Monitoring and Debugging
L2 Hardware

James T. Linnemann
Michigan State University
Paris Workshop
March 10, 1999
Monitoring Data Collection

- TCC tries to collect fresh monitoring every 5 s
 - sends event through system with CollectStatus
 - reads hardware scalers in L1 framework
 - if L2 running, captures info and tags with event #
 put in Bit3 MPM in each crate by Administrator
 read out by TCC (after .5 s?) (no VME cycles in crate)
 - if L2 not running, TCC asks Administrators to collect monitoring data anyway?
 Mark as stale unavailable blocks (crashed node?)
TCC & Monitoring Client

- TCC serves trigger monitoring information
 - handles scaler rollover
 - may be asked for integral or differential

- client handles display and reporting
 - reports, pacmen, flow displays, strip charts, histograms
 - decides what to do if not all monitoring fragments match
 - event tags on blocks differ:
 - stale information in some blocks?
 - Show previous block (and warn “stale data”)
 - or make blank display?
 - Collected without events flowing, so not synchronized?
 - needs to know (fixed) format, trigger setup (both: database?)
 - presents subsets according to requested run (not all bits)
 - and run summary?
Monitoring info database: many views needed

- Lots of info of various types
 - type of synchronization
 time, event, rough interval
 - source
 alpha, mbt, fic, slic, framework scaler
 sources have different availability if things hang
 - interpretation
 event (try, pass…) counts
 error counters Integration time > 5 sec? By Client?
 time in state
 current state
 buffer occupancy histogram
 circular buffers of event characteristics (histogrammable)
 error messages
Info Type vs Source

<table>
<thead>
<tr>
<th></th>
<th>FW Scaler</th>
<th>VME</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Counts</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>State Occupancy</td>
<td>x</td>
<td>x</td>
<td>(x)</td>
</tr>
<tr>
<td>Current State</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Buffer Occupancy</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Circular Buff/Histo</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Sources of Monitoring Data

- **Scalers in L1 framework**
 - ECL gates, count beam crossings in given state
 - count of occurrences of a condition
 - Read by TCC directly--indep. of state of L2 crates
 - tells truth even if system hung
 - time-synchronous collection

- **Scalers on VME boards (MBT, FIC, SLIC)**
 - like L1 scalers but local, slower clocks: time in state
 - not collected at same time as L1 scalers
 - nor event-synchronized
 - collection works only if
 - Administrator alive (unless TCC knows crate contents!)
 - VME available (VME bus, VBD not hung)
 - smoothest if events actually flowing
Monitoring from Processors
Alphas, DSP’s

- Can monitor `most anything we have time for
- best for event accounting, pass rates
 - if events flowing, collection is event-synchronous with L1 scalers
 - error condition when
 - any in/out counts mismatch
 - nonzero error counter
 - not time synchronized with L1 scalers
- if events not flowing, may be partial or clumsy
 - can Administrator read Workers, DSP’s?
 - usually, they are notified to collect and move to a buffer
Whole Monitoring Catalog

- Now writing down all we intend to collect
- framework scaler count
- sizing of multiport memory of Bit3
- specifications of hardware cards
 - testing against debugging scenarios
- draft of monitoring collection class for Alphas
Monitoring Displays

- Propose drafts to Online group
 - someone working on this! GREAT!
- Performance monitoring displays
 - warn shifters when things go wrong
- Diagnosis displays
 - localize problems (scenarios)
 - hope to diagnose without sending commands…
 - couple to control system for reset????
- Expert displays
 - performance tuning
 - advanced diagnosis
Monitoring Reports

- Quantitative info shift monitoring
 - when visual doesn’t work?
- Comparison with expected behavior
- Run summaries: capture run start values
 - TCC access by actual value, by time difference over n periods
 - who integrates scalers which roll over
 VME scalers on boards: monitoring, not accounting
- Hope: Intermediate run summaries
 - pick integral since run start, or from “now”
Monitoring concerns

- **Performance Monitoring and Tuning:**
 - find bottlenecks, while data flow continues
 - where, why events backing? Need averages, distributions
 - average buffer occupancy
 - processing time
 - transfer time
 - deadtime = fraction of time buffers full

- **Debugging of hangups** (no data flow; static system)
 - eventually FIX, not diagnose!
 - time in state goes to 100% (anyone in a weird state?)
 - buffer occupancy stops changing (where the events? 16?)
 - identify card with problem
 - identify channel of card if isolated
 - snapshots, error counts may be enough--if they can be read!
Desirable compromise
[like L3 Pacmen]

- **Display averages**
 - good for tuning/performance
 - *click to see details*
 - usually for experts
 - examples: buffer occupancy histograms; error counts

- **Display becomes static on hangup**
 - IF info can be read: so *prefer FW scalers*
 - but it’s only available for Alphas
 - VME local scalers are nearly as accessible
 - for cards with buffers

