Monitoring and Debugging L2 <u>Hardware</u>

James T. Linnemann Michigan State University Paris Workshop March 10, 1999

Monitoring Data Collection

TCC tries to collect fresh monitoring every 5 s

- sends event through system with CollectStatus
- reads hardware scalers in L1 framework
- if L2 running, captures info and tags with event # put in Bit3 MPM in each crate by Administrator read out by TCC (after .5 s?) (no VME cycles in crate)
- if L2 not running, TCC asks Administrators to collect monitoring data anyway?
 Mark as stale unavailable blocks (crashed node?)

TCC & Monitoring Client

TCC serves trigger monitoring information

- handles scaler rollover
- may be asked for integral or differential
- client handles display and reporting
 - reports, pacmen, flow displays, strip charts, histograms
 - decides what to do if not all monitoring fragments match event tags on blocks differ:

stale information in some blocks?

Show previous block (and warn "stale data")

or make blank display?

Collected without events flowing, so not synchronized?

- needs to know (fixed) format, trigger setup (both: database?)
- presents subsets according to requested run (not all bits) and run summary?

Monitoring info database: many views needed

Lots of info of various types

- type of synchronization time, event, rough interval
- source

alpha, mbt, fic, slic, framework scaler

sources have different availability if things hang

• interpretation

event (try, pass...) counts error counters Integration time > 5 sec? By Client? time in state current state buffer occupancy histogram circular buffers of event characteristics (histogrammable) error messages

Info Type vs Source

	FW Scaler	VME	Processor
Event Counts	X	X	X
State Occupancy	X	Х	(x)
Current State		?	?
Buffer Occupancy	X	Х	
Circular Buff/Histo			X

Sources of Monitoring Data

Scalers in L1 framework

- ECL gates, count beam crossings in given state
- count of occurrences of a condition
- Read by TCC directly--indep. of state of L2 crates
- tells truth even if system hung
- time-synchronous collection

Scalers on VME boards (MBT, FIC, SLIC)

- like L1 scalers but local, slower clocks: time in state
- not collected at same time as L1 scalers nor event-synchronized
- collection works only if

Administrator alive (unless TCC knows crate contents!)

VME available (VME bus, VBD not hung)

smoothest if events actually flowing

Monitoring from Processors Alphas, DSP's

- Can monitor `most anything we have time for
- best for event accounting, pass rates
 - if events flowing, collection is event-synchronous with L1 scalers

error condition when

any in/out counts mismatch

nonzero error counter

not time synchronized with L1 scalers

• if events not flowing, may be partial or clumsy

• can Administrator read Workers, DSP's?

usually, they are notified to collect and move to a buffer

Whole Monitoring Catalog

- Now writing down all we intend to collect
- framework scaler count
- sizing of multiport memory of Bit3
- specifications of hardware cards
 - testing against debugging scenarios
- draft of monitoring collection class for Alphas

Monitoring Displays

- Propose drafts to Online group
 - someone working on this! GREAT!
- Performance monitoring displays
 - warn shifters when things go wrong
- Diagnosis displays
 - localize problems (scenarios) hope to diagnose without sending commands... couple to control system for reset????
- Expert displays
 - performance tuning
 - advanced diagnosis

Monitoring Reports

- Quantitative info shift monitoring
 - when visual doesn't work?
- Comparison with expected behavior
- Run summaries: capture run start values
 - TCC access by actual value, by time difference over n periods
 - who integrates scalers which roll over
 VME scalers on boards: monitoring, not accounting
- Hope: Intermediate run summaries
 - pick integral since run start, or from "now"

Monitoring concerns

- Performance Monitoring and Tuning:
 - find bottlenecks, while data flow continues
 - where, why events backing? Need averages, distributions
 - average buffer occupancy
 - processing time
 - transfer time
 - deadtime= fraction of time buffers full
- Debugging of hangups (no data flow; static system)
 - eventually FIX, not diagnose!
 - time in state goes to 100% (anyone in a weird state?)
 - buffer occupancy stops changing (where the events? 16?)
 - identify card with problem
 - identify channel of card if isolated

• snapshots, error counts may be enough--if they can be read! J. Linnemann, MSU 3/8/99 Desirable compromise [like L3 Pacmen]

- Display averages
 - good for tuning/performance
 - click to see details

usually for experts examples: buffer occupancy histograms; error counts

- Display becomes static on hangup
 - IF info can be read: so prefer FW scalers but it's only available for Alphas
 VME local scalers are nearly as accessible for cards with buffers

Combine like cards (MBT's, SLIC's, FIC's)

