# L2 Trigger Bits: > 128 bits? 

James T. Linnemann<br>Michigan State University

Paris Workshop
March 12, 1999

##  <br> Guide Verte: Un Peu d'Histoire

|  | Lum/10E30 |  | Phys kHz | Xing kHz | < ${ }^{\text {> }}$ | <Ncal> |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run I | 15 | 47 | 705 | 286 | 2.5 | 2.5 |
| Run \|| 396 | 80 | 55 | 4400 | 2525 | 1.7 | 2.2 |
| Run \|| 132 | 200 | 55 | 11000 | 7576 | 1.5 | 5.5 |
| Run II / Run I: |  |  |  |  |  |  |
| Ratio 396 | 5.3 | 1.2 | 6.2 | 8.8 | 0.7 | 0.9 |
| Ratio 132 | 13.3 | 1.2 | 15.6 | 26.5 | 0.6 | 2.2 |

## Encore d'Histoire

|  | Lum/10E30 L1 Hz Out | L1 rej | L2 Hz Out | L2 Rej | L3 Hz Out | L3 Rej |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Run I | 15 | 800 | 881 | 150 | 5.3 | 3.5 | 43 |
| Run II 396 | 80 | 6000 | 733 | 1000 | 6.0 | 20 | 50 |
| Run II 132 | 200 | 6000 | 1833 | 1000 | 6.0 | 20 | 50 |
| Run II / Run I: |  |  |  |  |  |  |  |
| Ratio 396 | 5.3 | 7.5 | 0.8 | 6.7 | 1.1 | 5.7 | 1.2 |
| Ratio 132 | 13.3 | 7.5 | 2.1 | 6.7 | 1.1 | 5.7 | 1.2 |

- Rejections required $\approx$ Run I
- But, moved rejection upstream (better L1)

Use for more physics channels, lower thresholds this (and geometrical parallelism) $\Longrightarrow$ more L1 bits

## L1trigger bits

- Collaboration accepted 64 bit design (1997) run I was 32 bits, 28 used
- some needed for "system" functions
- in 1997, moved 128 bit L2 hardware to L1 FW allowed implementation of 128 b L2 as $1: 1$ with L1
- side effect: no prescale in L2 needed


## New L1 tools

- Central Tracking trigger
- Central and Forward Preshower trigger request: quadrant matching with calorimeter motivation: specific physics channel


## L1 bit OR'ing

- L1 will not get additional OR-ing capability as a general L1FW feature until start of run some available in mu, cft, ps trigger managers specs frozen for initial delivery further changes will make L1CAL late
- OR'ing eventually possible:
localized by trigger terms
aimed at geographical combinations (quadrants) NOT mu.OR.e
- lose information to guide L2 processing


## L2: Run I

- 1 to 1 with L1bits
- only 16 bits (not all 32)
- time budget was really deadtime budget generated direct deadtime waiting for decision
- muon: ~10 $\mu \mathrm{sec}, 500 \mathrm{~Hz}, .5 \%$ deadtime
- cal: ~110 $\mu \mathrm{sec}, 100 \mathrm{~Hz}, 1.1 \%$ deadtime
- Restricted to muons, cal
much higher rejection in muons than cal


## L3: Run I

- 128 bits

90 actually used (started with 64 constraint) expansion by 3 from L2

- $200 \mathrm{~Hz} / 48$ nodes $=4 \mathrm{~Hz}, 250 \mathrm{~ms}$ budget
after queueing, more like 180 ms
for 20 MHz processor, 4M instructions processor had access to all detectors, full readout Run II: 60-120 M instructions (X15 to 30 Run I)
- X 25 speed X 3 processors/node $\mathrm{X}(1 / 5)$ time X superscalar


