ADF-2 BLS Input Signals --------------------------- Original Rev. 29-NOV-2004 Current Rev. 27-MAY-2005 The purpose of this file is to quantify the analog BLS trigger pickoff signals that are inputs to the ADF-2 cards. There is a lot of information about this topic that has been learned from the operation of the Run IIA L1 Cal Trig. The intent is to gather all of this information together and make a best estimate calculation of the actual analog input signals through out the TT eta range for both EM and HD. The following is the best current understanding of what will actually come out of the Run IIB BLS Cable Transition System and appear as input to the ADF-2 cards. The "Measured Calibration" reflects the results of the Summer 2003 L1 Cal Trig vs Cal Precision Readout calibration study (for those TT eta's that were studied). For the remaining TT eta's this is pure theory (geometry and spice) which our betters have assured us is fine. EM Measured -- Calibration "Geometry" That many GeV GeV of E Needed GeV of E of E gives TT Eta for 2V Diff for 62 GeV of Et ADF Vin Diff ------ ----------- ---------------- -------------- 1 57.4 62.3 2.17 2 57.4 64.8 2.26 3 57.5 69.9 2.43 4 57.3 77.9 2.72 5 57.4 88.9 3.10 6 56.9 101.5 3.57 7 53.2 131.5 4.94 8 52.8 145.6 5.52 9 176.1 175.0 1.99 10 176.3 211.5 2.40 11 176.0 256.5 2.91 12 174.0 311.7 3.58 13 174.2 379.7 4.36 14 172.5 462.0 5.36 15 629.2 563.6 1.79 16 629.2 688.1 2.19 17 629.2 946.6 3.01 18 629.2 1469.2 4.67 HD Measured -- Calibration "Geometry" That many GeV GeV of E Needed GeV of E of E gives TT Eta for 2V Diff for 62 GeV of Et ADF Vin Diff ------ ----------- ---------------- ------------- 1 134.2 62.3 0.928 2 134.0 64.8 0.967 3 124.1 69.9 1.127 4 124.7 77.8 1.248 5 128.4 87.8 1.37 6 145.3 105.2 1.45 7 75.2 122.2 3.25 8 100.3 145.1 2.89 9 196.6 178.1 1.81 10 196.6 212.7 2.16 11 177.9 258.1 2.90 12 176.3 313.6 3.56 13 177.0 381.8 4.31 14 175.9 465.5 5.29 15 675.7 567.2 1.68 16 675.6 692.7 2.05 17 629.2 952.4 3.03 18 629.2 1776.5 5.65 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Volts in per Gev of Et ---------------------- Another useful table to look at is to express the expected input signal in term of Volts per GeV of Et. As with the table above, this table is based on the Summer 2003 Calibration of the Run 2A Cal Trig and takes into consideration the signal loss going through the BLS Cable Transition System. This is the exact same information as shown in the above tables but here it is expressed in Volts per GeV of Et. ADF EM Input ADF HD Input Vin Diff Vin Diff TT Eta per GeV Et per GeV Et ------ ------------ ------------ 1 35.0 mV 15.0 mV 2 36.5 15.6 3 39.2 18.2 4 43.9 20.1 5 50.0 22.1 6 57.6 23.4 7 79.7 52.4 8 89.0 46.6 9 32.1 29.2 10 38.7 34.8 11 46.9 46.8 12 57.7 57.4 13 70.3 69.5 14 86.5 85.3 15 28.9 27.1 16 35.3 33.1 17 48.5 48.9 18 75.3 91.1 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Required ADF-2 Full Scale Input Values -------------------------------------- Now based on the table at the top of this document, which shows the best current estimate of the signal amplitude that will actually come into the ADF-2 cards over the BLS Cable Transition