

The DØ Level 2 Trigger

James T. Linnemann Michigan State University For the DØ L2 Trigger Group (10 institutions!)

DPF

Aug 12, 2000 Columbus, Ohio

Ri Ri

RunII at the Tevatron

Trigger Strategy

Detectors provide geometric objects Combined by trigger systems to form physics objects

	Calor.	Muon	Silicon Vertex	Cent. Tracker	Pre- Shower
e ⁺,e ⁻	em clus			track	>> mip
γ	Em clus			no track	>> mip
μ	Мір	μ track		track	
τ	Had clus.			track	
ν	Miss ET				
Jets	Had clus.				
Heavy Flavor	Had clus	μ track	displaced vertex		

Trigger decisions: count objects measure object properties measure object relations

RunII Trigger System

Trigger components and stages

Trigger Organization

- First event wide trigger decision
- Combine sub-detector information into physics objects (e, jets, μ , missing E_T)
- 10 kHz input rate \Rightarrow 100 µsec time budget
- 1 kHz accept rate \Rightarrow 90% rejection
- Less than 5% deadtime
- Event order must be maintained!
- 16 front-end buffers for events awaiting decisions
- Hardware support for monitoring and diagnosis
 - And VME readback of all download, status

Stochastic Pipeline

- 2-Stage pipeline: Preprocessor and Global
 - Preprocessors use detector-specific L1 data
 - Global processor combines detectors
 - Triggers map 1-to-1 with L1 (128 bits)
 - Each trigger programmable (physics objects and cuts)
- Full set of buffers (16) between stages

– Busy raised by front ends not L2

- Readout driven by hardware framework
- Muon, STT have more pipeline stages
- Design verified by queueing simulations

Parallelism

- Preprocessors
 - Muon, tracking, and PS use "geographic parallelism"
 - Calorimeter preprocessor
 - Find EM objects, jets and calculate missing E_T in parallel
 - EM/jet/Missing E_T event synchronous ("lockstep")
 - Can the processing be done in event asynchronous way?
- Global
 - Parallel algorithm?
 - Need a highly parallel algorithm or suffer from Amdahl's law
 - Global farm?
 - Must report answers in same order as arrival

Level 2 Crate (9U VME for Physics)

- Pre-processors and global have similar crates
- Data processing is done by
 - 500 MHz Alpha CPU cards (=25,000 cycles/event)
 - or processor specific hardware

Data Flow

- In, Out by serial lines: 16MB/s Hotlinks, 106MB/s G-links
- MBT broadcasts to Alphas 320MB/s Magic Bus

Alpha Processor Card

- Based on DEC PC164 board
 - Joint DØ/CDF Project
- Contains:
 - **500MHz** 21164 Alpha CPU 2-4 instructions/cycle
 - **128Mb** main memory
 - 267MB/s PCI
 - VME interface
 - 320MB/s MBus interfaces (DMA+PIO) (all I/O > 1KHz)
 - Custom Backplane control lines, interrupts
 - Ethernet, EIDE Hard Drive (Linux)
 - 32 channel ECL output port (monitoring)

• Two functions

- administrator controls and manages workers
- workers process data

Other Level 2 Cards

•	Magic Bus Transceiver (MBT)	8 in, 2 out						
	 sends pre-processor outputs to global crate (Hotlinks) 							
	- broadcasts incoming pre-processor data (Hotlinks) to alphas (MBus)							
	 interfaces with Hardware Trigger Framework 							
•	SLIC (muon system)	16 in, 2 out						
	– 5 DSPs, 1 master and 4 workers							
	 does basic formatting and sorting of data 							
•	Fiber Input Converter (FIC)							
	– translates G-link to Hotlink for L1 Trigger							
•	Serial Fanout (SFO)	1-6 in, 12 out						
	 fans out 160 MHz Hotlinks (including test stand data copies) 							
•	Cable Input Converter (CIC)	12 in, 12 out						
	 recovers signals for muon processor inputs 							
•	Bit3 VME-PC controller	PCI/fiber in, VME/dualport						
	 monitoring and initialization 	commercial card						
•	VME Buffer Driver (VBD)							
	 reads and stores data to send to Level 3 	Run I Legacy card						

