Commissioning L2 Plans: an example

James T. Linnemann
Michigan State University
Seattle Workshop
June 29, 1999

Commissioning L2 (an example)

- Crate Level: hardware checkout
- Crate Level: communication paths
 - monitoring data extraction and display
- fake data: algorithms
 - examine
 - verification against simulation
- Cosmic ray data
- roll-in; beam data

Strategy

- Start with L2 test stand (in FCH)
 - can serve as fake data source possible color output cables differently
 - can receive real data for algorithm checkout
 - presently: no real SCL connection need fanned-out, or fake L1SCL need fake L2SCL generated locally
- Move to Moveable Counting House
 - preprocessor, then global crates
 - single crate, no decision, then full topology

L2 Hardware Checkout: Start with Alpha processor

- download Alpha via Ethernet
 - Alpha becomes VME crate master
- run test programs in Linux for other cards
 - configure/read-back card:
 FIC, MBT, VBD, Alpha, SLIC (increasing complexity)
 - bit3 needed if card download from TCC/COOR
 - try 1-card self-test: (e.g. L2 cypress loop-back) or other data source

Communication Paths

Inputs:

- data (CIC, G-link, L2 cypress formats)
- Mbus (MBT broadcast; Alpha-Alpha, Alpha/MBT)
- TCC/VME
- SCL
- individual signals: L1 busy, L2 accept ready, VBD done...

Outputs:

L2 cypress outputs:

L1 SCL fanout (SFO)
Alpha/MBT Output to L2 Global

- L2 global trigger mask
- Alpha scaler gates to HWFW scalers
- L3 Readout

Fake data sources

- test data locally injected (loopback tests possible)
- test data from fake source
- test data injected into real data source upstream
- calibration data from real data source
- Probably don't need all these, but likely do need one

A source for each link type?

20b G-link: many sources

 download or pseudorandom
 continuous or burst

- BERT, test stand fic, test stand GTx, SVX tester?;
- L2 Cypress

download or BIST (pseudorandom self-test) continuous or burst can use SFO to fan out to multiple channels

- G-link source + FIC
- MBT

Alpha MBUS writes to MBT output, or by VME to output FIFO's

- MBT test card (BIST or sine byte pattern)
- Muon cypress input tester? (required for CIC test)
 SLIC: L2 cypress+special cabling OK until cabled to CIC
- SCL?? (needed for full MBT testing...)

Needs for 1-card tests:

- Fake data sources for each input type
 - how many channels to be useful?
 - Missing sources: special fpga programs?
 Source control (cvs) for fpga programs
- local host to run test software
- lots of software: test programs
 start from most basic operations
 proceed to continues test
 cvs...

Test program list...

- One for each card type at least
 - variant for each data source needed
 - which live in Alpha/Linux, vs live in TCC (NT)
 - to run test programs: is Linux always there?
 - Self-test suite for SLIC DSP's?
 normally no user console????
- Multicard tests:
 - Test programs for worker/admin alphas?
 Or just special version of administrator
 - test programs for SLIC DSP'S as well as alphas

Communication Path Checks

- BIST Installation checks simpler for L2 Cypress
 - can use source in same crate
 - put source, receiver in BIST mode
 - check receiver for BIST errors
- G-link, or realistic Cypress data harder:
 - sender often in another crate
 use L2 test-stand sources if real source missing
 - TCC or higher level coordination to set up test
 - similar or worse for in-situ diagnostics (no rewiring!)

Ready to Run?

- Other inputs, outputs:
 - L1 SCL input
 - (L2Global: Answer to framework)
 - L2 SCL Accept/Reject; buffer management
 - L3 readout
 - Hook up Alpha monitoring scalers framework monitoring software needed
- full download for parameters, programs...

Multiple crates strategy

- Preprocessor alone first
 - run parasite mode (no readout)
 special framework setup to transport L1SCL info?
 - single alpha worker, then multiple workers
 - Run with readout to L3 (all L2 accepts for now...)
- Global alone
 - verify decision link to HWFW
 - verify L2 SCL accept/reject back
 - L2 rejects is new issue with L3 readout buffers
- Preprocessor + Global
 - all accepts, then accept/reject

Crate Checkout with Data fake or cosmic or real

- monitoring extraction and display
 - much more functioning software needed
- error messages
 - collection, distribution (with monitoring)
 - flow control download limiting parameters summaries
- L3 readout opens new possibilities:
 - stare at examine

fake data: should know outcome!

