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1 Organization of this document

We �rst give a functional description of the Level 2
Global Processor. Then we evaluate the engineering
performance of the system. Finally we discuss issues of
control, monitoring, testing, downloading of code and
scripts. The Level 2 web pages[1] provide more detailed
documentation on many of the topics summarized here.
The discussion in this document is aimed at a de-

scription of L2 Global. The L2 Global Processor is fed
data by several Preprocessors. Because the preproces-
sors will use the same hardware and software, the de-
scription is also useful as an overview of data movement
in preprocessors.
This report describes our current understanding of

the system, and demonstrates that we have workable
technical solutions for all the data movement, hard-
ware, and, online software issues which are likely to
a�ect design of the hardware components of the sys-
tem. The �ltering software and the framework to steer
it are not explored in detail in this document.

1.1 Conventions

In this document, B indicates a Byte, while b indicates
a bit. L1, L2, and L3 indicate the Level 1, Level 2,
and Level 3 trigger. HWFW refers to the HardWare
FrameWork of L1 or L2. Bandwidth is normally quoted
in MB/s. It is worth noting that 100 MB/s is the same
as 100B/�s. Data acquisition is abbreviated by DAQ.

2 Requirements

The fundamental design requirements[2, 3, 4] of the
L2 Global Processor are to handle a 10 KHz input
rate, provide a rejection factor of approximately 10,
with signal e�ciency no lower than Run I L3, intro-
duce at most 5% deadtime, and provide information
to the L3 trigger to assist the software �lter decisions.
The system should be reliable, well understood, and

not require excessive resources to develop or operate.
VME Bu�er/Driver (VBD) cards perform the readout
to L3. L2 Global must announce its decisions to the
L2HWFW[5] in the order in which it receives events
from the L1 system[6]. The decisions are in the form of
a 128 bit mask, deciding pass or fail for any of the 128
L1 decision bits passed by L1.

3 Overview of L2

3.1 Architecture

The L2 trigger, like L1, consists of a hardware frame-
work and a separate set of processors. The frame-
work noti�es L3 and DAQ about pass/fail decisions on
events, and reads out scalers. The L1HWFW also sends
information to the L2 processors to assist in their deci-
sion making, generates relevant trigger Quali�ers (such
as Unbiased Sample), and the L2HWFW receives re-
sults from the L2 Global Processor. The L1HWFW
does the combinatorial logic to make the �nal L1 deci-
sion, but the �nal L2 trigger decision is performed in
the L2 Global Processor.

The architecture for the L2 processor shown in Fig-
ure 1 can be thought of as a stochastic pipeline. The
10 KHz input rate gives each stage a nominal budget of
100 �s. Simulations give low deadtimes for processing
times in the 50-75 �s range for each stage (processing
plus output formatting combined). The requirement is
stricter for earlier, parallel stages of processing, since
the later stages may be delayed if any of the stages are
slow. Preprocessors handle (in parallel) data speci�c
to particular detectors and pass lists of objects found
to the Global Processor. It is critical that the prepro-
cessors not be restricted to event-synchronous opera-
tion, lest the processing time distribution in the prepro-
cessors become a long-tailed \worst of n" distribution.
Further, deadtime can increase signi�cantly if the deci-
sion time varies signi�cantly from event to event. Tails
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Figure 1: L1 and L2 trigger elements. The horizontal
arrows denote information ow.

longer than exponential in the decision time distribu-
tion decrease the extent to which the stochastic pipeline
imitates a true pipeline. To enhance performance, the
processors allow new events to ow into bu�ers while
processing takes place.

3.2 L2 Global Processor

The Global Processor makes trigger decisions based on
the objects found by the preprocessors. It may require
higher quality of objects found by the preprocessors,
make matches between objects found in di�erent pre-
processors, or calculate kinematic variables from mul-
tiple objects. Such decisions are tailored separately
for each L1 trigger bit which �red: each L1 bit which
passed L1 is either con�rmed or rejected, resulting in a
128-bit L2 trigger bit mask. The event passes L2 if any
L2 bit passes. The decision is reported to the L2 hard-
ware framework. The L2 decision directs �nal DAQ,
steers data to L3 nodes, and guides L3 triggering.

The Global Processor will be implemented by a fast
Alpha processor on a VME card; the hardware is the
same as that used by CDF for its Global Processor,
and D� and CDF have collaborated on the speci�ca-
tion of the system. The di�culty of the task facing
the Global Processor depends on the amount of data,
and the complexity of processing needed. We currently
estimate .9KB of input data. The architecture guar-
antees that the most complex processing is localized
in the preprocessors, so processing of order 100 K in-
structions (100 instructions per byte) seems adequate.
Run I L3 required roughly 2M instructions per event,

but this �gure includes work done by preprocessors in
the Run II L2 system. The Digital Alpha 21164 chip
running at 500 MHz can perform up to 4 instruction
per clock cycle, giving a potential of 200K instructions
in the nominal time budget. The proposed processor
passes these plausibility checks, and simulations with
sample code con�rm that the processing power an Al-
pha gives is adequate. More processors can be added if
need be.

3.3 Overview of L2 Global Operation

The L2 trigger occupies a 64-bit1 VME for Physics crate
9 U high equipped with an auxiliary Magic Bus [7] back-
plane. Table 1 shows the cards in the crate, and Fig-
ure 2 shows how we use the hardware. We will use this
basic architecture (Worker and Administrator Alpha,
with Magic Bus Transceiver (MBT) for input, VBD
for output, and Multiport Memories (MPM) for other
I/O) to handle data movement in all the L2 preproces-
sor crates as well as in the Global crate.
The Magic bus (MBus) is a 128 bit (16 Byte) wide

data bus used for communication between modules in
the L2 Trigger crate. The MBus is mounted on the
P3 backplane of the VME crate. The bus has 32 bit
addresses; among these are 8 bits of addresses which
broadcast to all MBus modules. The bus can perform
a cycle every 50 ns2, giving a nominal throughput of
320MB/s. Since MBus is a synchronous bus, this rate
can be sustained. MBus has been designed to be faster
than the internal PCI bus of the Alpha processors, so
that MBus will not limit data input speed. The attrac-
tion of the auxiliary bus it to allow data input at higher
bandwidth than VME can support. The VME bus is
used for readout to L3 and for general control func-
tions3. The existence of the two buses allows exibility
in implementing other communication needs.
The Magic Bus Transceiver (MBT) cards accept the

preprocessor inputs. Data are broadcast via MBus to
both an Administrator node to handle housekeeping
tasks and a Worker node to make the actual trigger
decision. The multiport memory is used as a link to
the trigger control computer (TCC). TCC handles run
control, downloads run-speci�c information, and col-
lects monitoring information via the multiport memory,
which can also serve as a VME crate controller. The
MBT card also sends decisions and monitoring infor-
mation to the L2HWFW.
We �nd the coding more straightforward with this

division of responsibility between Administrator and
Worker, and it allows the most straightforward expan-
sion of the number of Worker nodes if required for L2

1The 64 bit data width only applies during block transfers,
and is not used for any functions in the L2 Global crate.

2To be veri�ed during test of �rst prototypes
3The Universe chip used on Alpha VME cards does not sup-

port the VSB32 (VMX) bus, so this is not feasible mechanism for
communication.
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Figure 2: L2 Global Processor

Global performance. It is also easily adapted for the
L2 Calorimeter preprocessor, which currently plans 3
Workers.
The Administrator manages the event Bu�ers, coor-

dinates L3 readout and sends monitoring information
to TCC. The Administrator looks at the data only to
check data integrity.
The Worker analyzes events and reports the answer

(a mask of 128 pass/fail bits) to the Administrator and
the L2HWFW, which uses the information to control
readout of the main event data to L3. When an event
has been marked as Collect Status, statistics, errors,
and processing time bu�ers are collected and written
via VME to the dualport memory (DPM) accessible
to the TCC, which will serve the data to monitoring
consumers.
All handshakes between the Administrator and

Worker take place on the MBus to avoid long latencies
caused by collisions with L3 readout on the VME bus.
The \Fred" register ports on the Alpha boards present
the current processing state and the current number of
events in the Bu�ers for scaling or logic analyzer view-
ing.
A similar system of Administrator, Worker, and

MBT4 cards will be used in all L2 preprocessors.

4 Inputs of L2 Global

After a L1 accept decision on an event, data ow to the
L2 preprocessors. The data may be from the L1 trigger,
or a subset of the full digitized data eventually sent to
L3. The L1HWFW sends the trigger conditions requir-
ing evaluation and whether the event has been marked
for any kind of special processing. The data sources for

4MBT functionality used by L2 Global is detailed in the fol-
lowing two sections. Additional aspects of the MBT card, includ-
ing functionality needed only by L2 preprocessors, are contained
in Appendix A.

Slot Card
1 Bit3 Multiport Memory
2 Optical link for Bit3 MPM
3 VBD (readout to L3)
4 Spare

5-12 Spare Processor Slots (4)
13-14 L2 Global Shadow Node ??
15-16 L2 Global Worker Node
17-18 L2 Global Administrator Node
19 Magic Bus Transceiver Card 1
20 Magic Bus Transceiver Card 2
21 Spare

Table 1: L2 Global Processor Crate

ID Source
0 L1 Serial Command Link
1 L1 Hardware Framework
2 Calorimeter e/ Preprocessor
3 Calorimeter Jet Preprocessor
4 Calorimeter Etmiss
5 Central Fiber Tracker (CFT)
6 � Central Preprocessor
7 � Forward Preprocessor
8 Central Preshower (CPS)?
9 Forward Preshower (FPS)
10 Silicon Tracking Trigger (STT)?

11-15 Spare

Table 2: L2 Global Data Sources

Global Processor are shown in Table 2. The CPS and
STT preprocessors are currently under consideration;
the architecture allows them to be added easily at any
time.
All Sources needed for a run must provide data to L2

Global for every event of the run.
Details of the data sent to L2 Global from each of the

data Sources is found in Appendix B. The estimated
size is 900B/event.

4.1 Input Bu�ering

The front end crates of the DAQ system can hold up
to 16 DAQ events awaiting L2 decisions. To match
this, the L2 system also can hold L2 data for up to
16 events. As is evident in Figure 3, there are many
locations within the L2 system where L2 data may re-
side during processing. The simplest control system
results when any of these sites is capable of holding all
16 events: any data producer is always guaranteed that
it can send its data at any time. Thus, we have chosen
to place a 16-event FIFO at every place where data is
received in the system. The �gure above shows an in-
put FIFO 16 events deep for each of the data sources
sending information to L2 Global. Further, after the
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Figure 3: Bu�ering in L2 Data Transfers

data is broadcast to the Worker and Administrator, it
is received a set of FIFOs, 16 events deep for each of
the data sources. In this case, the L2 system need not
generate a BUSY for the L2HWFW, since if there were
16 events spread through the L2 system, the DAQ sys-
tem (which can generate its own BUSY) already has 16
events. Howver, one must monitor all the L2 bu�ers in
order to understand the operation of the system.

There are no plans to cause L2 Busy even if all 16
bu�ers are occupied at any location in the L2 system.
Nor are there plans to generate an Error condition if a
17th event arrives at a particular bu�er, either in L2
Global, or in any L2 Preprocessor 5. Either situation
is already prevented by hardware on both Front End
DAQ systems and by an up-down counter of outstand-
ing L2 decisions in the L2HWFW. There are no good
recovery mechanisms from this situation, and the de-
sign philosophy is to not detect errors which are in any
case irrecoverable.

4.2 Data Transport from Preprocessors

The physical layer of the transport is 160 Mb/s Cypress
Hotlinks[8] serial bus. The serial data transport embeds
an 8-bit byte in a 10-bit frame, so each link is capable of
16 MB/s. The speci�cations for transport are found in
[10]. Because of the decision to place 16 bu�ers at the
end of each data path, transfers proceed without ow
control. The end of event marker is sent by the Cypress
control path, not by special values of data words.

The data format[11] includes a header specifying the
format, length of header and objects, and an event num-
ber in the header and trailer, allowing for veri�cation
of the transfer. Objects are �xed length for a given
preprocessor, and an integral number of 32b (4B) long-
words. The data sources must pad the transfer after
the trailer to form a number of longwords divisible by
4, since the Magic Bus is 16B wide.