System for 62 GeV of Et, calculate the Species Count and Full Scale Input Sensitivities that we want in the ADF-2 cards. Recall that a given species of ADF-2 card must service 4 consecutive TT eta's e.g. 1:4. Volts Differential EM HD ----------------------- ADF Vin Diff ADF Vin Diff EM HD TT Eta for 62 GeV Et for 62 GeV Et Full Scale Full Scale ------ ------------- ------------- ---------- ---------- 1 2.17 0.928 4.0 2.0 2 2.26 0.967 3 2.43 1.127 (1.84) (2.16) 4 2.72 1.248 5 3.10 1.37 5.5 3.5 6 3.57 1.45 7 4.94 3.25 (1.77) (2.55) 8 5.52 2.89 9 1.99 1.81 4.0 4.0 10 2.40 2.16 11 2.91 2.90 (2.01) (2.21) 12 3.58 3.56 13 4.36 4.31 5.5 5.5 14 5.36 5.29 15 1.79 1.68 (3.07) (3.27) 16 2.19 2.05 17 3.01 3.03 5.5 5.5 18 4.67 5.65 19 ? ? 20 ? ? The numbers in parenthesis show the full scale input range for that species divided by the Volts per 62 GeV Et of the the TT eta that has smallest Volts per GeV Et of all the TT eta's that are serviced by that species. This shows how much spare range there is before one violates the rule that it must be more sensitive than 1/4 GeV Et per LSBit. A value of (4.0) would be right at 1/4 GeV Et per LSBit. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= ADF-2 Species --------------- Original Rev. 13-FEB-2005 Current Rev. 14-FEB-2005 The purpose of this file is to describe the different species of ADF-2 card that are required to match the various BLS input signals. ADF-2 R5, R6, R25, R26, Volts Diff R55, R56, R75, R76, ------------ ..., ..., ADF-2 Number EM HD R705, R706, R725, R726, Species to Make F.S. F.S. R755, R756 R775, R776 ------- ------- ---- ---- ----------- ----------- A 21 4.0 2.0 1.02 K 511 B 21 5.5 3.5 1.37 K 866 C 11 4.0 4.0 1.02 K 1.02 K D 37 5.5 5.5 1.37 K 1.37 K =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Exact Full Scale Input Values ----------------------------- As shown in the table above, the 4 species of ADF-2 cards have been assigned "nominal full scale input sensitivities", e.g. 3.5 Volts differential. It is also useful to know their "exact" full scale input sensitivities. The exact full scale input sensitivities are not nice round whole numbers as shown above for a number of reasons. One of these reasons is because the values of the 1% gain resistors were picked so that they would not overlap with similar resistor values used elsewhere on the ADF-2 card. The intent of this was to insure error free assumble of the 4 different species. Also note that the input sensitivity of a given channel on a given card will depend on the accuracy of the ADC Reference Voltage for that channel (about +- 4% at 25 Deg C plus 40 ppm per Deg C) and on the accuracy of the "gain" of that ADC (typ +- 3% plus 100 ppm per Deg C). Volts Differential Full Scale "Exact" ---------------------------------- mVolts Diff "Nominal" "Exact" per LSBit ADF-2 ------------- --------------- --------------- Species EM HD EM HD EM HD ------- ---- ---- ----- ----- ----- ----- A 4.0 2.0 4.087 2.120 3.995 2.072 B 5.5 3.5 5.439 3.491 5.317 3.413 C 4.0 4.0 4.087 4.087 3.995 3.995 D 5.5 5.5 5.439 5.439 5.317 5.317 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= The following is the background information that goes into making the above calculations. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Background information: email from Alan and Mario: Use 73 Ohm Termination at the input to the ADF-2 card to properly terminate the Pleated Foil Cables. At the input to the ADF-2, in the 1 to 3 MHz range, expect to receive 89% of the signal that currently comes out of the long BLS cables. This assumes that 7 Ohm series resistors will be used in the assembly of the Patch Panel cards. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= From: www.pa.msu.edu/hep/d0/ftp/l1/cal_trig/hardware/ctfe/ run_ii_ctfe_analog.txt Analog Design for the CTFE Cards in Run II -------------------------------------------- Original Rev. 1-SEPT-1999 Current Rev. 16-MAY-2001 Utilizing the Full Analog Dynamic Range from the BLS Card Outputs to the Level 1 Calorimeter Trigger Inputs --------------------------------------------------------------------- Assume that the signals from the BLS cards can linearly swing 6 Volts differential. We break up eta into three ranges and then in each eta range we define a different scale for "Volts to GeV of E". These scales are picked so that the signal from the BLS can linearly swing far enough so that at the smallest eta in each range we can get enough E signal to give us 62 GeV of Et. Trig At smallest Tower L1 CT At smallest sin(eta), Volts Eta Input sin(eta), GeV Diff required Index E of E for to give Range sin(eta) Scale 62 GeV Et 62 GeV of Et ----- -------- ------- ----------- --------------- 1 0.9950 \ 2 Volts | diff = 146 GeV E 4.70 Volts 8 0.4259 / 62 GeV diff 9 0.3543 \ 2 Volts | diff = 465 GeV E 5.32 Volts 14 0.1332 / 175 GeV diff 15 0.1100 \ 2 Volts | diff = 1512 GeV E 5.40 Volts 19(20) 0.0410 / 560 GeV diff =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= From my email and presentation review of the summer 2003 EM calibration. This was my summary of the "gains" changes that where made based on Rahmi's calibration study. This is for the EM. Date: Fri, 29 Aug 2003 11:04:18 -0400 (EDT) Column 1 Trigger Tower Eta coordinate. Column 2 This is the "theoretical" gain that we should need to set in the L1 Cal Trig to make the energy seen by the Cal Trig match the Cal Precision readout. This number assumes that the BLS TT signal has exactly the correct "GeV to signal Volts" calibration and takes into consideration just the geometry of the detector (as part of the conversion from E to Et) and the response of the Cal Trig analog input circuit. Column 3 Shows the "gains" that we have been running in the L1 Cal Trig for the past N months (since January 2003). Don't worry about the details of these number. Column 4 These are the proposed new gains from Rahmi's study that we will start using after the shutdown. These numbers are based just on Beam Data. Using these gains in the L1 Cal Trig will make the energy seen by the L1 Cal Trig match the Cal Precision Readout at the 1% level. Column 5 This shows the percent change between the gains that we are currently using and the new proposed gains from Rahmi's study. Don't worry about the details of these number. Column 6 This is the interesting bit. This