- Fancier analysis offline
- Verification of online result against simulation

Multiple Crate Hazards

COOR:

- multiple trigger scripts not independent
- special issues in L2:

require SAME inputs EVERY event (MBT)

L2 preprocessor inputs tied to l3 readout of source crates

- probably will force all readout lists to be same
- L2 crashes stop data taking
 - new algorithm checkout in test stand
 - MAYBE debugging also in test stand (data copies) also hoping for event dump/playback

Verification: Online vs Simulation

- configure simulation to match online setup
 - database <u>extraction</u> of any script information needed
 - matching of releases of code, constants: version control
 - Caution: separate jobs for L1, L2pre_i, L2G, L3
 your input from <u>raw data</u> not upstream simulation's output
- comparison reporting: a process running on simulation output
 - find matching objects (generic code from L2 I/O code generator?)
 - report and summarize mismatches
- eventually: <u>automation</u>
 - trigger script setup to generate monitor stream (haggle for bandwidth)
 - script run to verification automatically
 - planning for prompt analysis and reports (personnel) notification and followup!

The normal output should have no discrepancies.....

More Tasks

- Monitoring data content design
 - see that things are healthy
 - localize faults when things die
- Monitoring software:
 - reading (L2 I/O code generator?)
 - display (decide behavior; use Taka's widgets)
- online examine
- simulation good enough for verification
- data vs simulation comparison program
- automation and follow-up planning

Algorithm Commissioning

- Algorithm Group Interaction
 - goes without saying? How about without doing?
 - code reading
 - Release control

regression testing in releases

- Calibration/Alignment
 - what precision needed to run?
 - What data needed to get it
 - how to extract the constants
- Algorithm certification
 - comparison with offline
 MC (develop software, form group)
 data (showtime)
 turnon curves

Commissioning Workshop This Fall

- commissionaire for each subsystem
 - come up with a plan what you need to do when you plan to do it
 - get what's needed to install and commission

```
installation technician time
```

special hardware

software

people

time (can you work in parallel with others?)

cosmic triggers

what can you learn?

Beam triggers for checkout

offline analysis group(s)

Monitoring Data Collection

- TCC tries to collect fresh monitoring every 5 s
 - sends event through system with CollectStatus
 - reads hardware scalers in L1 framework
 - if L2 running, captures info and tags with event #
 put in Bit3 MPM in each crate by Administrator
 read out by TCC (after .5 s?) (no VME cycles in crate)
 - if L2 not running, TCC asks Administrators to collect monitoring data anyway?

Mark as stale unavailable blocks (crashed node?)

TCC & Monitoring Client

- TCC serves trigger monitoring information
 - handles scaler rollover
 - may be asked for integral or differential
- client handles display and reporting
 - reports, pacmen, flow displays, strip charts, histograms
 - decides what to do if not all monitoring fragments match event tags on blocks differ:

stale information in some blocks?

Show previous block (and warn "stale data")

or make blank display?

Collected without events flowing, so not synchronized?

- needs to know (fixed) format, trigger setup (both: database?)
- presents subsets according to requested run (not all bits)

and run summary?

Monitoring info database: many views needed

- Lots of info of various types
 - type of synchronization time, event, rough interval
 - source

```
alpha, mbt, fic, slic, framework scaler sources have different availability if things hang
```

interpretation

```
event (try, pass...) counts
error counters Integration time > 5 sec? By Client?
time in state
current state
buffer occupancy histogram
circular buffers of event characteristics (histogrammable)
error messages
```

Info Type vs Source

	FW Scaler	VME	Processor
Event Counts	X	X	X
State Occupancy	X	X	(x)
Current State		?	?
Buffer Occupancy	X	X	
Circular Buff/Histo			X

Sources of Monitoring Data

Scalers in L1 framework

- ECL gates, count beam crossings in given state
- count of occurrences of a condition
- Read by TCC directly--indep. of state of L2 crates
- tells truth even if system hung
- time-synchronous collection

Scalers on VME boards (MBT, FIC, SLIC)

- like L1 scalers but local, slower clocks: time in state
- not collected at same time as L1 scalers nor event-synchronized
- collection works only if