5including the SLIC DSP cards used in some preprocessors
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Figure 4: Magic Bus Transceiver (MBT) Card

4.3 The MBT Card

The Magic Bus Transceiver (MBT) Card[12] is shown
in Figure 4. The MBT is the main I/O building block
for the L2 Global and the L2 Calorimeter preprocessor.
The main function of the MBT card is to receive up
to 7 inputs and broadcast them to the Alpha modules
via Magic Bus. Thus, the nominal input capacity of a
system with two MBT cards is 224 MB/s.
In addition, the MBT card receives the Serial Com-

mand Link (SCL). MBT separates the SCL informa-
tion by source. MBT selects information from the
L1HWFW and makes it appear as the 8th data source
on the card. MBT also selects the L2 accept/reject SCL
messages bu�ers them, so that Administrator can read
them as needed.
MBT also contains two other major functions. MBT

has two Hotlinks transmitters, used by preprocessors to
send results to the L2 Global. Finally, MBT has a wide
I/O path, 128 bits of data and a few control lines, to
send the L2 Global's answers back to the L2 HWFW.
In addition, MBT supports various control, testing, and
monitoring functions.

4.3.1 MBT Input Ports

The input ports receive data on the Cypress Hotlinks
cable. The data are fed into FIFO memories6. The end

6The FIFO's are currently forseen to be 64KB/channel. This
would support the largest currently known data source, up to
400 tracks, 8B each, 16 event's worth. It would also support
raw 16 events of raw tracking data. The largest VRB FIFO's
are also 64KB, sized to hold 24 events of maximum SVXII data.
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of an input event is marked in the FIFO by a control
signal on the Hotlink. The FIFO's can hold 16 events7.
The control section knows which FIFO's are active, and
notes when a full event is available in each input FIFO.
Data are not transferred out on the MBus until a full
event is available. The Source ID (which is part of the
MBus broadcast address) for each FIFO is selectable.
In the simplest case, FIFOs on a card can each be as-
signed to a di�erent Source ID. However, if there are
many MBT cards, several FIFO's (on a single card,
or even on di�erent cards) can be all assigned the same
Source ID. The control section will allow MBus arbitra-
tion after each FIFO has sent its event information, and
will notify its neighbor card when all FIFO's have �n-
ished an event, eventually generating a \DONE" MBus
signal when all FIFO's have sent their event.
A GO control message (from Administrator) enables

event transmission, but actual transmission only starts
when all neighbor cards have an event ready to send.
The MBT card at the highest MBus slot number (the
\Pilot" card) receives the GO signal and coordinates
activities of its neighbor \Assistant" cards.
The L1 HWFW information and the preprocessor in-

formation appears on the Hotlink receivers fully format-
ted, so no formatting and no byte swapping is done by
MBT for the standard inputs. The data sources must
provide bytes to the MBT so that the agreed data for-
mat appears in the correct byte order as seen by the
Alpha processors[11], as the MBT performs no byte
swapping.

4.3.2 Information from the L1 HWFW

The L1 HWFW builds a standard L2 header and trailer
and sends to L2 Global the following information, which
is not included in the information on the Serial Com-
mand Link:

� L1 trigger decision mask (16B)

� L1 trigger accept number (4 B)

L2 must make a decision for each bit set in the L1 mask.
The L1 trigger accept number is attached to any error

messages generated during processing.

4.3.3 Serial Command Link (SCL) and Quali-
�ers

4.3.4 L1 Accept Messages

The SCL sends noti�cation of a L1 accepted event to
every geographic section which needs to read out to
L3. In the case of L2 preprocessors, the receipt of the
L1 Accept SCL message means that the preprocessor

Each chip, non-zero suppressed, produces 258B, and the longest
readout \ladder" has 9 chips, or 2322B.

7For test purposes, the FIFOs can be �lled with up to 16
events worth of test data, which can be read out at full speed.

MUST send at least a header block to L2Global for this
event, and MUST prepare at least a header block for
eventual L3 readout in case the event passes L2. When
L2 Global receives the L1 Accept SCL message, this
means that L2 LGlobal must perform a decision cycle,
and prepare at least a header block for L3 readout if
the event passes (or is Unbiased Sample as described
below).

The MBT must select and transform information
from the Serial Command Link[13] information to put
it in the correct format[11] before directing it to its in-
put FIFO. The L1 accept messages have header/trailer
added and are placed in a source FIFO, appearing to
the rest of the system as a standard L2 Global data
source. The relevant L1 information carried by SCL is
the 3B crossing number at the time of the L1 accept,
and the 2B set of L1 Quali�ers.

4.3.5 L1 Quali�ers

Of these L1 Quali�ers, the ones of greatest interest to
L2 Global are Unbiased Sample (UBS), Forced Write,
L2Global Needed, and Collect Status.

The obligation to read out to L3 is announced by
receipt of the L1 Accept SCL message, but a separate
L1 Needed Quali�er will be provided to the L2 prepro-
cessors (L2 Pre xyz Needed, for preprocessor xyz), and
possibly a L2 Global Needed may be de�ned. These
Quali�ers o�er the preprocessor the option to skip exe-
cution of its algorithm for an event without its Needed
Quali�er and produce a minimal header-only output to
L2Global (and preparing a minimal L3 output). This
Quali�er would be attached to a L1 bit whenever a
L2 Global script using the L1 bit requires the input of
the preprocessor. For example, an electron requirement
needs the calorimeter EM preprocessor, the L2CFT
preprocessor, and possibly the L2PS preprocessor. This
is basically a potential performance enhancement; if the
preprocessor does not incur deadtime by running every
event, the Quali�er could be safely ignored.

On a Unbiased Sample event, L2 Global will send the
event to L3 independent of whether any of the L2 bits
actually passed by marking as passed any L1 bits which
were passed. This condition will be marked in the L2G
event header. The actual L2 decision mask will also be
recorded, as well as the nominal \decision" sent to the
L2 HWFW. Such events will occur at a rate determined
by the trigger programming, for an independently ad-
justable fraction[17] of events passing each L1 bit. A
secondary e�ect of the Unbiased Sample Quali�er in
L2 Global is that additional information is written to
L3 to assist in debugging the event. In particular, the
inputs to L2 Global are read out (normally they are
not), and the outputs from L2 Global are expanded to
include more information to allow detailed checking of
the processing. The normal output consists of the good
candidates found by L2 Global which are associated
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with trigger bits which pass L2 Global. The additional
output may consist of good candidates associated with
failed bits, and failed candidates, together with their
association with L2 bits (passing or failing).

The overall rate is expected to be roughly 1% of the
10 Hz L3 output bandwidth, about .1 Hz, or 10�5 of
L1 accepts. Unbiased Sample events will be steered in
L3 to a recording stream destined for the online veri�-
cation programs. In L2 preprocessors, receipt of a Un-
biased Sample Quali�er will result in readout to L3 of
the preprocessors' inputs, and possibly additional out-
put information beyond that sent to L2 Global. The
preprocessor's standard output to L2 Global is not un-
changed by the Unbiased Sample bit.

The Forced Write Quali�er is intended to provide a
mechanism for special runs meant to study new L2 trig-
gers. Forced Write produces detailed output for study
o�-line. Forced Write Quali�ers are generated at every
�ring of a L1 trigger bit which was marked with this
Quali�er in the trigger con�guration �le. This mech-
anism is di�erent than the mechanism for producing
Unbiased Sample events, as UBS events are generated
on only a (programmable) fraction of the �rings of a
given L1 trigger bit.

The Forced Write Quali�er in L2 has exactly the
same e�ect as the Unbiased Sample Quali�er. How-
ever, the Forced Write Quali�er is recorded in the L2
Global header as a separate bit from the Unbiased Sam-
ple bit, because their behavior in L3 will di�er: Forced
Write events ow not to the veri�cation stream, but to
the regular recording stream of the special run which
de�ned the Forced Write triggers.

After receipt of an event with a Collect Status Quali-
�er, L2 Global (and all preprocessors) will capture their
scalers and other monitoring information and place it
where TCC can retrieve it for serving with monitor-
ing. The scalers will be captured after processing of the
event is completed, so that scaler information should be
exactly matched between the L1 and L2 HWFW, the
preprocessors, and L2 Global. The monitoring blocks
will be tagged with the L1 crossing number of the event
with the Collect Status Quali�er, so TCC can assemble
a consistent set of statistics. Collect Status Quali�ers
will be generated approximately once every 5 seconds,
or .2 Hz.

4.3.6 L2 SCL Information

The SCL also carries information on L2 decisions. This
information is captured and placed in a set of registers
readable from Magic Bus, for use by the Administrator
in verifying that the decision was the same as the one
sent to the L2 HWFW. Since this information includes
a crossing number timestamp, L2 Global can calculate
the total latency (elapsed time) since the L1 accept de-

current crossing number (timestamp) 3B
L2 accept/reject information 1B

L1 trigger number 3B
L3 transfer number 2B

total 9B

Table 3: L2 SCL Decision Information

cision. This information from SCL for L2 decisions8 is
summarized in Table 3.

The SCL also is the means of notifying the L2
HWFW of synchronization errors (L2ERROR). Ad-
ministrator does this by writing to a register on MBT
when Administrator or Worker �nds an event with mis-
matched pieces. Administrator keeps count of these
occurrences. The SCL hub responds by broadcasting
SCL Initialize, to which MBT responds by raising L1
Busy. Since any SCL node can provoke SCL Initialize,
Administrator must be noti�ed by MBT. Administra-
tor polls an MBT register rather than being noti�ed by
an interrupt. Administrator announces that all data
bu�ers have been cleared by writing to an MBT regis-
ter to rescind the L1 Busy.

L2BUSY is raised by Administrator if the readout
bu�ers for L3 are full; it is also announced and cancelled
by a write to an MBT bu�er connected to SCL.

5 Outputs from L2 Global

5.1 Reporting to L2 Framework

The answer will be reported to the L2 HWFW via the
MBT parallel I/O port, sending 128 bits of result. L2
Global will verify that the answer was received correctly
and was interpreted as pertaining to the correct event
by listening to the resulting L2 reply message on SCL.

5.1.1 MBT Parallel I/O

The MBT I/O function consists of a I/O control regis-
ter and 128 bits of data register. In send mode, data
is sent in one or two MBus cycles9, and the data are
latched and sent when the control register is written
to during a �nal MBus cycle. MBT sends the 128 bits
of information out on a parallel cable, along a few bits
of strobe and control. A special bit of the MBT I/O
control register sends 128 bits of zero, without the need
�rst send any data. This speeds up L2 Global's normal
answer, that the event failed.

8If register reads are 8B wide, one might choose to remove
the upper B of the timestamp cuts o� the latency measurement
at 8.5ms instead of 2.2 sec. Removing the lower B coarsens the
resolution from 132ns to 33.4�s. There is enough exibility in
MBT to steer a course between these two extremes; only 1b is
needed for the L2 accept/reject information.

9Both 64-bit and 128-bit paths are under consideration.
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It then sends this information out on a parallel cable,
along with control/strobe information. The control in-
formation includes a special bit which sends all zeros,
speeding up L2 Global's normal answer, that the event
failed.
In receive mode, the I/O function reads the current

state of the 128 b of registers10.

5.2 Outputs to L3

The current estimate of the information to be sent to
L3 from L2 is 300 B. Details are given in Appendix C.
L2 Global sends11 only candidates associated with L2
bits (scripts) which pass, reducing the data volume to
this small amount. The di�culty is that these passed
candidates must be extracted from the full processing
results, and a su�cient data structure written to asso-
ciate L2 bits to the candidates which caused them to
pass. Since C pointers cannot be written to a at �le di-
rectly, any pointers used in the L2 Global internal data
structure must be turned into candidate numbers of the
(fewer) candidates written to L3. Current thoughts aim
at a numbering scheme which uses array indices. Only
candidates from scripts which passed are written, and
the scripts keep lists of the candidates they used.
Attempting to answer (within some level of preci-

sion) the question \did this jet pass L2" is one element
driving the requirement for making an association of
candidates to L2 trigger bits. Using L2's candidates as
a starting place for L3 is another. The Worker output
area can be rather compact, since �nding the passed
candidates will require copying data in any case.
Unbiased Sample events will require further postpro-

cessing. Even if the whole of the internal tool storage is
dumped, pointers must be attened (turned into array
indices).
VBD's speed depends on the number of distinct ar-

eas it is asked to read out, even if the number of words
at a given location is zero. We will probably build the
output event in a bu�er area large enough to hold Un-
biased Sample events with maximal information.
The output header for L3 will include the following

status bits:

� Unbiased Sample

� Forced Write

� L2 Global Ran

� Passed in Distress

� Data format error

10The registers could be read twice to be sure of stability of
control levels.