Combine like cards (MBT’s, SLIC’s, FIC’s)
Performance Monitoring

- Baseline: “always there”
 - get to know normal behavior of system
 - Relatively fast response (few sec)

- Rates
- Rejection or pass fraction
 - on request, Rates, pass fraction for each bit

- Deadtime
- strip chart of some particular bit rates vs time
Trigger Framework Itself

- Beam crossings
 - = Time (allows conversion of counts to rates)
 - normalization if not all alternatives histo’d
- # L1 accepts
- # L2 accepts
- L1 Busy fraction (from SVX, L2) (“deadtime”)
- L2 Busy fraction (caused by L3)
- Histogram of # L2 decisions pending
 - fraction time with 0-16
 (occupancy of FE “L1” buffers)
Highest Level Display

L1
5277 Hz
L2
16%
L2 Busy
5.7% L2

L2
841 Hz
L3
2.3%
1.3% L2 Busy

7.2%
L1 Busy

+ strip charts, of these + some L1, L2 bit rates
High Level Display:

Notes

Data sources in L1, L2 are FW scalers; L3
L1 busy is total deadtime “L2” = % time 16 buffers
The busy boxes expand and contract logarithmically

For L2, L3 circles, % given = pass fraction

L2 Busy box also expands and contracts
fraction of time L2Busy raised

L1, L2, L3 turn different colors (or BOLD borders) if > threshold for:
errors recorded > threshold (what memory time scale…)
 click to get error statistics, error messages, scl_init logs
rate, pass fraction out of tolerance (?)
 very hard to set tolerances other than deadtime
L2 FW Scalers

- ~400 total, 32 bits each
- ~5 per Worker Alpha
 - time in states only, but most interesting states
 after all Administrator isn’t doing the work
- ~32 per Administrator Alpha
 - time in states
 - time with given buffer occupancy
 in crate Alphas (Admin knows)
 where whole events likely collect
 partial events probably in MBT’s; DMA into Alpha
- handy hardware window during commissioning!
Worker Alpha
FW Scalers: Time in State

- Things you want to time, or possible hangs
 - Wait/event
 - Processing
 - Writing Output
 - Interrupt
 - Waiting/Administrator Reply
 - Collecting Monitoring

- A concern: overhead to advertise states
 - ~.3 sec for PCI write
 sometimes can pay overhead during wait states
Administrator Alpha
FW Scalers

Time in State:
- Wait/event
- Processing
- Interrupt
- Reply/worker
- Handle L2 Accept/Reject
- Managing L3 readout
- Collecting Monitoring
- VME Busy?
- Mbus Busy?

Buffer Histograms (# bins):
- Allocated (4)
- Processing (8)
- Wait/L2 Acc/Rej (3)
- L3 Readout (3)
- Free (4)
- ToAllocate (1/Worker)
Main L2 Display

Cal

C

F

PS

CTT

STT

L2 Global

Write
W/Admin
Monitor
W/Event
L2 Reply
L3
Processing
L2 Display Views?

- Select whether to show:
 - Workers, Admin/buffers, MBTs, SLICs FICs
- Workers: most basic info
 - others needed for debugging
Processor Displays

- Pacman: pie chart of time in state
 - idle time at 3 o’clock
- Bars underneath (for non-states)
 - Interrupt routine (if not subtracted from states)
 - VME Bus Busy; MBus Busy
- lump SLIC processors? (avg time in state?)
- Buffer before: <events> Processing Queue
- Buffers after: <events> Wait L2 answer, L3 R/O
- ERRORS: **BOLD** border if error counts > threshold
 - click for details?
 - Sum (or average) for longer than 5 sec!!
Buffer Displays

- **Average Occupancy** (scale 0-16)
 - based on histogram and boundary values
 - who calculates mean? Admin? TCC? Client?

- **MBT split**: min and max

- **MBT Special**: if \(<\text{min}>0\) and \(<\text{max}>16\)
 - display number of channel(s) with 0 complete events: likely bad channel

- **Lump like cards together** (MBT’s, FIC’s)
 - max = max of max’s, min = min of min’s

- **Useful options?**
 - % time in highest occupancy state?
Diagnostic Displays

- Where to look next if things go wrong
 - can I get the info when things are messed up?
 - Hope from basic displays...

