L1CAL Online Control System

Philippe Laurens

26-Aug-2005

Run IIb L1 Calorimeter Trigger Control Path

P. Laurens Rev: 31-May-05 (ALS, PAL)

- Take L1CAL control out of L1 TCC
 - Based on Run IIa code
 - OS Independent: Windows -> Linux
- Split: Control Code vs. GUI
 - Python (GUI) & C++ (Control)
 - Re-use much of IIa infrastructure
 - New code for ADF
 - Use Nevis source code for TAB/GAB
 - Use ITC, Thread_Util, +now Xerces (XML)

- L1Cal_IIb_Gui (Graphical Interface)
 - GUI on L1Cal TCC and/or remote computer
 - Zero, One, or more GUI connected at a given time
 - Not in the path of data taking, COOR control, etc
 - Not in the path of monitoring operation
 - All new code for run IIb
 - Use Python with Tkinter plus C++ extension for ITC
 - GUI is extended with external python command files (arbitrary complex, e.g. ADF-2 production test)

Reference: Example L1Cal GUI dialogs

74 L1Cal_IIb_Gui V3.4.A	(23-May-2005)		🔁 L1Cal_IIb_Gui	V3.4.A (23-May-2005)
<u>F</u> ile		<u>H</u> elp	<u>F</u> ile	н
L1CAL IIb User Inter	ace (Development)			
VME IO	Register IO		Acce	ess: Configure FPGA
Configure FPGA	Ped DAC Control		VI Mst/Slv	◎ M#0 C ₽1 @ S#0 C #1 C #2 C
TBA1	Adf Card		Slot Num	0
Rand Reg Test	ADC Analysis Readout Crate		FPGA Num BitStream File	 C Fpga#0 ○ Fpga#1 ○ both C:\L1Cal_IIb\exo\dp_t4.exo Send Request Locate
ТВАЗ	Control/Status	1	Reply	
Send COOR Msg	Command File			
Main	Exit	٢	DØ	Main Exit

Reference: Example L1Cal GUI Console/LogFile

No. Umite: Write: Write:

- GUI extensions with Python Command Files
 - Call functions to perform any action the GUI supports:
 VME R/W, Config FPGA, program resources,...
 - Receive reply from Control Program (e.g. value read)
 - Recursive call to lower level command files while passing parameters (e.g. card address)
 - Also allow Control Waveform Generator and Multiplexer (for ADF initial tests and cabling sidewalk tests)
 - Allow interactive user input (e.g. enter card S/N)
 - Write test logfiles, or any other files e.g. plot files
 - Execute OS commands, e.g. view plots
 - In some sense: a python interface to L1Cal, and more

Reference: Example GUI command file code excerpt

```
for SlotNum in range(2,SlotNumMax+1) : # i.e. slots 2,...21
    # Load T7 Firmware
    Config_Fpga ( MasterNum = MasterNum,
                  SlaveNum = SlaveNum.
                  SlotNum = SlotNum.
                  FpgaMask = 0x3, # 1: fpga#0, 2: fpga#1, 3: both
                  BitStream = BitStreamDir + T7_FirmwareName )
    # Initialize Card
    Adf InitCard ( MasterNum = MasterNum.
                  SlaveNum = SlaveNum,
                  SlotNum
                             = SlotNum )
    # park the shifters
    Exec_ComFile ( ComFile = CommandFileDir+'Setup_Stop_PRN_Shifters.cmd', ArgDict = ArgDict )
    # Load the pseudorandom seeds
   for TTNum in range(16) :
        FpgaThisTTNum = TTNum / 8
       TTNumThisFpga = TTNum % 8
        # load the PRN seed for this EM channel
        EMSeedRegAddr = 0x2000 * TTNum + 0x300 + 6
        Rio Write( MasterNum = MasterNum.
                  SlaveNum = SlaveNum,
                  SlotNum
                             = SlotNum.
                  ChipNum = FpgaThisTTNum,
                             = EMSeedRegAddr,
                  RegAddr
                             = PseudoRandomSeeds[2*TTNum+0])
                  DataOut
```

. . .