## L2 Trigger: Baseline design

- 10 KHz L1 out to 1 KHz L2 out 128 L2 decision bits, 1:1 with L1
- As of July 1997 or earlier
- earlier, had accepted 64 bits in L1, 128 in L2
few \% deadtime
- Global Processor selects events
threshold for object
matching objects from different detectors
cuts on quality (mostly in preprocessors)
kinematic variables (but $\mathrm{Zv}=0$ )
- Objects from single-detector preprocessors


## L2 processing power ( $50 \mu \mathrm{~s}$ )

- Alphas: 25 to say 50K instructions per card
- SLIC's: 100K instructions per card
- Collectively (ex STT): (ignoring idle cycles)

Cal 150K Leil towers
$\mathrm{Mu} \quad 1.6 \mathrm{M}$ raw data (but balancing!)
PS 150K L1 clusters
CTT 50K L1 tracks+PS/ISO tags
Global 50K output of above
total: .5-2M instructions: ~RI L3 / 4 ~RII L3 / 100

- but: processors don't see all data
- global sees only objects found, not all data


## L2 Global Overhead: search 128 bits to process

- Background "barely" triggers--unless trigger list forces correlations
- typical L3 RI: 2-3 L1 bits
- ~3 L3 RI scripts/bit
- expect 5-10 L2 bits
$4-8 \mu \mathrm{sec}, 10 \%$ overhead
- $1 / 2$ search, $1 / 2$ call
with $\sim 1-3$ tools/script
- Bunch similar bits!
- Branching means a new
 layer of loops, searches


## What does that leave time for?

- Additional $2 \mu \mathrm{sec}$ for interrupt routine
- present estimate for Global: $2 \mu \mathrm{sec} /$ tool
~1000 instructions
- makes assumptions about complexity of cut/match...
- so perhaps time for that 4 such tools/script or X 2 scripts with same overhead or X 2 slower than this--need code, simulation
- RII L2: more tools/script than RI L3 <1.5>?
lower L 2 rejection $\Longrightarrow$ deeper into script before fail more channels $\Longrightarrow$ more complex scripts needed
- RII "tool" = \{algorithm, parameters\}


## Are budgets too conservative? Not with current knowledge

- Safety factor: design for 10 KHz

6KHz expected: limited by SVXII deadtime nominal budget is $100 \mu \mathrm{~s}$ instead of $160 \mu \mathrm{~s}$

- Realism: queueing (16 L2 decision buffers) nominal budget from $100 \mu \mathrm{~s}$ to $80-90 \mu \mathrm{~s}$
- Long timing tails assumed (rms $=2 \times$ mean) reduces nominal to $50-60 \mu \mathrm{~s}$ from $80-90 \mu \mathrm{~s}$
- allows for nonlinear time tails (combinatorics)
- price we pay in lieu of a VERY good simulation buffers fill up waiting for a slow event
- Front End buffer design: must answer in order!


## Add another processor? Maybe, but not linear gains

- 2 processors in parallel? Hard to balance
- 2 processors, different events?

Alternating: maybe 20\% non-lockstep: 40\%

- Inefficiency when handling slow event: tails are deadly answers in order!


## Why use another trigger bit?

- Without separating from another channel, cannot meet output bandwidth requirements
new physics
low threshold possible only with added conditions
- and incompatible between physics channels
- condition requires multiple bits to express
geometrical parallelism (quadrant OR's)
- distinct processing needed at next level
- measure background or efficiency

AND need continuously monitored

## What if we run out of bits?

- run sample with partial luminosity in lumps rather than prescaled
- combine with another bit
- lose efficiency?
+ less channels to characterize
- find a way to express in fewer bits
hardware upgrade needed in L1
- geometrical parallelism
- Raise thresholds (lose efficiency)
- abandon some kind of physics


## L2 view

- Q: how many bits can you manage
- No output bandwidth limits to justify branching--yet (simulation needed)

L3 makes better decisions than L2 (esp. Cal)

- First priority: make L1,L2 existing design work code and simulation to evaluate we start at low luminosity trigger list less tuned at start?
- Design will allow upgrade to branching more overhead, more complexity to debug would likely pick new max \# bits...