- Try some scenarios:
 - heavy SVX deadtime
 - slow preprocessor
 - crashed preprocessor
 - cypress input link down
 - G-link input down
 - L3 output hung
 - cypress input link slow
Scenarios: Deadtime diagnosis

- SVX deadtime: main L1/L2/L3 display
 - total deadtime \gg % L2 buffers full
- Slow L2 processor: main L2 display
 - small L2 idle fraction
 - details for processing time, distribution
- Full buffers mean processor is slow
- Empty buffers mean processor fast, OR source slow
Hangs: processors, L3

Crashed or hung L2 processor: 100% dead;
typically all L2 processors but one in IDLE state
clear unless happened in IDLE state
search processors: “data stale” in details
requires acquisition of details without data flow

L3 output hung: processors view same as L2 hang
need buffers view:
output buffers to L3 full
Hangs: Cypress link

All nodes idle, 100% dead
 global MBT: max 16, min 0, empty link #
 name if clicked (from database!)
 if broken between preprocessor and global, that’s all
 if preprocessor with broken input:
 ALSO its MBT shows this condition

Requires:
 Admin extracts info WITHOUT event flow
 MBT register: mask of 1 or more complete events
 error counters vs channel MAY help
Hangs: G-link

- Looks like preprocessor cypress down
- but FIC looks empty
 - no full event, no data in output FIFO
- FIC in error state? display bad channel #
 - G-link RDY OFF during Reframe/L1 Busy?
 - Error counters nonzero?
 remember beyond 5 sec!
 - register for PARTIAL events? Or does it help?
Control and Recovery

- Can hangs be recognized in a single crate?
 - hung preprocessor link? (Global looks bad, too)

- SCL_INITIALIZE
 - should it reset links automatically?? Too slow?

- Need uniformity of responses to resets:
 - power, front panel
 - VME write to reset register
 - power-up, or less violent?
 - keep FPGA programming? Controls settings?
 - VME SYSRESET: VME bus release only
 - MBRESET: MBus release only
Expert Displays/Reports

- Detailed performance measurement
 - diagnosis of slow processor
 - where to expend optimization effort
 trigger scripts, processor code...
 - comparison with queuing simulations
 mean and rms processing times; distributions
 per event only: do per-filter, per-tool level in simulator
 # bits/script
 # tools run/script
 overlap between trigger bits (need special output?)
 average latency
 % capacity used
 distribution of buffer occupancy
Issues: Alpha

- Need to measure overheads for
 - setting state for FW scalers
 - for entry in circular buffer

- Like to measure
 - interrupt handling time
 - not one of a set of exclusive states, unless stack…
 - VME and MBus busy
 - like hardware path to ECL outputs
Circular Buffers: Flexible Processor Output

- Scalers can give fractions
 - with time base, can give mean times

- Circular buffers of actual values: \((T_{\text{event}}, N_{\text{jet}}, \text{jet}, \ldots)\)
 - Software logic analyzer (Cutts): \{state, transition time\}
 - make a histogram to show a distribution (tails)
 - linear, log plot...
 - calculate rms values
 - only window to high pre-L2 statistics (\(\sim N_c X\) more than UBS)
 - trigger-independent “health” plots for preprocessors
 - L1 trigger masks (for trigger overlaps--pseudo data stream?)
 - show derived quantities
 - event latencies: \(T(\text{decision}) - T(\text{event})\) \([L2G\ Admin]\)
 - \(<\text{Latency}> X <\text{Input Hz}>\)
 - = effective delay in events (buffers)
UBS vs Monitoring statistics

- Monitoring defined as ~ 1 per 5 sec
 - Circular buffer with Nc event entries gives Nc/5 Hz

- UBS events:
 - .5% of out bandwidth
 another .5% L3 UBS
 - Say 20 Hz output
 1/2 % is 1/10 sec UBS from L2

- Monitoring is ~2Nc more--for SELECTED info
 - UBS events get WHOLE event--vastly more flexible

- need to be a monitoring client to see it
- must do own histo clearing at “run” start/end
- save to disk for offline analysis??
Histograms vs Circular Buffer

Histogram: concerns over software escalation
- another monitoring data type
 more bins to define and match
 less stable than buffer bins
+ scatterplot may be more natural?
+ Circular buffer gives less statistics? (size choice)
? Relative timing of two

attraction: Run I Trigger examine was weak
 statistics, strong dependence on event selection
 less bias, but still L1 selected, from preprocessor
Issues: MBT

- Measuring min, max # events histogram
 - also specific channel histogram, but must be set...
- Display: “average” min, “average” max
- bad link gives min=0, max=16
 - enough to isolate if hung link on card
- need register mask of FIFO states (for active inputs)
 - 1 if any data? No. Useful only if hangs between evts
 - 1 if complete event? Bad channel shows as 0.
Issues: FIC

- Not event-oriented, so should self-drain
- only purpose is to show if
 - getting behind (unlikely…)
 - input lost (unlikely--until it happens)
- Histos of # whole events (time fractions)
- could use a register like proposed for MBT
 - currently, have FIFO_FULL
 - Has error counter, RDY, per Glink
 sufficient when no data flowing to identify channel?
 Does BUSY because of reframe show up here?
Issues: SLIC

- No spec yet
- Event oriented: between MBT and Alpha
- error counters, event counters per input
 - also a register for fragments?
- Event occupancy histogram?
 - Of what buffer?
 - Input FIFO? Fast. Should self-drain--but event oriented?
 - FIFO in front of DSP?