

What is projected L3 output 10 - 20 Hz

how many KB to each preprocessor?

SVX under study fits into scheme without new problems to face

Rejection from Cal alone is about 4 using 10 -> 15 GeV threshold and ISO; then independent factor from phi match at 1 TT to track boosts to rejection of 9

what is efficiency, rejection? about 4 at 98% on Z's

timing on Mon stream at 3 luminosity's

7 GeV Em ET from L1 10 GeV 1X2 cluster em fract > .8, iso , .01

> 1 usec overhead, 2.8 average 2.1 usec per speed multiplicity 1-2 seeds/event

> > slow with luminosity

jet efficiency, rejection???

no Etmiss: since no new info (at 396 anyway) est 50 usec just to tower scan. Without IF's, there might be hope to do etmiss; no Zv in any case

3 GeV L1 to 15 GeV

3 usec 2.2/seed, 1.1 /cluster average seeds is 3 -> 6 at high lum more lum dependent than electron

therefore, distribution is broader than for electrons

Cal Preprocessor Timing (µ sec)				
	Electrons	Jets		
Buffer Fill	13-50	13-50		
Unpack L1 Seeds	2	2		
Algorithm	3-10	8-30		
Output	5	5		
D0 / Michigan State Universit	y 2/25/98		9	

2nd figure is for 132 nsec bunch spacing

Data input speed independent of processor; other factors scale Times scaled from a model 300 Alpha, about 100 MIPS / 2 ~ M700 should be at least 1.5 X latest chip Vs. M700 in addition, UNIX C faster than VMS C I have applied that scaling factor here

CENTRAL

Rejection is 7.8 track, 5 for scint (tho not indep) efficiency on Run 1 data is 95% track, 99% scint

256 B/80 MB/sec = 3 usec or so (u is worst case)

Here timing is on M300/2, VMS C, so really expect * 1.5 better

but beware, this is 2^* as fast as CDF saw for real room for expansion here

mu track matching NOT included so far

L2 Global Data Inputs (per "typical" event)				
e: 2 X12 B =	24 B			
j: 4 X 8B =	32 B			
CFT: 10 X 8B =	80 B			
includes preshower				
muon: 16 X 16B =	256B			
FPS: 5 X 4B =	20B			
CPS: 5 X 4B =	20B			
SVX(?) 10 * 16B =	160B			
Total	450-600B			
=	= 5 MB/sec			
D0 / Michigan State University 2/25/98	16			

Put Dan Owen's list here

This is still 5-10 MB/sec

CDF is 21064 at 150 MHz 7 ns/instruction cycle, 2 inst/cycle

equiv to M400 workstation, so faster than our M300 by perhaps 1.3 - 1.5

our M300 was in the 80-90 Specint range I think

next is 21164 at 400 MHz, 2.5 / inst cycle, 4 instructions/cycle,

L2 cache on chip

500 Specint92

Therefore about 5* faster than our M300 times

we have taken a factor of 2 of out of this 5

SO SHOULD STILL BE X 2.5 faster than

these numbers!!!!!

guess 80 MB/ DMA engine; if 100 ns/xfer, 4B/xfer would be 40 MB/s each

at 396, CAL could go up to 50, a problem unless more buffering applied

e and j are probably both pessimistic

mu is probably about right, tho exponential is perhaps harsh for both track and mu

50 seems pretty generous for Global

L2 Cost Estimate			
Muon Preprocessor	\$340 K		
e, jet Preprocessors	\$270 K		
r-	\$170 K		
u-v Track Preproc.	\$450 K		
Global Processor	\$170 K		
Total	\$1400 K		
D0 / Michigan State University 2/25/98	22		

additional RISC board is about 20K

15 year FTE engineering

put detailed costs here

Commercial DSP

Shared VME/RISC with large I/O bandwidth

rejects combinatorics by factor of 20

efficiency of 95% for < 4 interactions, 85-90% for lum-wtd

maybe better if allow more tracks than 2/region: slower than for L1

trigger on 2-tracks at 8 X 3 GeV of L1 < 1 KHz if L1 device