Administrator alive (unless TCC knows crate contents!)
VME available (VME bus, VBD not hung)
smoothest if events actually flowing

smoothest if events actually flowing

Monitoring from Processors Alphas, DSP's

- Can monitor `most anything we have time for
- best for event accounting, pass rates
 - if events flowing, collection is event-synchronous with L1 scalers

error condition when
any in/out counts mismatch
nonzero error counter
not time synchronized with L1 scalers

- if events not flowing, may be partial or clumsy
 - can Administrator read Workers, DSP's?

usually, they are notified to collect and move to a buffer

Whole Monitoring Catalog

- Now writing down all we intend to collect
- framework scaler count
- sizing of multiport memory of Bit3
- specifications of hardware cards
 - testing against debugging scenarios
- draft of monitoring collection class for Alphas

Monitoring Displays

- Propose drafts to Online group
 - someone working on this! GREAT!
- Performance monitoring displays
 - warn shifters when things go wrong
- Diagnosis displays
 - localize problems (scenarios)
 hope to diagnose without sending commands...
 couple to control system for reset????
- Expert displays
 - performance tuning
 - advanced diagnosis

Monitoring Reports

- Quantitative info shift monitoring
 - when visual doesn't work?
- Comparison with expected behavior
- Run summaries: capture run start values
 - TCC access by actual value, by time difference over n periods
 - who integrates scalers which roll over
 VME scalers on boards: monitoring, not accounting
- Hope: Intermediate run summaries
 - pick integral since run start, or from "now"

Monitoring concerns

- Performance Monitoring and Tuning:
 - find bottlenecks, while data flow continues

```
where, why events backing? Need averages, distributions average buffer occupancy processing time transfer time deadtime= fraction of time buffers full
```

- Debugging of hangups (no data flow; static system)
 - eventually FIX, not diagnose!
 - time in state goes to 100% (anyone in a weird state?)
 - buffer occupancy stops changing (where the events? 16?)
 - identify card with problem
 - identify channel of card if isolated
- snapshots, error counts may be enough--if they can be read!

 J. Linnemann, MSU 6/26/99

Desirable compromise [like L3 Pacmen]

- Display averages
 - good for tuning/performance
 - click to see details

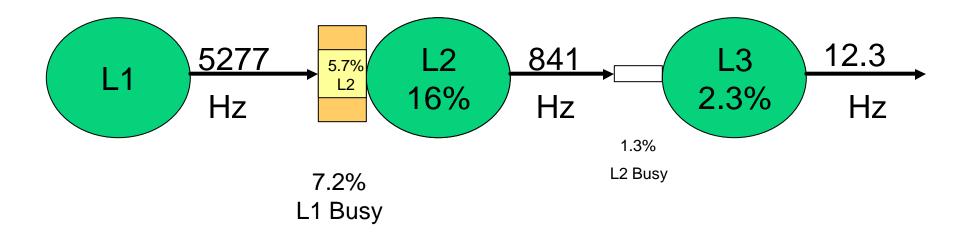
usually for experts

examples: buffer occupancy histograms; error counts

- Display becomes static on hangup
 - IF info can be read: so prefer FW scalers but it's only available for Alphas VME local scalers are nearly as accessible

for cards with buffers

Combine like cards (MBT's, SLIC's, FIC's)


Performance Monitoring

- Baseline: "always there"
 - get to know normal behavior of system
 - Relatively fast response (few sec)
- Rates
- Rejection or pass fraction
 - on request, Rates, pass fraction for each bit
- Deadtime
- strip chart of some particular bit rates vs time

Trigger Framework Itself

- Beam crossings
 - = Time (allows conversion of counts to rates)
 - normalization if not all alternatives histo'd
- # L1 accepts
- # L2 accepts
- L1 Busy fraction (from SVX, L2) ("deadtime")
- L2 Busy fraction (caused by L3)
- Histogram of # L2 decisions pending
 - fraction time with 0-16 (occupancy of FE "L1" buffers)

Highest Level Display

+ strip charts, of these + some L1, L2 bit rates

High Level Display: Notes

Data sources in L1, L2 are FW scalers; L3

L1 busy is total deadtime

"L2" = % time 16 buffers

The busy boxes expand and contract logarithmically

For L2, L3 circles, % given = pass fraction

- L2 Busy box also expands and contracts fraction of time L2Busy raised
- L1, L2, L3 turn different colors (or **BOLD** borders) if > threshold for:

errors recorded > threshold (what memory time scale...)

click to get error statistics, error messages, scl_init logs

rate, pass fraction out of tolerance (?)