shows how close the ======== "theoretical gain" matches what Rahmi sees looking at Beam data. For this to match the BLS summer resistors must be picked correctly. This is a very nice match and well within the adjustment range of the Cal Trig input circuit. All of the eta boundaries make sense. A nice job of simulation. Current Proposed to to Theoretical Currently Proposed Proposed Theoretical Required Operating new Percent Percent TT Eta Gain Gain Gain Change Change ------ ----------- --------- ------- -------- ----------- 1 1.54 1.28 1.27 - 1 % - 18 % 2 1.48 1.23 1.22 - 1 % - 18 % 3 1.37 1.14 1.13 - 1 % - 18 % 4 1.24 1.03 1.02 - 1 % - 18 % 5 1.08 0.90 0.89 - 1 % - 18 % 6 0.93 0.77 0.76 - 1 % - 18 % 7 0.76 0.42 0.58 + 38 % - 24 % 8 0.66 0.55 0.50 - 9 % - 24 % 9 1.53 1.27 1.37 + 8 % - 10 % 10 1.26 1.05 1.13 + 8 % - 10 % 11 1.05 0.87 0.94 + 8 % - 10 % 12 0.87 0.72 0.77 + 7 % - 11 % 13 0.70 0.70 0.62 - 11 % - 11 % 14 0.57 0.57 0.50 - 12 % - 12 % 15 1.49 1.49 1.49 nc 0 % 16 1.22 1.22 1.22 nc 0 % Eta Boundaries: It is TT eta 7 that almost does not exist in the Calorimeter for EM. TT eta's 1:6 are from CC BLS cards TT eta's 7:20 are from EC BLS cards BLS to L1 Cal Trig calibration boundaries are TT eta's 1:8 9:14 15:20 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= The Revision 5 Gains file for TT eta 1:16. Currently on the web at: www.pa.msu.edu/hep/d0/ftp/l1/cal_trig/hardware/ctfe/ Gains_1_16_1_32_rev_5.tti This is the "gains" file that is based on Rahmi's calibration study in the summer of 2003. L1 Cal Trig has run on this since 3-SEPT-2003. REV 5 Gains File 3-SEPT-2003 EM TT_Eta_Magn: 1 Gain_Control_DAC: 155 ! Gain = 1.27 TT_Eta_Magn: 2 Gain_Control_DAC: 150 ! Gain = 1.22 TT_Eta_Magn: 3 Gain_Control_DAC: 141 ! Gain = 1.13 TT_Eta_Magn: 4 Gain_Control_DAC: 130 ! Gain = 1.02 TT_Eta_Magn: 5 Gain_Control_DAC: 116 ! Gain = 0.89 TT_Eta_Magn: 6 Gain_Control_DAC: 103 ! Gain = 0.76 TT_Eta_Magn: 7 Gain_Control_DAC: 85 ! Gain = 0.58 TT_Eta_Magn: 8 Gain_Control_DAC: 77 ! Gain = 0.50 TT_Eta_Magn: 9 Gain_Control_DAC: 165 ! Gain = 1.37 TT_Eta_Magn: 10 Gain_Control_DAC: 141 ! Gain = 1.13 TT_Eta_Magn: 11 Gain_Control_DAC: 121 ! Gain = 0.94 TT_Eta_Magn: 12 Gain_Control_DAC: 104 ! Gain = 0.77 TT_Eta_Magn: 13 Gain_Control_DAC: 89 ! Gain = 0.62 TT_Eta_Magn: 14 Gain_Control_DAC: 77 ! Gain = 0.50 TT_Eta_Magn: 15 Gain_Control_DAC: 177 ! Gain = 1.49 TT_Eta_Magn: 16 Gain_Control_DAC: 150 ! Gain = 1.22 HD TT_Eta_Magn: 1 Gain_Control_DAC: 204 ! Gain = 1.75 TT_Eta_Magn: 2 Gain_Control_DAC: 197 ! Gain = 1.68 TT_Eta_Magn: 3 Gain_Control_DAC: 172 ! Gain = 1.44 TT_Eta_Magn: 4 Gain_Control_DAC: 159 ! Gain = 1.31 TT_Eta_Magn: 5 Gain_Control_DAC: 228 ! Gain = 1.99 TT_Eta_Magn: 6 Gain_Control_DAC: 223 ! Gain = 1.94 TT_Eta_Magn: 7 Gain_Control_DAC: 109 ! Gain = 0.82 TT_Eta_Magn: 8 Gain_Control_DAC: 122 ! Gain = 0.95 TT_Eta_Magn: 9 Gain_Control_DAC: 182 ! Gain = 1.53 TT_Eta_Magn: 10 Gain_Control_DAC: 154 ! Gain = 1.26 TT_Eta_Magn: 11 Gain_Control_DAC: 122 ! Gain = 0.95 TT_Eta_Magn: 12 Gain_Control_DAC: 105 ! Gain = 0.78 TT_Eta_Magn: 13 Gain_Control_DAC: 90 ! Gain = 0.63 TT_Eta_Magn: 14 Gain_Control_DAC: 78 ! Gain = 0.51 TT_Eta_Magn: 15 Gain_Control_DAC: 