11The current plan assumes favorable results in timing stud-
ies. If the time to postprocess data is too large, a much larger
data volume may have to be sent. The limit is an average of
5-10KB/event.
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On Unbiased Sample events, the extra information
passed, in addition to the L2 decision mask reported to
L2HWFW (L2 mask = L1 pass), is

� L2 decision mask (16B, real answers)

6 Processors

6.1 Alpha in VME

The Alpha card [14] being developed is shown in Fig-
ure 5. The design is based on the layout of the PC164
card sold by Digital Semiconductor[15]. The proces-
sor can execute 2-4 instructions per cycle. The board
includes Digital's 21172 PCI interface, which provides
30ns/cycle, 64-bit input path to memory, for a maxi-
mum rate of 267 MB/s. The card under development
adds several elements to the internal PCI bus of the
core workstation design. A 64-bit VME interface12, the
Tundra \Universe" chip [16], allows communication via
VME bus. The \MB to PCI Interface", a block trans-
fer receiver for �elding MBus broadcast writes, is the
main data path into the processor. The \Fred" (\Tim-
ing Control") Registers are fast I/O port used for con-
trol or monitoring. The \PCI to MB Interface" is a
bidirectional programmed I/O interface between PCI

12Currently, only 32 bits are expected to be implemented on
the Alpha card.
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and MBus. The programmed I/O is used for commu-
nication between Administrator and Worker, reading
and writing test data on the MBus, output via MBus,
reading MBT's data registers, and controlling the MBT
card.
The \Srom" is the serial ROM including the initial-

ization code for the Alpha 21164 processor chip. The
\Flash Rom" is readable once the Srom code has run,
and includes the code to download user code via a PCI
Ethernet card a rudimentary local debugger, and the
server for a remote debugger. The \Bcache" (Backing
Cache) is the 2MB L3 Cache from which we intend to
execute most code. The 21172 chipset is the interface
between the Alpha chip, main memory, and the PCI
bus.
A developer kit is available at very modest cost. It

provides the CAD layout �les for the PC164 card on
which the VME Alpha is based. 13

6.1.1 Buy vs Build and Upgrade Path

The key reason that a specialized processor was used
instead of a standard workstation is the need for fast
I/O from many sources. The availability of the develop-
ment kit makes it possible to both leverage the design
e�ort of the Alpha motherboard from Digital and to
add I/O directly to PCI. The fast input collection from
multiple sources is handled by the Magic Bus. We have
consulted with Digital during the system design process
and they concur that a method of collecting the many
inputs was not available commercially.
Using PCI as the input bus means that the input

design work is portable in principle to another pro-
cessor which supports 64-bit PCI (in Digital's avor).
Using faster versions of the processor should be rela-
tively straightforward so long as Digital's policies on
producing motherboards and development kits remain
the same. The 500 MHz version of the chip used in the
prototypes is pin-compatible with the 400 MHz version
available when design work began; 600 MHz versions
exist but have not been examined in detail. The feasi-
bility of upgrading from a 21164 to a next-generation
21264 processor before the start of Run II is less clear,
as the entire chipset and architecture will change.

6.1.2 VME Interface

The VME interface allows I/O to and from Alpha mem-
ory by mapping pieces (\windows") of VME address
space to Alpha memory space. I/O performance has
not yet been measured. Estimates for uncoupled14 cy-

13The �rst two additions to the PC164 base design, VME I/O
and MBus block input, are designed, tested, and added to the
board layout, while the MBus programmed I/O is designed and
being added to the �rst prototype layout. The �nal addition,
register I/O, is under design, and intended for a second round
prototype.

14During uncoupled cycles (also know as posted write), the
CPU can go on to other things. This is fastest, but CPU must

cles are 20MB/s, so that the Universe chip would not
constrain VBD readout speed.

6.1.3 MBus Block Transfer

The Block Transfer Engine receives broadcast data
from MBus and sends it to prede�ned addresses in Al-
pha Memory via PCI. There are a total of 256 possi-
ble broadcast addresses. One key function of the block
transfer engine is the \Mapper", which is simply a reg-
ister loaded with a base Alpha main memory address
for each MBus broadcast address. Thus the Mapper
associates each MBus broadcast address with a sepa-
rate window of Alpha memory. The Mapper registers
increment automatically as successive data words ar-
rive from a MBus broadcast address. Each MBus (16
B) broadcast transfer is treated as a PCI block trans-
fer, with data being sent to successive Alpha memory
addresses at 8B per PCI cycle. When the MBus broad-
cast address changes, a new PCI block transfer begins,
starting from a new Alpha memory address.

PCI on the Alpha has a nominal bandwidth of
267MB/s. Preliminary performance measurements in-
dicate that block transfers from MBus actually take
place at 20-100 MB/s, depending on loading and trans-
fer length. The 20-25 MB/s �gure applies for 16 B
header/trailers without data; the 100 MB/s �gure is
reached for data sources with 64B or more of user data
without memory contention. Thus the aggregate input
rate is currently estimated at 50-75 MB/s, or 15-20 �s
to load a L2 Global event, overlapped with processing.
Bus loading will be further discussed in section 7.

6.1.4 MBus Programmed I/O

Programmed MBus I/O makes communication with a
MBus address (typically in an MBT card or another
Alpha card) available by reading or writing a PCI ad-
dress. This is rather analogous to the use of VME Pro-
grammed I/O via the Tundra Universe chip. The range
of MBus addresses a given Alpha card will respond to
is set up during initialization of the executable15. This
address range distinguishes di�erent Alpha cards from
each other, again in analogy with the setup of the VME
address mapping in the Universe chip. The mapped ad-
dress range includes the MBus address of the inboxes
used for messages between Alpha nodes, as described
in section 9.2 below.

eventually check for completion. In coupled cycles, CPU instruc-
tion cycle coupled to PCI bus cycle Coupled to VME Bus cycle.
CPU stalls until operation completes on target bus. This is slow-
est, but gives simple software.

15Setting up address windows in executable downloaded code
allows all Alphas to share the same boot-up ROM code. Switches
to distinguish Alpha cards can help this process, though the dif-
ferences among the executables may be su�cient to separate the
MBus address spaces. VME address spaces will probably be sep-
arated by the same mechanism as MBus address spaces.
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There is only speculation at this point as to the Pro-
grammed I/O performance; it will be measured when
the �rst prototype arrives. Guessing that it should be
no slower than VME in favorable modes, 25MB/s, that
would be roughly than 1 �s for a (wide) register read or
write such as sending a short message to another node,
perhaps 2-4 �s to send a result to L2 HWFW or read,
poll. and read back its result16.

6.1.5 Fred I/O port

The Fred Port provides 64b of I/O directly connected
to PCI, so that latency should be short. Planned uses
include
Outputs:
5b Alpha input Bu�er count,
5b state code
4b L3 output Bu�er count
Inputs:
2 lines from VBD for Administrator
A latency of 50 ns is adequate to use as a gate for

scalers in the L2HWFW, which clock at the crossing
rate, every 132 ns. The Fred Port is not yet designed,
so details are still lacking.

6.1.6 Timeouts

Event processing, and most data ow functions, should
terminate within a given (generous) time. If it is ad-
vantagous, such time limits can be enforced by hard-
ware timers generating an interrupt which causes re-
initialization of the system on the principle that such a
long time limit could only be exceeded if the system is
hung. Thus, the useful scale of timeouts is of order of
seconds, fast enough that self-clearing can be initiated
before a human operator would be able to intervene,
and fast enough to minimize deadtime generation dur-
ing physics data taking.
During commissioning, it is likely more useful to al-

low the system to hang, so that more detailed diagnosis
can be undertaken by experts. Even during physics
data taking, the case is somewhat equivocal, as the
self-clearing action should be well enough understood
that it is more likely successful than operator interven-
tion, noting that an unsuccessful operator intervention
is likely to generate much more serious data loss. As
a timeout is certain to lose data, it should be logged,
and generation of timeouts should be held well below
the level at which the resulting data loss is a notica-
ble e�ect on physics luminosity. Further, timeouts only
make sense if they normally DO succeed in reviving
the system; otherwise they only serve to decrease the
information available for a diagnosis.

16Calorimeter and other preprocessors use programmed MBus
I/O to send results to Alpha. Since it is programmed I/O, the
send time must be charged to event processing. At 25 MB/s,
the calorimeter preprocessor would spend only 1-2 �s; a CFT
preprocessor sending 400 B/event could take 16 �s/event.

If it is decided to arbitrarily pass events likely to take
a long time to process, it is desirable to make the de-
cision predictively, by looking at length of candidate
lists, rather than reactively, by timing out moderately
long events. Again, a timeout at a scale of a few sec-
onds might have a chance of catching only events un-
likely to ever terminate. We do not yet have a feel
for whether passing such events and restarting on the
next event typically would be a successful recovery, or
whether more violent measures would be needed, and
we are unlikely to understand the real typical problems
before commissioning.
The known timing facilities on the Alpha board are

committed to serving several functions, namely state
timing, error message timestamping, and communica-
tion with the debugger. It is not yet clear whether a
multi-second timeout could be managed with the exist-
ing timer (plus some management software e�ectively
counting the time since the beginning of the event), or
whether an additional hardware watchdog timer should
be mounted on the Alpha board, perhaps in PCI space.

6.2 Memory and Cache layout

As we proceed to implementation, we will carefully lay
out a map of the memory locations of VME and MBus
control space, Boot Rom code, downloaded code, input
and output bu�ers, communication inboxes, download
areas, scalers, user code working storage and tables,
and the relation of VME and MBus windows into mem-
ory with these items. We will attempt to write-protect
code. Cache is mapped periodically to main memory,
so lock code into memory, one must control its place-
ment so data memory does not map to the same cache
locations as code, and so that data areas used for an
event do not contend with each other for cache.

6.3 Programming Tools

The software component of the developer kit consists of
C header �les and libraries; they allow one to compile,
link, and download, code from an Alpha running NT or
Digital Unix. I/O supported is minimal: a console, and
an Ethernet controller supporting a debugger and code
download via a TFTP �le read. The debugger is the
standard Dec Unix debugger with extensions to debug
the target Alpha node from a workstation. There is no
debugger for target Alpha code available on NT17 .

17We have investigated using VxWorks instead of the developer
kit. Tight event code can't use true operating system support in
any case, so the issues are the quality of the support environment,
availability, and services for occasional I/O such as initialization,
event dumping, and monitoring. The VxWorks development en-
vironment does not appear to be greatly superior to that o�ered
by the developer kit. VxWorks is not planned to be made avail-
able for the PC164 card in any case. That leaves us to live with
the system of TCC (under NT) and the MPM to perform most
of this occasional I/O. We are also considering other online envi-
ronments, for example embedded C++ from Greenhills Systems,
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Bus Size Load Max Used Time Wait
kB MB/s MB/s �s �s

VME .6 .6 10 6% 60 1.8
MBus 1.8 18 80 23% 23 .25
Cache 1.8 18 533 3% 3
Input .2 2 16 13% 13

Table 4: L2 Global Bus Loading

This environment is su�cient, but austere: there
is no operating system. Programs calling C routines
MALLOC and FREE will link properly, but there is
no virtual memory, MALLOC merely increments the
number of words used, and FREE makes no attempt
to actually de-allocate memory. In this environment,
dynamic allocation is indistinguisable from a memory
leak. We plan to use only static memory allocation. Be-
cause of this issue, any use of C++ will be approached
with extreme caution.

7 Bus Loading and Latency

Table 4 shows the expected bus loading, capacity, and
transfer time for various of the L2 Global crate buses.
Table 4 summarizes the bus loading situation for

Global, based on data volumes per event purposely cho-
sen to be twice those expected based on present best
estimates. The Bus column shows which bus is be-
ing concentrated on: VME (only used for L3 readout),
MBus for DMA input into the Alpha memory via the
combination of the MBus Block Transfer and PCI bus
on the Alpha, Cache for transfer to Alpha Cache from
main memory, and Worst Input for the Hot Links in-
puts. The Size column gives the size of the average
event (or fragment, for Input). The Load column mul-
tiplies the Size by its repitition rate, 10 KHz for input,
and 1KHz for L3 output. The Max gives the current
estimate of the channel Capacity, while the Used col-
umn shows the ratio of the Load to Capacity. The Time
column gives the time to e�ect a transfer for one event,
Size/Capacity.
Most of these transfer times are actually overlapped

with calculation, so they appear as latencies but need
not be charged to processing time of an event in steady
state with events stacked up in the input queue. An
exception to this is Cache bus. If the event processing
eventually requires a large fraction of the input data,
then, depending on the success of lookahead cache man-
agement, much of the data input time will be charged
to the algorithm execution. More insidiously, any data
produced will have to be written out to memory, so one
must consider carefully the tradeo�s between remem-
bering results and recalculating them, and one must

which would give better online support and allow more exibility
of development platform.