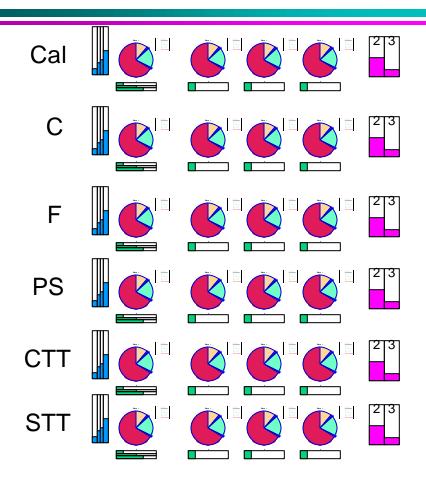
very hard to set tolerances other than deadtime

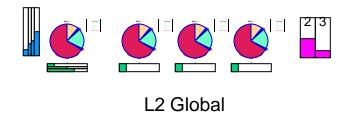
L2 FW Scalers

- ~400 total, 32 bits each
- ~5 per Worker Alpha
 - time in states only, but most interesting states after all Administrator isn't doing the work
- ~32 per Administrator Alpha
 - time in states
 - time with given buffer occupancy
 in crate Alphas (Admin knows)
 where whole events likely collect
 partial events probably in MBT's; DMA into Alpha
- handy hardware window during commissioning!

Worker Alpha FW Scalers: Time in State

- Things you want to time, or possible hangs
 - Wait/event
 - Processing
 - Writing Output ?
 - Interrupt
 - Waiting/Administrator Reply
 - Collecting Monitoring
- A concern: overhead to advertise states
 - ~.3 sec for PCI write sometimes can pay overhead during wait states


35


Administrator Alpha FW Scalers

- Time in State:
 - Wait/event
 - Processing
 - Interrupt
 - Reply/worker
 - Handle L2 Accept/Reject
 - Managing L3 readout
 - Collecting Monitoring
 - VME Busy?
 - Mbus Busy?

- Buffer Histograms (# bins)
 - Allocated (4)
 - Processing (8)
 - Wait/L2 Acc/Rej (3)
 - L3 Readout (3)
 - Free (4)
 - ToAllocate (1/Worker)

Main L2 Display

L2 Display Views?

- Select whether to show:
 - Workers, Admin/buffers, MBTs, SLICs FICs
- Workers: most basic info
 - others needed for debugging

Processor Displays

- Pacman: pie chart of time in state
 - idle time at 3 o'clock
- Bars underneath (for non-states)
 - Interrupt routine (if not subtracted from states)
 - VME Bus Busy; MBus Busy
- lump SLIC processors? (avg time in state?)
- Buffer before: <events> Processing Queue
- Buffers after: <events> Wait L2 answer, L3 R/O
- ERRORS: BOLD border if error counts > threshold
 - click for details?
- Sum (or average) for longer than 5 sec!!

 J. Linnemann, MSU

 One of the sec!!

Buffer Displays

- Average Occupancy (scale 0-16)
 - based on histogram and boundary values who calculates mean? Admin? TCC? Client?
- MBT split: min and max
- MBT Special: if <min>=0 and <max>=16
 - display number of channel(s) with 0 complete events: likely bad channel
- Lump like cards together (MBT's, FIC's)
 - max = max of max's, min = min of min's
- Useful options?
- % time in highest occupancy state?

 J. Linnemann, MSU state?

Diagnostic Displays

- Where to look next if things go wrong
 - can I get the info when things are messed up?
 - Hope from basic displays...
- Try some scenarios:
 - heavy SVX deadtime
 - slow preprocessor
 - crashed preprocessor
 - cypress input link down
 - G-link input down
 - L3 output hung
 - cypress input link slow

Scenarios: Deadtime diagnosis

- SVX deadtime: main L1/L2/L3 display
 - total deadtime >> % L2 buffers full
- Slow L2 processor: main L2 display
 - small L2 idle fraction
 - details for processing time, distribution
- Full buffers mean processor is slow
- Empty buffers mean processor fast, OR source slow

Hangs: processors, L3

Crashed or hung L2 processor: 100% dead; typically all L2 processors but one in IDLE state clear unless happened in IDLE state search processors: "data stale" in details requires acquisition of details without data flow

L3 output hung: processors view same as L2 hang need buffers view: output buffers to L3 full

Hangs: Cypress link

All nodes idle, 100% dead

global MBT: max 16, min 0, empty link #

name if clicked (from database!)

if broken between preprocessor and global, that's all

if preprocessor with broken input:

ALSO its MBT shows this condition

Requires:

Admin extracts info WITHOUT event flow

MBT register: mask of 1 or more complete events

error counters vs channel MAY help

Hangs: G-link

- Looks like preprocessor cypress down
- but FIC looks empty
 - no full event, no data in output FIFO
- FIC in error state? display bad channel #
 - G-link RDY OFF during Reframe/L1 Busy?
 - Error counters nonzero?
 - remember beyond 5 sec!
 - register for PARTIAL events? Or does it help?