Alpha Environment

- Two environments used:
 - Alpha Linux for most running, debugging
 - modified Linux low level interrupt handler; physical addresses
 - turn off Linux while running--unless crash returns to debugger
 - run test software to debug crate cards in situ
 - bare system still used for some low level testing
- C++ but carefully----
 - No dynamic memory during event loop
 - No RTTI, STL
 - Restricted use of virtual functions
 - Data I/O done for user
 - No user I/O except via error logger during running
 - Run user code unaltered in simulator
 - Relink with simulation version of interfaces

L2STT Crate

STT Card Flavors

- Fiber Road Card
 - fan out L1 tracker data
 - manage L3 buffers
 - arbitrate VME bus
 - FPGA based
- Silicon Trigger Card
 - preprocess Si data
 - associate hits with L1 tracks
 - FPGA based
- LVDS **R**x, **T**x cards
 - LVDS to PCI (132MB/s)
 - Input:
 - Event building, buffering
 - Output:
 - fanout

- Track Fit Card
 - fit trajectory to hits
 - DSP based; C program
- CPU (68K)
 - initialization
 - downloading
 - monitoring
 - Resets
 - VxWorks
- VBD (legacy)
 - L3 readout

Current Status

- **Baseline boards in production (or done)**
- **Online Software** (all under release control)
 - Administrator, worker common code being tested
 - Similar stage with DSP code for SLIC cards
 - Alpha device drivers written, being tuned
 - global script runner and example filters written
 - Most preprocessor algorithms in simulator
- Installation and commissioning has begun
 - Vertical slice verification now
 - Test stand running
 - Installing crates and cabling now
 - Baseline system test in fall **2000**

Ready to run in 2001! STT upgrade 1st year

- Use RESQ package from IBM
- Baseline system meets system requirements if:
 - Median Preprocessor time of roughly $50 \ \mu sec$
 - Median Global time of roughly 50 µsec
 - Avoid long tails in processing time
 - Buffers placed between all elements
- Concerns:
 - Correlation between Cal Workers
 - Retreat paths for Cal and Global

Missing E_T : (nearly) constant time 45 µsec EM, jet: vary between 20 and 50 µsec

% Deadtime for Event synchronous vs event asynchronous processing

More Global Workers?

- Parallel algorithm suffers from Amdahl's law
- Additional workers
 - event synchronous mode (lockstep)
 - event asynchronous mode (non-lockstep)

Processing of SMT Data

- bad strip mask
 - zero amplitude of flagged strips
- pedestal/gain calibration
 - chip-by-chip lookup table
- clustering algorithm
 - similar to offline, use 5 strips for centroid

Track Fit Algorithm

- require hits in
 - at least 3 of the 4 SMT layers
 - same 30 degree sector
 - at most 2 adjacent barrels
- choose hits
 - closest to trajectory defined by CFT and beam
- linearized χ^2 fit

STT Performance

- generate helical tracks
- intersect with
 - ideal detector geometry
 - nominal assembly tolerance
 - nominal + tent distortions
- reconstruct with ideal detector geometry
- impact parameter resolution includes
 - multiple scattering (50 μ m GeV/p_T)
 - beam spot size (30 μ m)

Performance

p _T (GeV)	geometry	background pass rate	relative rate	impact par cut (2σ)	relative b efficiency	relative bb eff
		f	∝f ³		3	$2\epsilon^{3} - (\epsilon^{3})^{2}$
œ	ideal	4.5%	1	68 µm	1.00	1.00
	nominal	10%	11	86 µm	0.95	0.90
	tent	14%	30	100 µm	0.95	0.88
3.0	ideal	4.5%	1	76 µm	1.00	1.00
	nominal	9%	8	94 µm	0.94	0.88
	tent	12%	19	110 µm	0.94	0.88
1.5	ideal	4.5%	1	96 µm	1.00	1.00
	nominal	7.5%	4.6	108 µm	0.96	0.91
	tent	10%	11	120 µm	0.96	0.91

assume: luminous region =22 cm, three tracks with S>2, impact parameter of b-tracks =250 μ m