- L1Cal_IIb_TCC (Control Code)
 - Leveraged current L1 TCC code
 - Use C++ for robustness and execution speed
 - Software actually performing the VME IOs
 - Control and monitor both ADF and TAB/GAB
 - Interface presenting one L1CAL to COOR, Monitoring
 - Support local command files (like Run IIa)
 - Keeps a Logfile of all actions

Reference: Example L1Cal TCC Console/LogFile

- 🗆 🗙 🐸 _L1Cal_IIb_Tcc V3.0.B_ I\$<REPLY NAME="Rio_WriteReg"> I\$ Register Write : 512 (=0b000000100000000) @0x1057060a . I\$_@Master#D/Slave#D/Slot#21/Chip# 1/Reg#33541 I\$<DATA IN="512"/></REPLY> M\$Recv Gui Cmd # 1370 I\$<REPLY NAME="Rio_WriteReg"> I\$ Register Write : 38 (=0b000000000000100110) @0x1057460c I\$ @Master#O/Slave#O/Slot#21/Chip# 1/Reg#41734 I\$<DATA IN="38"/></REPLY> M\$Recv Gui Cmd # 1371 I\$<REPLY NAME="Rio_WriteReg"> I\$ Register Write : 39 (=DbD0000000000100111) @0x1057460e I\$ @Master#O/Slave#O/Slot#21/Chip# 1/Reg#41735 I\$_GMaster#D/Slave#D/Slot#21/chip# 1/heg#41733 I\$<DATA IN="39"/></REPLY> M\$Recv Gui Cmd # 1372 I\$<REPLY NAME="Rio_WriteReg"> I\$ Register Write : 512 (=0b000000100000000) @0x10574608 I\$_GMaster#D/Slave#D/Slot#21/Chip# 1/Reg#41732 I\$<DATA IN="512"/></REPLY> M\$Recv Gui Cmd # 1373 I\$<REPLY NAME="Rio_WriteReg"> I\$<REPLY NAME="Rio_WriteReg"> I\$ Register Write : 512 (=0b000000100000000) @0x1057460a I\$_@Master#D/Slave#D/Slot#21/Chip# 1/Reg#41733 I\$<DATA IN="512"/></REPLY> M\$Recv Gui Cmd # 1374 I\$ @Master#O/Slave#O/Slot#21/Chip# 1/Reg#49926 I\$<DATA IN="40"/></REPLY> M\$Recv Gui Cmd # 1375 TSCREPLY NOME-"Bio NeiteBeg">

Interface with TAB/GAB Hardware/Software

- Commissioning/Tests
 - Current and future Nevis Test programs can be used for tests or diagnostics
- Physics Running = L1Cal_IIb_TCC (only)
 - Call Nevis C code (common with Tests) to configure, initialize, program the TAB/GAB
 - Only tried with trivial case so far, more shortly

- L1Cal_IIb_TCC main functions
 - Control
 - Configuration
 - After power up
 - Initialization
 - Defined initial state for COOR
 - Programming
 - Run-dependent requirements from COOR
 - Monitoring
 - Tests/Diagnostics

Interface to COOR

- Current highest priority is defining the syntax for COOR to program run dependent resources (references, parameters, thresholds, etc)
 - e.g. "L1CAL_Ref_Set Jet_Et_Ref_Set 0 TT_Eta(-20:20) TT_Phi(1:32) Energy_Threshold 10.0"
- Most programmable resources are in TAB/GAB
- Philippe is working with Hal and Mike to produce a document defining the outside view of the system to COOR/Scott
- Implementation will leverage syntax parsing from IIa and call TAB/GAB code provided by Mike(&Philippe)

Reference: Interface to COOR

- Ref. L1Cal IIa programming
 <u>http://www.pa.msu.edu/hep/d0/ftp/tcc/coor/coor to tcc I</u>
 <u>1ct_message_syntax.txt</u>
- Ref: L1Cal IIb resources <u>http://www.nevis.columbia.edu/~evans/I1cal/algos/trig_te</u> <u>rms/coor_params.html</u>

L1Cal Monitoring (Control aspect of)

Serve L1Cal Monitoring Data

- Subset of events tagged for monitoring (~1 per 5s)
 - Hardware programmed to capture snapshot
 - Capture not just triggered crossing (whole turn for ADF-2)
- L1Cal TCC reads data from hardware
 - e.g. TT ADC counts (ADF-2 Outputs, TAB inputs)
- Oversampled data
 - ADF-2 raw 4x oversampled data
 - For calibration/verification
 - Special mode: set TT threshold to wait/capture bigger pulse
- Server Infrastructure ported from IIa