Bus Size Load Max Used Time Wait
kB MB/s MB/s �s �s

VME .3 .3 10 3% 30 .45
MBus 3 30 80 38% 38 .70
Cache 3 30 533 6% 6
Input .34 3.4 16 21% 21
1 Out .1 1 16 6% 6
L2Out .3 3 16 19% 19 1.8

Table 5: L2 Calorimeter Preprocessor Bus Loading

be wary indeed of Global producing vast quantities of
intermediate results. There is adequate capacity avail-
able to write the expected actual outputs. We intend
to measure the Cache bandwidth more carefully; the
current �gure is quite conservative: a 256b path cycled
at the memory speed of 60 ns gives a bandwidth of 533
MB/s.
Finally, The Wait column looks at expected latency

in gaining bus mastership, which depends on how many
subdivisions exist in the transfer o�ering an opportu-
nity for arbitration:

Wait = P (busy)� (T ime=2)=Nblocks

The probability of �nding the bus busy is just the frac-
tion capacity used. The VME transfer is a single block,
while the MBus input transfers are broken into roughly
10 blocks. Thus, in spite of the lower expected VME
bus occupancy, the higher transfer speed and smaller
blocks make MBus much more favorable for implement-
ing interprocessor communication during the event cy-
cle. This evaluation indicates why the VME bus is used
only for L3 output. It is worth doing the algebra to ex-
amine dependence of the expected wait time (W) on
size (S), rate on the (Rbus), capacity (C) and blocks
(N):

W = Rbus(S=C)
2=(2N)

An even more interesting quantity is the fraction of the
nominal processing time budget occupied by each bus
wait, as a function of the input rate to the processor,
W �Rin

%(ProcessingBudget) = (Rbus �Rin) (S=C)
2=(2N)

The quadratic dependence is a two-edged sword. If
problems are under control, the situation is probably
very comfortable, but anything going wrong goes wrong
quickly. Thus our factor of 2 event size safety factor
gives a factor of

p
2 rate safety factor.

Because the same machinery is forseen for preproces-
sors, Table 5 repeats the calculation for a well-studied
example, the calorimeter preprocessor.
In this case the output sizes to L2 and L3 have been

estimated generously, but the input to Cal Preproces-
sor, which is well know, is held to its actual value. Since
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the input data ow is much heavier than the output
data ow, VME is much less heavily loaded than in
Global. One might even be tempted to use VME for
interprocessor communication if it were not for a pref-
erence for identical software. Further, there are the
penalties in throughput caused by long tails in process-
ing time distribution: though the VME bus is not busy
often, it stays busy a signi�cant fraction of the time
budget.
The heaviest bus loading is the use of MBus for input.

Luckily, the input data volume is a well known �xed-
length transfer of calorimeter input data.
Considering the slower output path to L2 Global, we

note an important circumstance. The \1 Out" line de-
scribes the situation in the most heavily loaded single
output to L2 Global. The \L2Out" line describes the
situation for all 3 outputs, considered serially. Output
will be split among several MBT's, for electrons, jets
and Etmiss. But output is slow: the MBus programmed
I/O is not expected to be much faster18, if at all, than
the Cypress Hotlink output section of MBT. Since the
L2 output is via programmed I/O, it is charged directly
to the event processing time. Further, since each pro-
cessor must occupy MBus to send its data, and the
simplest synchronization is for to wait until all proces-
sors have completed work, the output times for an event
wind up adding to each other unless the algorithms are
su�ciently di�erent in speed that one algorithm writes
results while another is still calculating.
From these considerations, it is important that the

CFT preprocessor control its data volume lest output
time leave no time for calculation. The simplest strat-
egy is to send low pT tracks only when L2 Global needs
them for this event, a selection which can be controlled
by a L1 Quali�er.
Given the relatively heavy loading of MBus, one

might become concerned about interprocessor commu-
nication. However, Table 4 performs the expected wait-
ing time calculation based solely on the input band-
width of MBus. This is because communication be-
tween Worker and Administrator takes place asyn-
chronously with respect to the input, but synchronously
with end-of-event processing, where MBus is generally
in a quiet state19, so that end of event processing does
not interfere seriously with L2 output I/O. However,
output does interfere with the issuing of the GO sig-
nal to the MBT card during interrupt processing at the
end of the receipt of the input event, and the expected
cost of such interference should be added to the aver-
age processing time of an event, since on average one
event arrives for each one processed. The 1:8�s penalty
is not serious for the calorimeter preprocessor, but the

18There is a strong case here for 128b wide path rather than
64 if it can buy a factor of 2. This could possibly be matched by
raising the Cypress Hotlinks to 320Mb/s.

19MBus may not be quiet if there are multiple worker nodes
�nishing about the same time, so one is writing to L2 while the
other is communicating with Administrator after its L2 output.

heavier loading of the CFT MBus is 3:1�s at the ex-
pected event size, and the penalty grows quadratically
with event size.
The cache is more heavily loaded by data input in

calorimeter than in Global. However, the �gure in Ta-
ble 5 is an upper limit, as it represents an algorithm
which accesses the full 3KB of data, both electromag-
netic and total Et's for each trigger tower. Even Etmiss
would access only half the data.

8 Queuing Simulations

Extensive queuing simulations[18] of the L2 system
have been performed, using the package RESQ[19], and
where possible checking the results with analytical or
numerical calculations[20].
The �rst studies considered a farm architecture and

found it entirely unsuitable for a system in which the
front end readout design was frozen with a requirement
that L2 decisions be returned in the order of the L1
decisions. A 16-node farm operating at the nominal
10KHz rate, with a realistic long-tailed (sum of two
exponentials) time distribution produced a deadtime
of 2.1% without this \serialization" requirement, but
69.3% when \serialization" was imposed. Maintaining
the mean processing time while shortening tails to a
single exponential only reduced the deadtime to 49%;
\serialization" and a farm architecture are incompatible
without more bu�ering than the 16 events available in
the D� front ends. The basic problem is that a slow
event prevents processors which have already �nished
from getting a new event. The typical processing time
of the system is in some sense governed by a distribution
more like the slowest of the events in the system, rather
than the average event. The worst-of-n distribution is
very long-tailed. To recover the non-serialized deadtime
with a serialized farm, the mean processing time per
event would have to be reduced by a factor of 3-4.
After these results, we turned our developed the

present preprocessor-global architecture. A typical set
of parameters for the simulation is shown in Table 6.
The Hyperexponential20 distribution referred to here is
a sum of two exponentials with the relative weight and
mean adjusted to give the speci�ed overall mean time,
with a ratio of rms to mean of 2.0, as compared to the
ratio of 1.0 for a simple exponential. This is a reason-
able representation of the typical event processing time
distribution found in Run I Level 3.
At 10KHz input rate, these parameters give a dead-

time of 3.7% when 16 event bu�ers are supplied ev-
erywhere in the L2 system but the DAQ Front Ends

20The parameters in a sum of two exponential are the two
means �1; �2 and the q, the fraction of the weight placed
on the exponential with the smaller mean. There are only
two constraints, the mean time �, and C = rms=� = 2:0.
RESQ chooses the parameters according to the conventions A =p

1� 2=(1 + C)2; q = (1 +A)=2; �i = �=(1 � A).
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Table 6: Input parameters for the basic RESQ model
of L2. The distribution type is Hyper{exponential, Ex-
ponential, Gaussian, and Fixed.

Preprocessor Operation Time(�s) Distribution

CAL Input 50 F
(EM) Process 50 H

Output 10 F
(JT) Process 50 H

Output 10 F

MU Input 15 F
Input 15 G
Process 50 F
Output 5 F
Output 15 G

TK Input 8 F
Process 40 H
Output 10 F

GLB Process 50 H
Output 15 F

maintain the constraint of at most 16 events anywhere
in the L2 system. This reasonable deadtime is achieved
with total (processing+output) times of 65 �s for pre-
processors and for Global.

If the number of bu�ers between Global and the pre-
processors were reduced to 1, the deadtime rises to 11%.
Introducing even a single bu�er in front of L2 Global
helps the system a great deal, dropping deadtime to
6%. However, the relative importance of having bu�ers
in front of L2 Global, as opposed to in front of prepro-
cessors, depends on which processor is closer to limiting
the rate. The decision to place 16 event bu�ers at all
bu�ering points in the system avoids such guesses at
the relative performance of pieces of the system, and
results in a much more robust design.

We studied the e�ects of \busy" events by introduc-
ing correlations among the processing times in prepro-
cessors and the global processor. The added uctuation
causes mild increases in deadtime.

We found that it was quite important to allow the
various preprocessors to transport data and move on to
the next event without waiting for other preprocessors
to �nish. With the same processing times, adding a
lockstep requirement across all preprocessors increased
deadtime from 3% to 35%.

A more recent study considered the results keeping
multiple workers in event lockstep in the Cal preproces-
sor. A subsystem of 2 Missing Et processors operating
in 50 �s with 7�s Output time (both times determinis-

tic), with a jet processor with a hyperexponential 50 �s
mean and an em processor with 20 �s hyperexponential
mean gives 3.4% deadtime when no event synchroniza-
tion is imposed, rising to 4.7% with synchronization
imposed. The penalty for lockstep is more severe when
the em and jet processors are comparable in process-
ing time: the deadtime rises to above 10%. A more
complex Administrator model allowing the processors
to leave lockstep may indeed be required, even allow-
ing for the likely relative timing performance of the Cal
preprocessors. The need for allowing events to ow in-
dependently among processors is more urgent as the
number of preprocessors with similar processing times
increases and as the processing times of the processors
increase.

We studied the e�ect of using a Needed Quali�er on
the allowable mean processing time budget of a pre-
processor. Naively, one might hope that the allowed
budget for a �xed deadtime scaled as 1=f where f is
the fraction of time the preprocessor must run. In fact,
the allow budget is closer to 1=

p
f , a useful but more

modest improvement. A preprocessor running 1=3 of
the time might acquire a budget of 1.7 as long.

Reducing the number of DAQ from 16 to 15 glob-
ally throughout the system produces no measurable
change in the deadtime. This reduction of the Front
End bu�ers by 1 is a good simulation of the e�ect of
introducing another stage in the L2 processing pipeline.
This is planned for the L2 Muon system, where a SLIC
processor does the main calculation, and the event is
handed o� to a Worker in a standard crate for out-
put formatting. The result should be a good estimate,
provided that the postprocessing time is negligible and
introduces no deadtime of its own. This assumption
would need to be tested more carefully in a more com-
plex situation such as the proposed STT trigger, where
there is possibly considerable work to do in merging the
STT and L2CFT track lists.

The results for a scenario with 2 Global Workers han-
dling alternating events are shown in Figure 6. Since
this is a N=2 serializing farm, a full factor of 2 gain
in allowable time budget is not to be expected. The
actual expansion of the allowable L2 time budget is
only a factor of 1.2-1.3 in the usefully low-deadtime re-
gion, though it rises to 1.4 or so in the regime where L2
Global is the dominant contributor to deadtime.

A simpli�ed description of expectations for paral-
lelization of parts of events, is discussed further in sec-
tion 9.12.1. Simulation results examined the case of a
moderately-overloaded Global worker with 11.6% dead-
time due to a 85�s hyperexponential mean with an ad-
ditional 5 �s �xed processing time. Adding a second
node to alternate events reduced the deadtime to 8.6%,
a marginal improvement. The same deadtime was ob-
tained if two nodes split the event 70% of all events,
and on those events were perfectly balanced, each tak-
ing 45�s Hyperexponential mean, with the �xed pro-
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Figure 6: Comparison of N=1 and 2 L2G Workers

cessing time in a single node of 10 �s to combine the
results and do the �xed-time processing. This scenario
assumes a 10% overhead for splitting and recombin-
ing the event. Better deadtimes (7%) are obtained if
the overhead drops, with modest dependence on the
fraction of work, provided over half the processing was
shared equally. To lower deadtime below 6% level, es-
sentially all events would have to be shared with min-
imal overhead. This strong sharing of workload seems
quite optimistic, however, and would likely be labor-
intensive to manage at the trigger con�guration level.
The upshot is that simple schemes of workload shar-

ing do not seem to be easy escape routes for failing to
meet the time budget. More promising is placing a se-
rialization burden on Administrator, and complicating
the Bu�er management.

9 Online Software Structure

Here we give an overview of Global's online software,
and some of the lower layers supporting the functional-
ity forseen.