189 ! Gain = 1.60 TT_Eta_Magn: 16 Gain_Control_DAC: 159 ! Gain = 1.31 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= The Revision a Gains file for TT eta 17:20. Currently on the web at: www.pa.msu.edu/hep/d0/ftp/l1/cal_trig/hardware/ctfe/ Gains_17_20_1_32_rev_a.tti Gain values content last modified: 7-JAN-2003 EM TT_Eta_Magn: 17 Gain_Control_DAC: 115 ! Gain = 0.88 TT_Eta_Magn: 18 Gain_Control_DAC: 84 ! Gain = 0.57 TT_Eta_Magn: 19 Gain_Control_DAC: 135 ! Gain = 1.07 TT_Eta_Magn: 20 Gain_Control_DAC: 151 ! Gain = 1.23 HD TT_Eta_Magn: 17 Gain_Control_DAC: 115 ! Gain = 0.88 TT_Eta_Magn: 18 Gain_Control_DAC: 74 ! Gain = 0.48 TT_Eta_Magn: 19 Gain_Control_DAC: 111 ! Gain = 0.84 TT_Eta_Magn: 20 Gain_Control_DAC: 126 ! Gain = 0.99 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Background: Special Term-Attn-Brd Design to compensate for the TT eta 1:8 HD BLS Resistors The relative gain of the Eta 1:4 Term-Attn-Brd HD Channels compared to all the other channels is: "gain" of the normal channel input attenuator = 0.3713 "gain" of TT eta 1:4 HD channel input attenuator = 0.6287 This implies that for the same output as a normal channel, a TT eta 1:4 HD channel only needs to have an input signal 0.5901 as big as the normal channel's input signal. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= From: www.pa.msu.edu/hep/d0/ftp/l1/cal_trig/hardware/ctfe/ run_ii_ctfe_analog.txt Review of the Geometry of the Trigger Towers -------------------------------------------- Version 12 Trigger Tower Data Table Trigger Tower Eta Indexs 1 through 20 North & South 12-JAN-1992 Eta Index EM Z EM Radius sin(theta) HD Z HD Radius sin(theta) ----- ------ --------- ---------- ------ --------- ---------- 1 9.198 91.65 0.9950 11.92 119.3 0.9950 2 27.96 91.65 0.9565 36.25 119.3 0.9568 3 47.85 91.65 0.8865 62.03 119.3 0.8872 4 69.65 91.65 0.7962 90.30 119.3 0.7973 5 94.26 91.65 0.6971 119.6 119.3 0.7062 6 118.7 91.65 0.6111 204.9 149.4 0.5892 7 178.2 95.30 0.4716 207.4 122.1 0.5073 8 178.9 84.22 0.4259 208.1 98.37 0.4274 9 178.9 67.77 0.3543 208.8 77.56 0.3482 10 178.9 54.85 0.2931 211.8 64.55 0.2915 11 178.9 44.56 0.2417 211.8 52.44 0.2403 12 178.9 36.30 0.1989 211.8 42.72 0.1977 13 178.9 29.62 0.1633 211.8 34.86 0.1624 14 178.9 24.22 0.1342 211.8 28.47 0.1332 15 178.9 19.80 0.1100 211.8 23.28 0.1093 16 178.9 16.19 0.0901 211.9 19.04 0.0895 17 178.9 13.18 0.0735 211.9 15.50 0.0730 18 178.9 10.30 0.0575 211.9 12.11 0.0571 19 179.0 7.556 0.0422 211.9 8.701 0.0410 20 0.01 150.0 0.---- 212.3 6.101 0.0287 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= From: www.pa.msu.edu/hep/d0/ftp/l1/cal_trig/hardware/ctfe/ run_ii_ctfe_serial_dacs.txt Trying to express the DAC Code vs Gain with algebra you have: Gain = / / Loaded DAC Code \ \ Gain = 1 | | --------------- x 2.500 Volts | - 0.250 Volts | x -------- \ \ 255 / / 1 Volt with the constraint that Gain is always 0 or positive. So some typical values of DAC_Code vs Gain are: DAC Resulting Code Gain ---------- ----------- <= 25.5 0.0 51.0 0.25 76.5 0.5 127.5 1.0 178.5 1.5 => 229.5 2.0 i.e. DAC_Code = 102 x (required_gain + 0.25) =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=