Control and Recovery

- Can hangs be recognized in a single crate?
 - hung preprocessor link? (Global looks bad, too)
- SCL_INITIALIZE
 - should it reset links automatically?? Too slow?
- Need uniformity of responses to resets:
 - power, front panel
 - VME write to reset register
 - = power-up, or less violent ?
 keep FPGA programming? Controls settings?
 - VME SYSRESET: VME bus release only
 - MBRESET: MBus release only

Expert Displays/Reports

- Detailed performance measurement
 - diagnosis of slow processor
 - where to expend optimization effort trigger scripts, processor code...
 - comparison with queuing simulations
 mean and rms processing times; distributions
 per event only: do per-filter, per-tool level in simulator
 # bits/script
 # tools run/script
 overlap between trigger bits (need special output?)
 average latency
 % capacity used
 distribution of buffer occupancy

Issues: Alpha

- Need to measure overheads for
 - setting state for FW scalers
 - for entry in circular buffer
- Like to measure
 - interrupt handling time
 not one of a set of exclusive states, unless stack...
 - VME and MBus busy
 like hardware path to ECL outputs

Circular Buffers: Flexible Processor Output

- Scalers can give fractions
 - with time base, can give mean times
- Circular buffers of actual values: (T_{event}, N_{jet}, _{jet}, ...)
 - Software logic analyzer (Cutts): {state, transition time}
 - make a histogram to show a distribution (tails) linear, log plot...
 - calculate rms values
 - only window to high pre-L2 statistics (~Nc X more than UBS)

```
trigger-independent "health" plots for preprocessors
L1 trigger masks (for trigger overlaps--pseudo data stream?)
```

show derived quantities

```
event latencies: T(decision) - T(event) [L2G Admin] 
<Latency> X <Input Hz> 
= effective delay in events (buffers)
```

UBS vs Monitoring statistics

- Monitoring defined as ~ 1 per 5 sec
 - Circular buffer with Nc event entries gives Nc/5 Hz
- UBS events:
 - .5% of out bandwidth another .5% L3 UBS
 - Say 20 Hz output
 1/2 % is 1/10 sec UBS from L2
- Monitoring is ~2Nc more--for SELECTED info
 - UBS events get WHOLE event--vastly more flexible
- need to be a monitoring client to see it
- must do own histo clearing at "run" start/end
- save to disk for offline analysis??

Histograms vs Circular Buffer

Histogram: concerns over software escalation

- another monitoring data type
 more bins to define and match
 less stable than buffer bins
- + scatterplot may be more natural?
- + Circular buffer gives less statistics? (size choice)
- ? Relative timing of two

attraction: Run I Trigger examine was weak statistics, strong dependence on event selection less bias, but still L1 selected, from preprocessor

Issues: MBT

- Measuring min, max # events histogram
 - also specific channel histogram, but must be set...
- Display: "average" min, "average" max
- bad link gives min=0, max=16
 - enough to isolate if hung link on card
- need register mask of FIFO states (for active inputs)
 - 1 if any data? No. Useful only if hangs between evts
 - 1 if complete event? Bad channel shows as 0.

Issues: FIC

- Not event-oriented, so should self-drain
- only purpose is to show if
 - getting behind (unlikely...)
 - input lost (unlikely--until it happens)
- Histos of # whole events (time fractions)
- could use a register like proposed for MBT
 - currently, have FIFO_FULL
 - Has error counter, RDY, per Glink sufficient when no data flowing to identify channel?
 Does BUSY because of reframe show up here?

Issues: SLIC

- No spec yet
- Event oriented: between MBT and Alpha
- error counters, event counters per input
 - also a register for fragments?
- Event occupancy histogram?
 - Of what buffer?
 Input FIFO? Fast. Should self-drain--but event oriented?
 FIFO in front of DSP?