9.1 Data Movement

Data movement consists of keeping track of events as
they arrive, processing those events after they have ar-
rived, announcing results to the L2HWFW, and writ-
ing events to L3 if required. The input events arrive by
DMA while event processing proceeds. To avoid dead-
time generated by waiting until the end of processing
an event, the input event ow is handled by an inter-
rupt routine. The main event loop consists of verifying
integrity of the data, computing the L2 Global deci-
sion, and announcing the decision. L3 output is less

time-critical, so is handled by polling as event decisions
are reached.

Administrator concentrates on managing the input
and output data ow, and does more data integrity
checking than Worker. Worker concentrates on per-
forming the calculations needed to actually arrive at
the triggering decision. The key piece of software for
Worker is the L2 Script Runner (named in analogy with
the L3 Script Runner). This interprets a downloaded
L2 trigger script by calling L2 �lter tools with appropri-
ate parameters for each L2 bit needing a decision. Re-
sults are stored and candidates associated with passing
L2 bits are written out for the bene�t of the L3 trig-
ger. To coordinate their activities, Administrator and
Worker must exchange information on every processed
event.

9.2 Message Passing

The mechanism for message passing between Adminis-
trator and Worker is for the sender to do a MBus write
into a pre-assigned input area (inbox). The receiver of
a message must poll the inbox periodically to notice re-
ceipt of a message, and then clear the input area so that
it can recognize receipt of a new message. The input
area is speci�ed in terms of a programmed-IOMBus ad-
dress, so that individual nodes may map this location
to a preferred address. The Administrator will have in-
boxes for each Worker node for normal event processing
messages. The Worker will have an inbox for normal
event processing messages from Administrator.

Initialization messages from Administrator to
Worker may be passed via a second inbox in each
Worker. We will probably chose to implement noti-
�cation of these messages by interrupts rather than
polling the inbox periodically during the event loop.
A cleaner event loop results by using an interrupt
mechanism. Further, interrupts get Worker's attention
even if Worker is confused.

9.3 I/O Library

There will be an I/O library consisting of routines to
read, poll write, and possibly cause interrupts from
VME and MBus. The message passing will be based
on this layer.

The (Fred and MBus) I/O registers could have some
of their complexity hidden by a higher-level software
layer. For example, one might like to update only cer-
tain bits of the output register, so one might send a
mask and a value, with the software providing memory
of the previous values of bits outside the mask, even
though the raw hardware might write all output bits
on each update. Similarly, if certain bit �elds are con-
�gured as input bits or output bits by the cabling, this
knowledge could be localized in the I/O routines.
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Figure 7: Mapping of Broadcast Addresses to Events
and Sources

9.4 Bu�er Management

The Mapper is part of the block transfer engine on the
Alpha card. It maintains a target address for the next
transfer from each of 256 MBus broadcast addresses.
Figure 7 shows how we intend to use the 256 broadcast
addresses as 16 Events X 16 data Sources. We currently
do not plan to reserve any of the data Sources for inter-
processor communication.

The MBT cards assign an MBus broadcast address
for each of their Input FIFO's. The MBus broadcast
address is assigned by combining two half-bytes. The
upper half-byte is the Source ID, while the lower half-
byte is a 4-bit event number taken from a counter. Ini-
tialization assigns the Source ID, and clears the event
number. Each GO increments the event number part
of each broadcast source address, so that on any given
event, only 16 (at maximum) broadcast addresses are
used in the Mapper.

A Bu�er number lies roughly in the range of 0-50: 16
input working Bu�ers, 16 pre-assigned input Bu�ers,
8 L3 Bu�ers, and a few \spares" as needed. The set
of objects indexed by a Bu�er number is large: any
control and status information for the Bu�ers, a set of
input Bu�ers for each source, working storage for all
event processing for the event, and output storage for
the event.

The Mapper is initialized with a base Alpha Main
Memory address for each of the broadcast addresses.
This base address is the beginning of the input piece
of an event the Bu�er for that input source. As data
arrives from MBus, the data are sent via PCI to the
corresponding Alpha Main Memory address, and the
address of the source increments.

The Mapper's current addresses can be read over
PCI, so that transfer counts can be deduced for each
source on a given event.

At any time, the 256 slots of the Mapper are point-
ing at (the 16 input pieces of) 16 di�erent event Bu�ers.
This means that the Mapper must know about where it
will put data of a 16 events ahead of their arrival. Af-
ter a new event has arrived and the FIFOs between the
Input section and the PCI Mapper have been drained
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Processed

L2 buffer states

Administrator-only
states

Examining

L3 Reading

Admin
done with
event

Admin Allocation

Interrupt service

Pass

Fail
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Figure 8: State Diagram for L2 Global Bu�ers

by sending all data to memory (on all Alpha cards), an
interrupt is generated so that the Alphas may acknowl-
edge receipt of this event and prepare for the next event.
The Bu�er with the new event is placed on the Filled
list, and the location of the oldest Allocated Bu�er is
placed in the Mapper event slot just used, which will
be the destination 16 events in the future. Administra-
tor Sends a GO to the Pilot MBT card and the cycle
resumes.
Figure 8 indicates the cycle of states of a Bu�er dur-

ing processing. The shaded areas indicate states only
distinguishable in Administrator. Only the Adminis-
trator has the Bu�er free list. A Bu�er goes directly
from Processed to Allocated as far as Worker is con-
cerned. The lists of events in each state are in the form
of a FIFO (queue).
In the initial condition, 16 Bu�ers are in the Mapped

state, and 16 are the Allocated State21. From the point
of view of a Worker, two kinds of changes are possible:

� A new event arrives, moving the oldest Mapped
Bu�er to Filled, and the oldest Allocated to
Mapped. The number of Mapped Bu�ers remains
at 16. The sum of Allocated and Filled remains at
16.

� An event �nishes processing. The oldest Filled
event moves to Processed. But to keep the sum
of Filled and Allocated at 16, one Bu�er must be
added to Allocated; this is the Bu�er named by
Administrator in response to the Worker's Result
message22.

21or 17 to avoid race conditions
22To avoid concerns about race conditions, one could require a

�nal handshake fromWorker to verify that the Allocation is com-
plete before Administrator proceeds to inform the L2HWFW of
the event decision. Another strategy would be to have Adminis-
trator directly manage the Allocated data structure in Worker's
memory via MBus messages, and remove the Allocated Bu�er
from the Administrator response to Worker's Answer for the
event
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The Administrator does additional work on Pro-
cessed events. All events are examined to verify that
they are not made up of incompatible pieces, and that
the result and event number matches that reported by
the L2HWFW. If the event is to be written to L3, it
enters another queue and waits until L3 has read the
event before the Bu�er is returned to the Free list.
Bu�er management needs a FIFO (queue) data struc-

ture, so routines to support this data structure will be
supplied.

9.5 State Machine Services

As an Alpha makes a transition from one state to an-
other, it can call a State Machine routine to help make
the transition. This routine reads the clock and enters
the time in a circular bu�er as the input time to the
new state and the exit time to the old state, as was done
in the Run I L3 \Software Logic Analyzer". Keeping
a circular bu�er of times allows calculating not just a
mean time in state (e.g. time spent in processing), but
its distribution, which can be an important diagnostic.
The routines also post the new state to the Fred port,
where it can be used as a scaler gate to easily calculate
mean times in state, or be visible to a logic analyzer.
Similar routines send new Bu�er occupancies to the

Fred port whenever Bu�er counts in the Alpha change.

9.6 Timing Services

A lower level beneath the State Machine Services are
the timing services. Circular timing bu�ers can also
be used for timing intervals other than those marking
entry and exit of a set if exclusive processing states.
Two examples which come to mind are the L3 latency
(the interval between when a bu�er arrives at the L3
readout queue until the VBD has �nished writing the
event), and, perhaps the time spent in the Event Inter-
rupt routine. Since these processes are to some extent
overlapped with other processing, one might choose to
time them separately. Alternatively, they could be dis-
played as extra \state" bits, with the understanding
that the time in these \states" should not be summed
with the time in other states.

9.7 Run and Event Number

The sole purpose of run and event numbers in L2 is to
tag Error messages. The numbers are not stamped on
events by L2.
A run number is downloaded with the run initializa-

tion to the L2 Global and L2 preprocessors. Only a
single run number is known to Administrator, in spite
of the possibility that two or more data taking runs are
taking place simultaneously.
A L1 accept event number is acquired from the

L1HWFW data. This number will be stamped on the

event by L1HWFW should the event pass L2 23.

9.8 Error Messages

Error messages (are known as Errors, generically,
though only high-severity are sent to the alarm sys-
tem) will be generated by calls to the o�-line ERRMSG
utility with its bottom I/O layer replaced to write into
a message bu�er in each node. Errors include a Run
number and a L2 input event number24. Each node
adds the node name and time of day to the message.
Administrator, when handling monitoring information,
concatenates all Error bu�ers and places them in the
MPM where TCC will retrieve them. TCC may further
timestamp the batch of messages.

9.9 Global Administrator

The Administrator is party to all communications in-
volving Alpha's. This allows much more straightfor-
ward debugging.

9.9.1 Messages between Administrator and
Worker

L3 readout through the VBD[9] takes place via the
VME bus, coordinated by the Administrator. Since
events pass L2 at 1 KHz, and the VBD does not al-
low re-arbitration during readout, it was judged unwise
to use VME for messages between Worker and Admin-
istrator which must take place once per event, at 10
KHz.
The messages between Worker and Administrator

take place on Magic Bus. They communicate once per
event.
Worker announces the Result of processing to Ad-

ministrator when it has �nished processing an event.
This message contains:

� 3B L1 crossing number for this event

� 1B containing whether event passed, whether
the event pieces matched, whether Collect Status
event, and other status codes

� Bu�er number (1B) for this event

If the event passed, the Administrator will read fur-
ther information from the Worker, including the 128 bit
(16 B) mask of L2 �ltering results, and the word counts
needed to read the event.
Administrator's response contains:

23L2 preprocessors do not have this information. Instead, each
node generates a L2 Input event number. This event number is
reset by a Clear Scalers command. This number will be smoothly
incrementing, but synchronization with L1 Accept number is un-
likely, as all preprocessors need not see all events. The SCL
message could provide a 3B L1 crossing number to partially tag
the event for matching with Global events.

24and possibly a 3B L1 crossing number encoded in Hex
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� the Bu�er Number (1B) to Allocate

� 3B L1 crossing number for this event?

9.9.2 Messages from TCC to Administrator

Messages from TCC to the L2 system come via VME.
The list includes:

� halt/resume (sit and wait for debugging/ continue)

� reset: download exe, read constants, do \startup"
with TCC, Worker(s)

� download script/parameters. Tell Worker to read
scripts and parameters from MPM.

� begin run Nrun: Admin, Workers clear scalers and
monitoring bu�ers; Readout required or forbidden

� event dump

� remove or add a shadow node?

� collect begin/end of run scalers?

� copy monitor information to MPM

� download an event?

� perform self-test on (stored) event n?

The cleanest implementation results if TCC gener-
ates an interrupt �elded by Administrator, which looks
in a known location in MPM to �nd what kind of mes-
sage TCC has sent. Administrator will reply with an
indication of whether the message was successfully exe-
cuted. Administrator may need to pass these messages
along to Worker by a similar interrupt mechanism.
Event dumping must be coordinated through Admin-

istrator and Worker, with the actual I/O taking place
via TCC and the MPM. The �rst priority is capture
of the bu�er control structure and the input bu�ers.
If things are in a not-too-damaged state, output and
working bu�ers may also be capture, or even a full
memory dump with a view to o�-line debugging, rather
than a simpler attempt at playback.
Administrator will do the primary handling of all

these messages except reset. After determining the re-
quired action, it will inform Worker by writing into
Worker's inbox and provoking an interrupt via VME
to force Worker to look at the message.

9.9.3 Input Event Interrupt Routine in Ad-
ministrator

The main interrupt routine in Administrator handles
the arrival of a new event. So that data can ow with
minimal impact on other processing, data is written to
memory by DMA, and the end of the event data triggers
triggers an interrupt routine, which promptly places the
system in a state to receive another event. After the

interrupt is handled, normal processing resumes. The
following steps take place during the handling of this
event interrupt.

� on �fo empty for all Alpha cards participating, in-
terrupt occurs

� record the length of the transfers + padding by
reading Block Transfer Address registers (Perhaps
only during commissioning; perhaps in Adminis-
trator but not in Worker)

� Oldest Allocated Bu�er location set in Mapper slot

� after an appropriate wait, or if necessary read the
Worker(s) memory to verify they have reassigned
the mapper, send GO to the MBT Pilot card for
the next input event

Other less time-critical functions listed above in the
(such as communication with TCC) will be also imple-
mented as interrupts as a convenience of implementa-
tion. The interrupts are listed below in section 9.10.