Performance Monitoring

Baseline: "always there"

- get to know normal behavior of system
- Relatively fast response (few sec)
- Rates
- Rejection or pass fraction
 - on request, Rates, pass fraction for each bit
- Deadtime
- strip chart of some particular bit rates vs time

Trigger Framework Itself

- Beam crossings
 - = Time (allows conversion of counts to rates)
 - normalization if not all alternatives histo'd
- # L1 accepts
- # L2 accepts
- L1 Busy fraction (from SVX, L2) ("deadtime")
- L2 Busy fraction (caused by L3)
- Histogram of # L2 decisions pending
 - fraction time with 0-16

(occupancy of FE "L1" buffers)

Highest Level Display

+ strip charts, of these + some L1, L2 bit rates

High Level Display: Notes

Data sources in L1, L2 are FW scalers; L3 L1 busy is total deadtime "L2" = % time 16 buffers The busy boxes expand and contract logarithmically

For L2, L3 circles, % given = pass fraction

L2 Busy box also expands and contracts fraction of time L2Busy raised

L1, L2, L3 turn different colors (or **BOLD** borders) if > threshold for: # errors recorded > threshold (what memory time scale...) click to get error statistics, error messages, scl_init logs rate, pass fraction out of tolerance (?) very hard to set tolerances other than deadtime

L2 FW Scalers

- ~400 total, 32 bits each
- ~5 per Worker Alpha
 - time in states only, but most interesting states after all Administrator isn't doing the work
- ~32 per Administrator Alpha
 - time in states
 - time with given buffer occupancy in crate Alphas (Admin knows) where whole events likely collect partial events probably in MBT's; DMA into Alpha
- handy hardware window during commissioning!

Worker Alpha FW Scalers: Time in State

- Things you want to time, or possible hangs
 - Wait/event
 - Processing
 - Writing Output ?
 - Interrupt
 - Waiting/Administrator Reply
 - Collecting Monitoring
- A concern: overhead to advertise states
 - ~.3 sec for PCI write

sometimes can pay overhead during wait states

Administrator Alpha FW Scalers

Time in State:

- Wait/event
- Processing
- Interrupt
- Reply/worker
- Handle L2 Accept/Reject
- Managing L3 readout
- Collecting Monitoring
- VME Busy?
- Mbus Busy?

- Buffer Histograms (# bins)
 - Allocated (4)
 - Processing (8)
 - Wait/L2 Acc/Rej (3)
 - L3 Readout (3)
 - Free (4)
 - ToAllocate (1/Worker)

Main L2 Display

L2 Display Views?

Select whether to show:

- Workers, Admin/buffers, MBTs, SLICs FICs
- Workers: most basic info
 - others needed for debugging

Processor Displays

- Pacman: pie chart of time in state
 - idle time at 3 o'clock
- Bars underneath (for non-states)
 - Interrupt routine (if not subtracted from states)
 - VME Bus Busy; MBus Busy
- Iump SLIC processors? (avg time in state?)
- Buffer before: <events> Processing Queue
- Buffers after: <events> Wait L2 answer, L3 R/O
- ERRORS: **BOLD** border if error counts > threshold
 - click for details?
- Sum (or average) for longer than 5 sec!! J. Linnemann, MSU

Buffer Displays

- Average Occupancy (scale 0-16)
 - based on histogram and boundary values who calculates mean? Admin? TCC? Client?
- MBT split: min and max
- MBT Special: if <min>=0 and <max>=16
 - display number of channel(s) with 0 complete events: likely bad channel
- Lump like cards together (MBT's, FIC's)
 - max = max of max's, min = min of min's
- Useful options?

• % time in highest occupancy state? J. Linnemann, MSU

Diagnostic Displays

- Where to look next if things go wrong
 - can I get the info when things are messed up?
 - Hope from basic displays...
- Try some scenarios:
 - heavy SVX deadtime
 - slow preprocessor
 - crashed preprocessor
 - cypress input link down
 - G-link input down
 - L3 output hung
 - cypress input link slow

Scenarios: Deadtime diagnosis

- SVX deadtime: main L1/L2/L3 display
 - total deadtime >> % L2 buffers full
- Slow L2 processor: main L2 display
 - small L2 idle fraction
 - details for processing time, distribution
- Full buffers mean processor is slow
- Empty buffers mean processor fast, OR source slow

Hangs: processors, L3

Crashed or hung L2 processor: 100% dead; typically all L2 processors but one in IDLE state clear unless happened in IDLE state search processors: "data stale" in details requires acquisition of details without data flow L3 output hung: processors view same as L2 hang need buffers view: output buffers to L3 full

