-specific bits
Endian-ness and Unpacking

- So Far, spec covers only getting into Alpha memory
- Work has started on understanding how this propagates to L3 and offline
FIC

- Construction based on VTM
 - requires modified Magic Bus backplanes
- VME for monitoring, control, testing
- L1 Busy hand-wired “bus”
 - open collector to pilot MBT (also for SLIC?)
 - allows simple reframing of G-link
- Cypress End Event = 2 (5?) Pad, then END?
- FIFOs smaller: 8KB
- Use FIC’s for L2CAL as well!
- 1st early Feb; 2-3 at FNAL April/early May
G-link for FIC

- L1CFT and L1Cal
- FF0/FF1 alternating at 5ms during idles?
 - Would be ideal for re-synch of G-link
 - probably just sending FF1
- For Error analysis:
 - few or no pads in transmission
Cypress Control Chars: What is 1 bit away? (Renardy)

- 1 control char: K28.3
 - PROPOSE: Use as END instead of K23.7?
 - Discuss with ECB?
- 2C: K28.0 [BEGIN], K28.7
- 3C: K28.4
- 2Data: K23.7 [END], K27.7, K29.7, K30.7
- 3D, 1C: K28.1, K28.2
- 3D, 2C: K28.5 [PAD!], K28.6

other 1-bit errors generate violations
Cypress Assumptions

- enough time to send/decode 2 special chars
- good error detection (74% of states are invalid)
 - adapt recovery to this
- Reframe in \(\sim 5 \) characters (0.3 \(\mu \)sec)
 - fast enough for between events
- Reframe if 2 consecutive errors
 - rather than always reframing
Reframing Cypress: On Provocation model

- **During Reframing:**
 - no data into FIFO
 - stays in reframe until successful (identifies Pad)
 - any benefit of timeout?
 - upstream buffers may fill, generating L1 Busy
 - LED to indicate reframing? Counter/flipflop?
 - How to identify channel? Rotary: channel n or ALL?

- **Causes of reframing:**
 - Powerup
 - n consecutive bad or unknown control char
 - front panel (flipflop?)
 - VME (SLIC, MBT): part of SCL Initialize handling
 - Admin. will hold off clear of L1 Busy: read status
Input state machine

State bit (IDLE/EVENT) is input to FIFO handling logic
Begin Event

- Be sure input fifo correctly aligned
- ready to resume inserting data into FIFO
End Event

- Close up FIFO: stop inserting data
- Mark FIFO with end of event tag
- pad FIFO to 16B? (in case of errors)
 - probably handled by reset on Begin Event
- Add physical trailer recording errors
 - On readout of FIFO
Input during IDLE

- FIFO DISABLED
 - data format insensitive to errors in PAD’s
- Pad Ignore (even tho clocked)
- Data count (IDLE errors)
 - 2 consecutive DATA = BEGIN? Probably not...
- Error count
- Special Character:
 - Begin normal start of EVENT (align FIFO)
 - End assume missed Begin
 - any other: count
Input during EVENT

- FIFO ENABLED
 - sensitive to errors in PADS
 - try to preserve data format
- Pad Ignore (even tho clocked)
- Data insert into FIFO
- Error insert into FIFO, tag ERROR
- Special Character:
 - End: tag End, normal start of IDLE
 - Begin: assume missed End
 - other: insert into FIFO, tag ERROR (?)
Event Synch Error Handling

- Mismatch of event tags between channels
- Only SLIC or Alpha can notice
 - irrelevant for MBT, FIC
- Only Administrator Alpha Handles:
 - requests Pilot MBT to set ERROR1 in SCL
 - This will provoke SCL_INITIALIZE
 - kills which buffers: 1 kills FE L2 decision, 2 kills L3 R/O?
- How does SLIC notify Administrator Alpha?
 - L2 Header status bit is sufficient
 - no gain for “immediate” notify via say special character
 - no guarantee it’s going to Pilot MBT anyway
Error Handling Strategy

- Confine errors to single event, single channel
 - missing an event boundary: event synch error
 - only SCL_INITIALIZE will clear this

- count errors as detected; VME readback
 - FIC can’t do this if no VME
 - 1 B lasts 60 ns: no ECL scaler gate w/o stretching

- no elaborate recovery or detection
 - unless can be FIXED locally
 - and faster, more reliably than operator intervention
 - else: support diagnosis, save evidence
 - data flow hang can usually localize problem
Cypress Self Test

- Excellent for debugging, Bit Error Rate testing
 - transmitter: send sequence of ALL symbols
 - receiver: verify got sequence in order
 - SLIC, MBT: both Xmit and Rcv on board

- Start/stop can’t be special characters!
 - All: VME (or Mbus for MBT)
 – and a front panel flipflop?
 - test point(s) on front panel?
 – Should see a pulse every cycle through test sequence
 – or just an error counter for VME reading
L2-style Geographic Section

- Will propose modification to GS protocols
 - VBD initialization with crate info
 - maybe re-initialize by computer
 - time-stamped record of L1, L2 error declarations
 - handled by “Dallas Chip” in FE sections
 - TCC must be involved for L2
 - L1 busy handling rationale differs
 - busy not guaranteed to halt event flow
 - emphasis on diagnosis, since prevention not guaranteed