9.9.4 Event Processing in Administrator

Event processing:

� wait for next event 25

� verify all inputs refer to same event (3B L1 crossing
number)

� verify correct transfer length by computing trailer
position

� select Bu�er from free list to be Allocated

Administrator's answer response could take up to
5 �s, as 2 MBus writes and one MBus read are required.

� get answer from Worker

� verify same event as expected, and Worker event
pieces matched

� if Passed event, get full 16B L2 Answer and L3
R/O lengths

� save Bu�er number from Worker answer

� send decision to L2 HWFW

� Respond to Worker with Bu�er Allocation

� IfCollect Status event, capture scalers and mes-
sages.

� If passed event, prepare Admin readout (if any)

25Admin could poll to detect SCL Initialize; will do via VME
interrupt instead.
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� If UBS or Forced Write event, prepare special Ad-
min readout

� Wait for decision from L2HWFW

� check decision against that returned by the
L2HWFW

� If failed event, mark Bu�er as Free

� If L3 Output Bu�ers all full, raise L2 Busy and
wait for present readout to complete.

� If L3 write, put on L3 output list

9.9.5 Event-Asynchronous VME tasks for Ad-
ministrator

The term \Asynchronous" is used a bit oddly here, to
indicate that the VME processing of an event is not
synchronized with the rest of the event's processing. It
may be initiated at the end of processing an event, or
even the event in question, but since the VME transfers
take place while other events are being processed, the
end of VME processing might not be noted until the end
of a later event. Since VME processing is bu�ered, and
does not require absolutely optimal use of the VME bus
to reach its bandwidth goals, this rather ine�cient use
of VME bandwidth is likely to be su�cient. The .3KB
output size envisioned would take 30 �s per transfer,
and termination would be checked for every 100 mus
on average, more than adequate give the 3% bus load.
A perhaps more realistic 1KB output block still uses
the bus 10% of the time, with the rate of checking per-
haps lowering the e�ective bus bandwidth to give 20%
e�ective occupancy, which the 8 output bu�ers should
control.

These are all tasks requiring use of VME. Thus, they
have to be coordinated with L3 readout. This series
of items can be checked after event processing and the
answer response are complete, and possibly in other
waiting periods.

� check to see whether L3 readout of an event has
�nished

� if so, put Bu�er on free list

� if monitoring transfer is pending, set VME win-
dows and move monitoring data to MPM26.

� If events in the L3 queue, start readout of new
event, which requires adjusting the VME window
of the Worker and Administrator.

26Could poll for TCC messages here, but simpler to handle
them by interrupts.

9.9.6 Handling of SCL Initialize

SCL Initialize is a request to re-initialize bu�er han-
dling. Administrator is noti�ed of the request by an in-
terrupt generated on the MBT card27 All current Filled
and Processed Bu�er must be dropped in both Worker
and Administrator. Noti�cation of Worker takes place
via the same mechanism as that chosen for TCC mes-
sages, with a handshake back verifying completion of
the task in Worker. When the Bu�er management is
reset, L1 Busy is lowered by Administrator.

9.10 Interrupt Usage

The following is the list of interrupts used by Adminis-
trator:

� Timer: Used by debugger What is minimum fre-
quency to maintain contact? Can the frequency be
reset by a TCC message asking for a routine to be
called? Used to prevent surprise rollover of preci-
sion timer Apparently, 2 separate interrupts: how
to distinguish

� Reset: Provoked by Front Panel Button or TCC:
forget everything and reload

� TCCMessage: The full collection of begin/end run
and miscellaneous messages

� SCL Initialize

� New Event/Fifo Empty

The corresponding list for Worker is

� Timer

� Reset

� Administrator Message: Includes relayed TCC
messages and SCL Initialize.

� New Event/Fifo Empty

9.11 Global Worker

Global Worker is in one sense a simpli�ed version of Ad-
ministrator, relieved of Bu�er management, communi-
cation duties associated with L2 input, L3 output, and
direct communication with TCC. It performs a subset
of the data integrity checks done by Administrator. Of
course, the real purpose is to perform actual analysis
of the data, which Administrator does not. The data
analysis is performed under control of the L2 Script
runner.
The list of messages for Global Worker can be derived

from the list of messages for Global Administrator, as
Administrator is party to all messages in L2.

27Polling MBT registers to �nd the SCL Initialize request
seems more susceptible to deadlocks.
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The Input Interrupt Routine of Worker is a subset of
that of Administrator. The main task is to place the
Oldest Allocated Bu�er location in the Mapper slot just
used. During commissioning, Worker may also do more
checking, and may have to write a message to Admin-
istrator verifying that it has �nished the assignment.

The event processing list for Global Worker is much
simpli�ed from that of Global Administrator, and there
are no \asynchronous" tasks for Worker28.

Event processing:

� wait for next event29

� verify all inputs refer to same event (3B L1 crossing
number)

� run L2 Script Runner

� If UBS or Forced Write event, prepare special
readout

� if Passed event, prepare full 16B L2 Answer and
L3 R/O lengths

� If Collect Status event, capture scalers and mes-
sages and prepare full scaler block using script.

� send Answer to Administrator and wait for reply

� save Allocated Bu�er number from Administrator
reply

L2 Script Runner supervises the calls to L2 tools
which implement the scripts required by any L1 bits
which are passed, and records the results in a L2 bit
mask. It also does record keeping su�cient to calculate
the pass fraction for each bit, each step of the script
of each bit, and the global pass fraction for L2 over-
all, and for each of the �ltering tools. To run swiftly
enough, this record keeping will likely consist at most
of a single counter increment for each script, recording
which tool failed, or if the script passes, recording that
fact. Combining these scalers with detailed knowledge
of the script, the tries and passes for each step along
the way can be deduced when a Monitoring block is
requested. Timing information will likely be recorded
only at the overall �ltering level, though the simula-
tion framework may record more detailed information
to assist algorithm tuning.

We will not further describe L2 Script Runner here,
as the details are being designed. It will be based on
understanding from L3 of the previous and current run,
suitably restricted to operate in the L2 time budget.

28Using an interrupt for notifcation of the arrival of a message
relieves Worker of checking inboxes for messages.

29Could poll to detect SCL Initialize or relayed TCC messages,
but more reliable for Administrator to use an interrupt.

number compile or startup
VME Addresses compile or startup
VME O�set event answer
lengths event answer
Bu�er event answer

Table 7: Information for L3 readout: Logical

9.12 How L2 Global Reads Out to L3

At the beginning of a run, the VBD must be informed
of the number of all the locations from which it will
read, and the VME addresses of these locations. Every
event, the VBD must be informed of the lengths of the
blocks at each of these locations. The VBD reads these
lengths from a �xed VME address.

Since Administrator handles all interactions with the
VBD, Administrator must know all three of these items.
We take as a design principle that the Worker does not
know when it is being read out, and that event data (for
normal events) are copied only once, via VME into the
VBD. Again mirroring the DAQ frontends, we reserve
up to 8 Bu�ers for events awaiting L3 readout. This
means that Administrator also has the job of redirect-
ing the VME o�set needed so that the VME addresses
point to the correct event. So Administrator must know
the MBus (or VME) location of the Universe Chip map-
ping registers so that it can reset the VME o�set of each
Worker before readout begins for an event 30.

Table 7 indicates when the information just described
can be acquired.

Acquiring the �rst two items at compile time intro-
duces coupling between the executables of Administra-
tor and Worker, so it may be desirable to acquire the in-
formation during a \startup" dialog31 . The second two
items could be acquired directly or indirectly. Direct
acquisition would have them be part of the Worker's
Answer for the event, and sent along with the Bu�er

30Only 1-4 VME windows available on an Alpha. To be read
out using a small number of VME o�sets (preferably 1, as the
other windows might be used for monitor or control), an event
must be fairly concentrated before it can be read out. The VME

o�set cannot be reset during readout, so the location of L3 output
Bu�er pieces with respect to the o�set must be the same for all
L3 output Bu�ers. This is simplest if the number of readout frag-
ments is small, preferably 1, or 3 at most (header, normal output,
UBS output) This is not a serious burden as the need to atten
pointers to array indices implies that output data structures must
be rebuilt in order to be written. This has some implications for
how structures are declared. One can de�ne a massive output
structure Out, containing various parts, and allocate an array of
such structures indexed by Bu�er number. But one cannot de-
�ne a separate array of structures indexed by Bu�er number for
each part independently. The common-o�set requirement tends
to make the output structure a global quantity.

31We assume the VME readout location list is independent of
trigger setup, so that information may be acquired at the �rst
execution of the program (\startup") rather at the beginning of
each run. This needs to be repeated whenever a new executable
of any node is downloaded.
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number compile or startup
VME Addresses compile or startup
VME O�sets[Bu�er] compile or startup
MBus O�sets[Bu�er] compile or startup
Bu�er event answer
lengths MBus Read

Table 8: Information for L3 readout: Physical

number. A simpler message from Worker to Adminis-
trator results if just the Bu�er is passed. 32

The Bu�er number could also serve as a pointer
to the other pieces of information, simplifying the re-
sponse format (at least for passed events). To use
this pointer, the Administrator needs more informa-
tion about Worker, namely the MBus o�sets for each
Bu�er at which it can �nd the VME O�set and the
lengths. Again, one could acquire this information (for
each Bu�er) at compile or startup time.
Two solutions emerge: one with compile-time cou-

pling but simple code, and the other with more com-
plex startup code but less compile-time coupling. The
revised picture is shown in Table 8. Either choice is
possible. Acquiring the information at startup time
seems to o�er better insulation of the Administrator
from Worker's less stable executable, but the exposed
locations likely to be quite stable and insulated from
changes in user algorithm code.
The length of data read can be zero for some locations

if a location is read only for Unbiased Sample events,
but we plan to build Worker's L3 output data for any
event in a single block.
Administrator builds the L3 transport header, while

the VBD itself builds the trailer.
Once VBD has been given a GO, its status can be

checked by lines sent to either the FRED port or MBT
I/O lines.

9.12.1 Event Processing with Multiple Work-
ers (Global)

Event processing changes in more complex scenarios:
Two Workers working on alternate events is straight-

forward: the Administrator takes turn responding to
each Worker, and has to Allocate more than one Bu�er
at a time. Such strict alternation does not achieve a lin-
ear increase in allowable throughput, as was discussed
in section 8. If Administrator includes in its reply which
Bu�er to analyze next (possibly a Bu�er which has not
been �lled yet), and takes on the complexity of serializ-
ing out-of-order Worker Answers, the added computing
power could be used more e�ciently. The Workers will
receive a number of Allocated bu�ers in response to an

32The Mapper slot number need not be passed each event, as
synchronization is veri�ed by comparing event numbers between
Worker and Administrator.

event Answer which varies, depending on the number
of events that other Workers have �nished. Care must
be taken to verify that the Bu�er management scheme
still guarantees su�cient Allocated bu�ers even to a
Worker which is slow to �nish an event.
Two Workers each doing part of a Global event

is more like the calorimeter preprocessor situation33.
However, the Global Workers know whether they in-
dividually have passed any bits, so they can prepare
for readout every event, as their preparation is likely
short if they have no passed bits, and is necessary if
they have passed a bit. This avoids having the Worker
reply a second time to Administrator to indicate that
they are prepared to read out if the event passes. Ad-
ministrator must, of course, wait for all Workers before
publishing the L2 decision.
Collection of monitoring information (see the next

section) becomes more complex when multiple workers
are involved. Some complexities might also occur in
combining output of multiple nodes for L3 or worse for
L2 if a single MBT input is shared between 2 nodes, as
it would be complex to combine header information to
be followed with data from each node.
Queing simulations are under way to explore how

much might be gained by such escalations. Amdahl's
law for the speedup factor with N=2 nodes and a frac-
tion of parallelization f ,

S =
1

1� f=N
;

warns that splitting a single event across processors is
likely to provide small gains unless most of the work
is split on nearly all the events. Even without que-
ing losses, the expected speedup is only about 1.3 for
two nodes which split 70% of the work 70% of all events
(f = :49). Queing losses will most likely limit the alter-
nating node scenario, as slow events stall both nodes34.

9.13 Monitoring Information Collec-
tion

Monitoring information is captured after the process-
ing of an event marked with a Collect Status Quali-
�er. The information captured typically consists of all
scalers, circular timing bu�ers, and current Bu�er oc-
cupancies in nodes and MBT's. The scalers may re-

33A preprocessor can't know the L2 decision, as L2 Global
hasn't even seen the event yet. The calorimeter Workers will have
to prepare for readout every event, and calorimeter Administra-
tor will have another asynchronous task of looking for L2 answers
to perform once per event. As a result, in the calorimeter pre-
processor, Bu�er freeing is delayed and the L3 output Bu�er list
may have to hold up to 16+8=24 events.