Hangs: Cypress link

All nodes idle, 100% dead

global MBT: max 16, min 0, empty link #

name if clicked (from database!)

if broken between preprocessor and global, that's all

if preprocessor with broken input:

ALSO its MBT shows this condition

Requires:

Admin extracts info WITHOUT event flow MBT register: mask of 1 or more complete events error counters vs channel MAY help

Hangs: G-link

- Looks like preprocessor cypress down
- but FIC looks empty
 - no full event, no data in output FIFO
- FIC in error state? display bad channel #
 - G-link RDY OFF during Reframe/L1 Busy?
 - Error counters nonzero? remember beyond 5 sec!
 - register for PARTIAL events? Or does it help?

Control and Recovery

- Can hangs be recognized in a single crate?
 - hung preprocessor link? (Global looks bad, too)
- SCL_INITIALIZE
 - should it reset links automatically?? Too slow?
- Need uniformity of responses to resets:
 - power, front panel
 - VME write to reset register
 - = power-up, or less violent ?
 - keep FPGA programming? Controls settings?
 - VME SYSRESET: VME bus release only
 - MBRESET: MBus release only

Expert Displays/Reports

- Detailed performance measurement
 - diagnosis of slow processor
 - where to expend optimization effort trigger scripts, processor code...

comparison with queuing simulations

mean and rms processing times; distributions

per event only: do per-filter, per-tool level in simulator

bits/script

tools run/script

overlap between trigger bits (need special output?)

average latency

% capacity used

distribution of buffer occupancy $\frac{3}{8}$

Issues: Alpha

Need to measure overheads for

- setting state for FW scalers
- for entry in circular buffer
- Like to measure
 - interrupt handling time
 - not one of a set of exclusive states, unless stack...
 - VME and MBus busy

like hardware path to ECL outputs

Circular Buffers: Flexible Processor Output

- Scalers can give fractions
 - with time base, can give mean times
- Circular buffers of actual values: (T_{event}, N_{jet}, jet, ...)
 - Software logic analyzer (Cutts): {state, transition time}
 - make a histogram to show a distribution (tails) linear, log plot...
 - calculate rms values
 - only window to high pre-L2 statistics (~Nc X more than UBS) trigger-independent "health" plots for preprocessors L1 trigger masks (for trigger overlaps--pseudo data stream?)
 - show derived quantities
 - event latencies: T(decision) T(event) [L2G Admin]

<Latency> X <Input Hz>

= effective delay in events (buffers)

UBS vs Monitoring statistics

- Monitoring defined as ~ 1 per 5 sec
 - Circular buffer with Nc event entries gives Nc/5 Hz
- UBS events:
 - .5% of out bandwidth another .5% L3 UBS
 - Say 20 Hz output
 1/2 % is 1/10 sec UBS from L2
- Monitoring is ~2Nc more--for SELECTED info
 - UBS events get WHOLE event--vastly more flexible
- need to be a monitoring client to see it
- must do own histo clearing at "run" start/end
- save to disk for offline analysis??

Histograms vs Circular Buffer

Histogram: concerns over software escalation

- another monitoring data type

more bins to define and match

less stable than buffer bins

+ scatterplot may be more natural?

+ Circular buffer gives less statistics? (size choice)

? Relative timing of two

attraction: Run I Trigger examine was weak

statistics, strong dependence on event selection less bias, but still L1 selected, from preprocessor

Issues: MBT

- Measuring min, max # events histogram
 - also specific channel histogram, but must be set...
- Display: "average" min, "average" max
- bad link gives min=0, max=16
 - enough to isolate if hung link on card
- need register mask of FIFO states (for active inputs)
 - 1 if any data? No. Useful only if hangs between evts
 - 1 if complete event? Bad channel shows as 0.

Issues: FIC

- Not event-oriented, so should self-drain
- only purpose is to show if
 - getting behind (unlikely...)
 - input lost (unlikely--until it happens)
- Histos of # whole events (time fractions)
- could use a register like proposed for MBT
 - currently, have FIFO_FULL
 - Has error counter, RDY, per Glink

sufficient when no data flowing to identify channel? Does BUSY because of reframe show up here?

Issues: SLIC

- No spec yet
- Event oriented: between MBT and Alpha
- error counters, event counters per input
 - also a register for fragments?
- Event occupancy histogram?
 - Of what buffer?
 - Input FIFO? Fast. Should self-drain--but event oriented? FIFO in front of DSP?