L2 Global Status and Opportunities

James T. Linnemann Michigan State University London Workshop January 6-8, 2000

L2 Trigger

10 KHz L1 out to 1 KHz L2 out

- 128 L2 decision bits, 1:1 with L1
- few % deadtime
- Global Processor selects events
 - threshold for object
 - matching objects from different detectors
 - cuts on quality
 - kinematic variables (but Zv=0...probably)

Objects from single-detector preprocessors

L2 Preprocessors

- Cal em TT clustered em pt, η , ϕ , quality (L1)
- Cal jet TT clustered jet pt, η , ϕ , quality (L1)
 - , no ICD
 - , large tiles only from tower seeds
 - CFT pt, φ, quality (no uv so no η)
 - , tags with CPS
 - , STT: confirmed CFT tracks; impact parameter-oriented lists
- FPS E, η , ϕ , quality (upstream*downsteam)
- Mu pt, η , ϕ , quality
- No vertex position information ($\eta_{detector}$)

L2 Global

L2Global Hardware

- Alpha processor for Worker
- Another for Administrator
- Add more Workers if can't keep up
 - , hidden from user software

L2 Global Software

- Above user level: buffer handling, monitoring
 - I/Ogen: a great deal of data access and formatting hidden from user
- Above user level: script interpretation
 - L2 script runs iff its L1 fires
 - , speed, and efficiency independent of other triggers
 - 128 bits 1:1 with L1 for now
 - , fanout later if needed (would need pre-scaling)
 - interface with user code defined
 - script runner implemented
 - parameter initialization still not implemented
- Working on adding to simulation

L2 Infrastructure

- 60 msec time budget for L2G overall
 - tight coding required
 - budget per algorithm less crisp--but shorter!
- C++ with static allocation, no user I/O
 - see L2 coding guidelines; error logger allowed
- Considerable effort made to hide complexities
 - buffers hidden; IOGen; classes for h, j
- modified Linux (eases debugging)
 - Linux turned off when run starts
 - , maybe even during run downloading

L2 Global Algorithms

- Some rough C++ code exists (timing tests)
 - not using real interfaces, environment
- Now ready to begin drafts of final algorithms
- L2Global algorithms differ from L2 Preprocessors algorithms:
 - don't run every event
 - many accept multiple input object types
 - variable input parameters from script (instances)
- Dylan & Roger's talks for details
 - writing, and adding to simulation

Doing a L2 Algorithm *includes liaison with ID group!*

- Coding is demanding, *but a small part*
 - , MSU: technical assistance, or even final rewrite if necessary
- Verify algorithm (each new version)
 - in simulation, before going online
 - , test data, automated release tests
 - in test stand (larger data volumes); analyze results offline
- Monitor Online
 - , make L3 EXAMINE histograms
 - , compare simulation v.s. actual results
- Tune cuts (less relevant for simpler algorithms)
 - as part of ID Group: define baseline cut values
 - , possibly different tunings for different physics topics
- Measure, parameterize turn-on curve (mostly indep. of physics)
 - efficiency v.s. Et offline / Thresh L2 (resolution, tails, relative scale)
 - parameterize v.s. Et, \mathcal{L} ; put in parameterized MC

J. Linnemann, MSU

3 Types of L2G Object Algorithms

- Match
 - create by matching preprocessor objects
 , threshold, # objects, quality cuts
 - e, g, m
 - jets, t (?)
- Cut
 - # CFT tracks with p_T> x
 - # tracks with impact significance > x
- Relation
 - Transverse Mass > x
 - Dj < x

Match

- Relatively complex:
 - multiple object type matches (but known in advance)
 - more cuts to study
 - will require interaction with preprocessor experts
- electromagnetic e, g :
 - matches among cal, ctt/stt, cps, fps
 - exact relation of e, g code to be determined
- m: matches among mu, ctt/stt (vary with quality req'd)
 - slow mover tag from scintillator timing?
- jets: is this just a cut on L2CAL output? Tracks too?
- t: ID group should define needs
 - or just further cuts on jets?

J. Linnemann, MSU

Cutting Tools

Simplest

- single object type, known in advance
- mostly coding, technical verification
- still, cut studies, turn-on curve measurement probably by preprocessor group
- Etmiss
- Tracks
 - CFT? Require STT confirm?
- Tracks with impact significance
- Jets (if just calorimeter jets)

t? (even if cal-only, new cut studies needed)

J. Linnemann, MSU

Relations: t2 L2G objects from previous tools in script

- Complexity similar to cutter but no preprocessor team
- Different input: pointers to passed object lists
- objects of different generic type
 - not known in advance: technical issues
- rapidity range: a degenerate case (n=1?)
- transverse mass, invariant mass
 - need Z_v or an approximation strategy
 - studies, and parameterization needed
- Dh, Dj , and D \mathcal{R} (=isolation)
 - < x, > x, and 180° variants (Jet co-linearity, etc.)

H_T (from jets)

Speculative: not clear when/if done

Zvertex

- Define, then cut on?
- Use in Et definition?
- L0? Potentially STT ZV?
- *#* primary vertices? Same issues
- Luminosity-dependent efficiency--lots of studies!
- Displaced Vertex
 - x-y vertex finder among displaced tracks?

Responsibilities and Opportunities I

Matching

• MSU will do e, g tools:

- probably most complex
- with SUNYSB for PS, low Pt; UIC on Cal
- need volunteers for m tool
- Jet, and t tools
 - volunteers needed for both
 - also need crisper definitions from/with ID groups
 - , are these a small or large amount of work?

Responsibilities and Opportunities II

Cutting and Relational

- MSU: simple # CFT tracks > Thresh: sample cutting
- MSU will do transverse mass: sample relational
 - SUNYSB collaborates on invariant mass tool, esp. low mass
- Need volunteers for rest of cutting and relational tools
- If no volunteers mid-Feb, MSU will code 1st versions
 - so simulations can proceed
- Even if MSU codes 1st versions, may still need help
 - cut tuning, parameterization, monitoring