34A considerably more complex scenario would escape strict
alternation, but require that Administrator serialize responses to
the L2 HWFW (which requires answers in strictly the order of
L1 accept messages), and Allocate variable numbers of Bu�ers
to the Workers, reecting that the number of events processed
while a Worker �nished an event now varies.
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quire some (considerable) postprocessing to become in-
telligible. This postprocessing should be done by L2
Global Worker, which already owns the script informa-
tion needed to postprocess. The monitoring informa-
tion is �xed-length, regardless of the actual number of
L2 trigger bits currently de�ned. The Worker copies
the captured information to a public location known
to Administrator before sending its event Answer, and
marks the Monitoring information with the event's 3B
crossing number. Administrator will move all monitor-
ing data via VME to the MPM for TCC's perusal.

The ERRMSG Error information is of variable
length. It is handled similarly, except that Adminis-
trator must �rst read the length of the bu�er before
transferring. Administrator concatenates Errors from
Worker(s) and Administrator in MPM, and appends
them to any messages that TCC has not already read.
After transmission, the Errors length is zeroed by Ad-
ministrator.

Since monitoring information is collected relatively
rarely, there is no reason for publishing its MBus loca-
tion. The VME location could be acquired at compile
time or, for less coupling, at startup time. The VME
address is only meaningful with respect to some VME
O�set in Worker's Universe chip; this o�set must be
known to Administrator.

Monitoring information may be requested by TCC
directly instead of via the Collect Status Quali�er. In
this case, Administrator must ensure that information
is transferred in a few tens of milliseconds, whatever
VBD might be doing on VME.

This scheme avoids double copying of the monitoring
data, as would be the case if the monitoring information
were part of the Worker Answer, or a response to a
speci�c request from Administrator. The cost is the
need to know the location of the Worker's monitoring
and message bu�ers.

MBus and VME35 busy fractions may be monitored
by using bus mastership lines as scaler gates, but this
may prove to cumbersome to set up permanently.

TCC collects the monitoring information from the
L2 subsystems, timestamps it, matches blocks across
subsystems, and, by calling subsystem-speci�c routines,
subtracts to present Delta-T and Di�erence over Run
information. Higher-level monitoring processes on the
Host system mask run data down to trigger bits owned
by a requested run.

9.14 Coupling of Administrator and
Worker

It seems desirable to have changes in Worker not re-
quire recompilation of Administrator. A second goal is

35VME busy fraction is more di�cult to measure than MBus
busy fraction. MBus masters must drop mastership to allow ar-
bitration, unlike in VME.

Node Location Address Binding

Admin Event Inboxes MBus Compile
Admin Begin Run Inboxes MBus Compile
Worker Event Inbox MBus Compile
Worker Begin Run Inbox MBus Compile
Worker Set VME O�set MBus Compile
Worker VME Interrupt ? VME Compile
Worker L3 VME O�sets VME ?
Worker L3 lengths MBus ?
Worker L3 MBus O�sets ? MBus ?
Worker Monitoring and Errors VME ?

Table 9: Public Locations of Worker and Administrator

to have a simple mechanism for growing code of an ex-
tra Worker node from that of a single Worker (or from
a single master source). The mapping windows inher-
ent in the MBus and VME interfaces help in this, by
providing \logical" locations seen from outside, which
can be moved to di�erent \physical" locations. Table 9
lists the Worker locations which need to be known by
Administrator, and vice versa.

The Worker Begin Run Inbox is where messages re-
layed by Administrator from TCC appear to Worker.
The Administrator Begin Run Inboxes are where replies
from Worker can appear. These same inboxes would be
used in any dialog at startup time.

9.15 State Diagrams for Administrator
and Worker

Figure 9 above shows a simpli�ed state diagram for
Administrator. The error states and interrupts have
been omitted for clarity. In the Startup state, the ex-
ecutable is downloaded and establishes communication
with TCC and Worker. The Idle state waits for TCC
to provide information to enable data taking. When
the run is fully set up, the Wait/Event state is entered,
until an event �lls an input Bu�er. In Process Event,
Administrator performs the format checks, then enters
Wait/Answer until Worker replies with its analysis of
the event. In Send Event, Administrator reads the An-
swer, veri�es that Worker was working on the same
event, and sends the Answer to L2HWFW. If the event
is to be written, Format L3 Data is entered; if not,
Wait L2HWFW is entered directly, and Administrator
polls for the L2 SCL message verifying that the Answer
broadcast by the L2HWFW matches the decision sent.
In Manage Bu�ers, Administrator Allocates the next
Bu�er for Worker. If the event is not to be written, the
Bu�er is now Free; otherwise, an attempt is made to
place the event in the L3 output queue. If the queue
is full, Administrator waits for L3 to �nish read out
of an event. In Manage VME, the status of the VME
bus (busy or VBD �nished) is ascertained. If VME
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bus is free, any pending Monitor data is sent to the
MPM for TCC's perusal, the next event in the L3 out-
put queue is handed to the VBD, and the cycle repeats.
This is a rather linear scheme: Input and L3 Output
take place during event processing, but L3 readout and
bu�er management takes place at a well-de�ne point in
the event cycle. If performance requires, more vigorous
polling of VME status is possible.

Figure 10 shows the corresponding diagram for
Worker. Again, error states and interrupt handling are
excluded. Worker's state diagram is similar, but sim-
pler, as Worker is relieved of many communication and
management tasks. The basic initialization is the same
for Worker as for Administrator, though the details of
the actions and the communication mechanisms di�er.
All processing and formatting take place before the An-
swer is sent to Administrator, at least for the scenario
where an event is fully processed in a single Worker.
Worker stalls until Administrator has conveyed the de-
cision to the L2HWFW and veri�ed its transmission
(though event input may continue in the background).
When Administrator replies, Worker has the Bu�er in-
formation it needs to proceed, and looks for the next
event.

10 O�ine Software

Figure 11 shows an overview of the o�ine software
needed to complete the system and its veri�cation.

The scope of the tasks are understood from Run I
experience. The software design has not yet begun,
but the design does not impact the online software in
a major way, provided that adequate provision is made
for collection of the data for veri�cation. We regard
veri�cation and regression testing as vital to the reliable
operation of an online trigger.

Downloading of the trigger con�guration and cre-
ation of the executable is discussed briey in the next
section.
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The online results of events which pass L2 and L3 �l-
tering are available for histogramming online (\Trigger
Examine"). These distributions perform basic sanity
checks, but the design of good diagnostic plots which
are not dominated by the large rejection factors, and
stable against changes in trigger con�guration, is not a
trivial task.

These same histograms can also be part of the re-
gression testing package to compare successive versions
of the trigger algorithms between releases. This re-
quires considerable infrastructure: a relevant data sam-
ple (which must be cajoled from the physics interest
group users as well as code implementors), and auto-
mated or assisted comparison facilities.

Part of the de�nition of the trigger code is a self-
testing package, provided by the author, which can be
used as part of the suite of regression tests for a release.
The development and release-test environment should
also include extra checks in the code, especially in the
common utilities. These can take the form of asser-
tion tests which verify the assumed preconditions and
postconditions of each module.

An important consideration is the selection of an ap-
propriate mixture of UBS events, events which are writ-
ten to the output stream regardless of the nominal L2
decision. Criteria[17] for setting UBS fractions include
the time required to verify that a given trigger output
rate has a bound on its fractional error. This requires a
separate UBS fraction for each L1 bit in the L1HWFW.
Simply dividing the allowed UBS bandwidth equally
among all triggers is a robust scheme which does sur-
prisingly well according to this criterion, though if the
variation among the pass fractions of the various trigger
bits does not vary too widely, a more optimal rule can
allocate bandwidth so that all triggers are checked to
the same fractional accuracy. All criteria require some
iteration to adjust properly, as the available knob, the
fraction of input triggers of a given trigger bit to declare
UBS, depends on the vaguaries of the actual input rate,
its luminosity dependence, etc.

The UBS events are used by veri�cation programs
which run the simulator o�-line to be sure that the
on-line decisions are correct. These checks can detect
hardware failures, problems caused by real-time aspects
of the processing, and problems caused by history-
dependent bugs which are very di�cult to detect in
any other fashion. The veri�cation programs also verify
that data was transported successfully, by comparing
the L2 input data with corresponding data elsewhere
in the data stream; this detailed data is suppressed on
normal events.

The simulation code should also be capable of run-
ning on dumped events; the developers' simulation en-
vironment should have a goal of reproducing most prob-
lems found online, as online debugging time is a scare
resource in a system which cannot analyze beam data
at the same time as code is being debugged. This im-

plies considerable care in mimicking the only memory
layout.

11 Downloading

11.1 Executables

Executables are understood to include data movement
and \framework" code, algorithm code, and data such
as computable geometry or lookup tables needed by
algorithms. If additional information such as geometry
or calibration �les are needed, they are read by TFTP
from TCC or a Unix host disk once the executable is
downloaded.
Executables are built on an Alpha Unix workstation,

from code under release control. The code is served
from the disk of either TCC or an Alpha Workstation.
The transfer takes place by TFTP (a subset of FTP)
by ethernet, from a �lename in a database keyed by the
hardware ethernet ID of the ethernet card on the Alpha
board. This allows the boot ROM code for all Alpha
boards to be identical.

11.2 Scripts and Parameters

ASCII �les control the selection of the trigger process-
ing in L2 Global. The �les contain both structural in-
formation, the script for each individual L2 bit, and
the parameters of the actual cuts made in the course of
applying the script. The script will most likely be im-
plemented by calls to a series of L2 �ltering tools, which
are made aware of the parameters needed. These �les
are translated from a high-level language (with default
values understood, for example) to a lower-level, but
human-readable ASCII format sent by COOR to TCC.
Code in TCC translates these into data structures; the
same code can be used in the o�-line simulation of the
L2 trigger. Then the data structures are turned into
byte patterns which are deposited into speci�c memory
locations in the Bit3 MPM under TCC's control. Ad-
ministrator is noti�ed that a new download of scripts
and parameters are available, and Worker and Admin-
istrator ingest the information, and verify that it was
received and understood.
The need for making Script Runner fast implies a

few things about the organization of L1 and L2 bits.
L2 bits which re�ne a single L1 condition are imple-
mented by programming several L1 bits with the same
conditions. These bits should be adjacent to each other,
because otherwise it slows down the process of search-
ing through the 128 bits to �nd ones which L2 should
process. This implies the need for access to L1 and L2
decision results by trigger name, rather than raw bit
number, so that the trigger list can evolve without dis-
turbing users wishing to select a given trigger condition.
L1 bits with no L2 script are de�ned as passing L2,

and L2 Script Runner in L2 Global forces this to be
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the case. This supports a trivial L2 which does noth-
ing, which handy for testing, calib (where L2 has not
much to o�er by �ltering), and automatically passing
Heartbeat events without processing.

12 Control

TCC's interactions with Global at run boundaries has
been previously discussed in sections 9.9.2 and 9.12.
Heartbeat events are sent periodically by the

L1HWFW if no other trigger has �red recently. Their
purpose is to constantly verify the readiness of the read-
out chain. As they are sent on a distinct reserved trigger
bit, their handling can take place by the script mecha-
nism in Worker, simply forcing a L2 Pass on the Heart-
beat bit. Most likely this mechanism is the trivial one
of specifying no script: L2 Global will interpret this as
no selection criteria, meaning that the event passes.

13 Monitoring

13.1 Counters and Slow Monitoring

Monitoring is \slow" when it takes seconds to appear
at its destination; \slow" monitoring is not necessarily
monitoring a slow process.
Rates in L2 Global will come from counters held in

Worker which are seized by Administrator over VME
after Collect Status events. L2HWFW and TCC supply
the absolute time scale and live fractions.
Latency is measured by comparing the crossing num-

ber when a L1 accept was sent out with the crossing
number when the L2 answer came back. L2 Global will
store these latency times in a circular bu�er.
Circular bu�ers of times (latencies, or the time-in-

state recorded by the state machine as it makes tran-
sitions), allow calculation of a distribution of latency,
processing time, or other state dwell times.
Instantaneous Bu�er occupancy can be siezed dur-

ing slow monitoring by reading the L1 HWFW (which
has a count of the events awaiting decision anywhere
in L2), SLIC and MBT bu�er occupancies, and saving
the Alpha L2 and L3 bu�er occupancies. These can be
used to drive pac-man (pie chart) displays.

13.2 Fast Monitoring and Fraction of
Time in States, and Distributions

\Fast" monitoring reects changes essentially in real
time. L2 Global has two main sources of fast monitor-
ing.
The \Fred" registers on the Alpha boards present

the current processing state and the current number of
events in the bu�ers for scaling or logic analyzer view-
ing. They are used as outputs by the state machine
code. One particular state of interest is the time spent

processing an event. By using a decoded state bit as
a scaler gate in L2HWFW, the fraction of time spent
in any state may be found. By further knowing the
average time between L2 events, a scale could be put
on this fraction, resulting in an estimate of the average
L2 processing time, independent of any internal timers
in the node. However, if a distribution of the process-
ing time is needed, for example to look for long tails,
the circular bu�er method mentioned above would be
necessary.
Similar information will be presented by the MBT

cards, and, globally for any bu�er in the L2 system,
from the L1HWFW. These come on 4-bit lines decoded
into 16 bits to sets of L2 HWFW scalers which thus
make histograms of how often n bu�ers were occupied
at each site, or how often the system was in a given
processing state. These, too can drive Pac-Man dis-
plays provided by the L3 monitoring package. By tak-
ing di�erences between successive monitoring periods,
the averages over the previous monitoring period can be
displayed instead of averages to this point in the run.
These same scaler gates can be used instead as test

points for logic analyzers.

14 Commissioning

There are three phases of commissioning: standalone
subsystem tests, integration tests at individual institu-
tions, and integration with the actual hardware at D�
.

14.1 Standalone Testing

We briey suggest some of the tests which can be per-
formed without special test jigs, just system compo-
nents and L2 VME crates.
Low bandwidth standalone testing of the MBus func-

tions of an Alpha card is possible by writing MBus
data (from the MBus programmed I/O) to an MBus
broadcast address, and reading it with the MBus Block
Transfer engine. With two Alpha cards, one can test
the MBus Programmed Input function. A low band-
width test of a system of Administrator and Worker(s)
is possible by adding an extra Alpha to act as a MBus
data source.
The MBT can be partially tested \standalone", or

rather with assistance of a VME master. Some likely
VME masters are a PC (such as TCC) using the
Bit3/MPM, or an Alpha card, using the Universe chip.
Depending on whether the MBus Programmed I/O In-
terface is available as a PCI card, and which MBT regis-
ters and inputs or outputs are visible from VME, some
testing of MBT functionality can be done without an
Alpha. For example, the MBT outputs can be used
to feed MBT inputs, using data downloaded into the
output registers. However, testing the MBus function-
ality of even a single MBT card will require an Alpha,
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and testing the full functionality will require a test jig
simulating the SCL input.
A crate holding only Alphas and the MBT can be

self-tested. Memory holding up to 16 events (including
SCL and L1HWFW information) may be downloaded,
via VME, and then the system run at full speed.

14.2 Integration Testing

A preprocessor crate can feed a Global crate via the
normal inputs. This requires coordinated fake data for
the e.g. SCL and L1HWFW information.

14.3 Installation and Commissioning

At the point equipment moves to D� a TCC is clearly
needed, as well as live inputs. However, considerable
work can be done with a test stand consisting of sev-
eral crates with Global and a few crates containing typ-
ical preprocessor equipment. It is intended to maintain
such a test stand permanently at Fermilab to facilitate
debugging and testing of modi�ed equipment and pro-
grams.

15 Desirable Software Features

In this section we consider some software features which
seem desirable, but which may not be implemented be-
cause of manpower limitations. These features are de-
sirable because of the exibility they o�er for online
testing and debugging. Implementing them without im-
pacting online performance or reliability is a concern,
because of the complexity they imply.

15.1 Playback

The o�ine simulation will be capable of running on
dumped events. Playback takes this one step further,
by downloading the event into the actual hardware, or
the test stand hardware, allowing debugging to be per-
formed at more convenient times with a more accurate
reection of actual online hardware and memory lay-
out. The technical challenge is to inject the data into
Alpha memory or the MBT test data inputs.

15.2 Shadow Running

It is di�cult to test algorithms online in L2, because the
system is fundamentally a single processor, rather than
a farm of equivalent processors. Shadow running would
introduce optional duplicate Worker(s), operating on
the same input data stream as the regular Worker(s).
In a simple scheme to allow online debugging, Ad-

ministrator treats the Shadow Worker like a mirror of
the Worker: each analyzes the same event at the same
time. However, if a crash occurs, Administrator leaves
the Shadow Worker in the crashed state, stops it from

receiving new events, and ignores it until the Shadow
Worker is restarted. Administrator dumps the event,
restarts the regular Worker, and resumes normal pro-
cessing without the Shadow Worker. This allows the
ShadowWorker to be debugged without serious damage
to data taking. Restarting the Shadow Worker requires
resynchronizing bu�ers among Workers.
A variant of this scheme implements multiple Work-

ers with the number of Workers deliberately chosen to
be more than needed. Administrator hands out events
to each Workers in turn. If one of the Workers crashes,
Administrator removes it from the event distribution
list until it had been debugged and restarted.
A considerably more ambitious implementation

would allow Shadow Worker to perform di�erent pro-
cessing than the regular Worker, which would allow on-
line testing of new code. The advantage of such test-
ing is that it allows new code to be exposed to orders
of magnitude more data than what is easily available
for o�ine testing: recall the L3 output bandwidth is
1/1000 of the L2 input bandwidth. The technical chal-
lenge, which may be insuperable, is to allow the Shadow
Worker to parasite o� the input data stream without se-
rious impact on the regular Worker's throughput. This
is quite di�cult because all Alphas listen to all data in
Broadcast mode, and it is di�cult to be both synchro-
nized in Bu�er management and non-interfering.

15.3 Test Events

One can imagine a self-test mode of L2 in which events
with known decisions are injected into the input stream.
This relies on much of the same technology as would be
required for Playback, but would require in addition
some code decide when to inject an event, and other
code (perhaps just in Administrator?) to recognize the
event as a test event and verify the result. The self-test
could be performed on request from TCC or even pe-
riodically during data taking, if the mode-switching of
the inputs from real to fake data was not too disruptive
or dangerous.

A Further information on the

MBT

For a full description, see [12]. Any of the Control or
Test registers can be read by either MBus or VME.

A.1 Output

Each card has 2 output paths. These are used by Pre-
processors to send data to L2 Global. Data may be sent
to either of two address spaces, �lled by either writing
sequential addresses or writing repeatedly to the same
address from MBus. The data path may be 8B (64b)
wide, rather than the full 16B (128b) MBus width. End
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of transmission is signalled by writing to a di�erent reg-
ister.

A.2 Control

All control registers are visible from MBus, and can be
read back. The main control registers are

� initialize

� select active input channels

� set channel Source ID

If no Source ID for a channel has been assigned,
then that input channel is disabled. The SCL L1
information channel may be deselected on this card
by this mechanism. If a channel is selected, then
its information is required for every event. This
controls the broadcast address on MBus used for
each of the inputs. Setting the Source ID to the
same value for all channels makes the MBT card
appear as a single broadcast source.

� GO

This gives the MBT card permission to broadcast
the next event, once it has a complete event, and
has gained bus mastership. The card allows ar-
bitration between each source, even if the sources
have been set up to use the same broadcast ad-
dress. After the event is complete, the card signals
this fact to MBus and/or its neighbor cards and
cedes bus mastership.

A.3 Monitoring

The number of events in any FIFO can be read by
MBUS. The same numbers appear on a connector which
can be inspected by a logic analyzer, or used to gate a
scaler in the L2HWFW.

A.4 Test Data

Test data can be sent to any FIFO input, or any output.
Up to 16 events may be loaded for each location. At a
signal, data can be made to ow at full speed.

B Inputs to L2 Global

In this Appendix, pp is used as an abbreviation for L2
Preprocessor. Some issues which are not yet resolved
are set o� with square brackets [ ].
Assumes packing such that:

� smallest fragment size for a variable within an ob-
ject is 1 byte

� object's total data size must be an integer num-
ber of 4-byte words

� multi-byte �elds do not cross boundaries between
4-byte words

� each pp will preface its data with an twelve byte
header

� each pp will complete transmission with a four byte
trailer

� each pp will add bytes after the trailer to make a
total number of bytes divisible by 16.

� where possible each pp object will be identi�ed by
rapidity, azimuth and ET in that order

� objects will be sorted in descending Et order

� the least signi�cant bit for rapidity will be 0.05,
for azimuth 2�/160, and for transverse momentum
0.25 GeV/c

[what is the origin for eta? Do we try -n to n, is 0
skipped, or force all eta indices numbers positive?]

� azimuth will be reported in standard D� coordi-
nates

[One could either arrange so 1 header word is �xed,
or so the trailer word is identical to one header word.]

Preprocessor Header
Item Bytes
Header Length 1
Header Format 1
Object Length 1

Preprocessor ID 1
Rotation Number (high) 1
Rotation Number (low) 1
Bunch Number 1

Status 1
Version 1
Run/Event Switches 1-2
Number of Objects 1-2

Preprocessor Trailer
Item Bytes
Rotation Number (high) 1
Rotation Number (low) 1
Bunch Number 1
Preprocessor ID 1
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e, jet
Item Bytes Item
� 1 �
� 1 �
ET 2 ET

Spare 1 Spare

�center 1 �center
�center 1 �center
Iso frac 1 Spare
EM frac 1 Spare

Total 8/evt Total
� 2 obj/evt � 4 obj/evt
) 16 B/evt ) 32 B/evt

E= T Calpp
Item Bytes
E= Tx 2
E= Ty 2
Total 4 B/object
�x: 20 obj/evt ) 80 B/evt

The E= T data are reported by rapidity bin so that any
vertex knowledge can be applied in the Global Proces-
sor. The order of the bins is from � = �4 to +4, each
bin being :2 (one trigger tower) in width.

CFTpp
Item Bytes
Spare 1
�(Shower max) 1
pT 2
�(A�) 1
CPS Energy/Isolated/sign 1
Spare 2
Total 8/obj

� 50 obj/evt ) 400B/evt

The CPS and FPS data are not well de�ned at this
point.

CPS, FPS
Item Bytes
� 1
� 1
E 2
Spare 4
Total 8B/object
� 5 + 5 obj/evt ) 80 B/evt

� PP
item Bytes
� 1
� 1
pT 2
Algorithm 1
Quality 1
TOF 1
Direction 1
Total 8/object
� 11 obj/evt ) 88B/evt

TOTAL PP's ! GLOBAL:

Mean variable output to the L2 Global Processor

Totals
PP variable Bytes/evt
L1 HWFW 16
L1 SCL 5xx
e/ 16
jet 32
E= T 80
CFT 400
�(1 + 2) 88
CPS 40
FPS 40
STT? 0
Headers 160
Total: 888

C L2 Output to L3

[Headers to L3 for preprocessors, Global are not yet
speci�ed. Likely place for version # of executable.]
Output of L2 Global consists of:

� Preprocessor OBJECTS

� L2 Trigger decision information for each of 128 bits

� L1 Trigger decision for each of 128 bits

� other L2 status information, including \true" de-
cisions for UBS or Forced Write events.

The objects lists follow as does a total estimate for the
L2 Global output. All rapidities are in detector coor-
dinates unless vertex information is available. In that

26



case coordinates are given in physics rapidity. All ET

are uncorrected.

[why uncorrected ET ?]

[Are Zvtx objects sent, with a tag for \preferred"
one?]

[do muons attempt to point back to mu candidates?]

[do leptons point to both tracks and lepton detec-
tors?]

[why does the resolution on em and iso get larger?]

[no allowance for high-order objects, such as masses]

e,
item bytes
� 1
� 1
ET 2
EM frac 2
Iso frac 2
Preshower 1
Track info 4
E/p 1
�center 1
�center 1
Spare 1
Total 20 B/object
var: � 2 obj/evt ) 40 B/evt

jet
item bytes
� 1
� 1
ET 2
�center 1
�center 1
Spare 2
Total 8 B/object
var: � 4 obj/evt ) 32 B/evt

E= T

item bytes
E= T 2
E= T� 2
E= Tx 2
E= Ty 2
Total 8 B/object
�x: 1 obj/evt ) 8 B/evt

[Are uncorrected sums also sent?]

�
item bytes
� 1
� 1
pT 1
Quality 1
Track info 4
Spare 4
Total 12 B/object
var: � 5 obj/evt ) 60 B/evt

Totals
object variable B/evt
e/ 40
jet 32
E= T 8
� 60
L2 Decisions 16
Candidate Pointers 100
L1 L2 L3 evt#, ags 32
Total: 288
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