L1CAL
Online Control System

Philippe Laurens
26-Aug-2005
L1Cal IIb Control Software

- Take L1CAL control out of L1 TCC
 - Based on Run IIa code
 - OS Independent: Windows -> Linux
- Split: Control Code vs. GUI
 - Python (GUI) & C++ (Control)
 - Re-use much of IIa infrastructure
 - New code for ADF
 - Use Nevis source code for TAB/GAB
 - Use ITC, Thread_Util, +now Xerces (XML)
L1CAL TCC Control Software

Expert (e.g. at MSU)
- Remote Console (Copy of Screen Output)
- L1Cal IIb Graphical User Interface
 - L1Cal_Iib_Gui

L1Cal TCC
- L1Cal IIb Graphical User Interface (Python)
 - L1Cal_Iib_Gui
- L1Cal IIb Trigger Control Program (C++)
 - L1Cal_Iib_Tcc

Host Computers
- COOR
- Monitoring Applications

ASCII over ITC
- Binary or XML over ITC
- ASCII commands over ITC

31-May-05
L1Cal IIb Control Software

- L1Cal_Ilb_Gui (Graphical Interface)
 - GUI on L1Cal TCC and/or remote computer
 - Zero, One, or more GUI connected at a given time
 - Not in the path of data taking, COOR control, etc
 - Not in the path of monitoring operation
 - All new code for run IIb
 - Use Python with Tkinter plus C++ extension for ITC
 - GUI is extended with external python command files (arbitrary complex, e.g. ADF-2 production test)
Reference: Example
L1Cal GUI dialogs
Reference: Example
L1Cal GUI Console/LogFile
L1Cal IIb Control Software

- GUI extensions with Python Command Files
 - Call functions to perform any action the GUI supports:
 VME R/W, Config FPGA, program resources,...
 - Receive reply from Control Program (e.g. value read)
 - Recursive call to lower level command files while passing parameters (e.g. card address)
 - Also allow Control Waveform Generator and Multiplexer (for ADF initial tests and cabling sidewalk tests)
 - Allow interactive user input (e.g. enter card S/N)
 - Write test logfiles, or any other files e.g. plot files
 - Execute OS commands, e.g. view plots
 - In some sense: a python interface to L1Cal, and more
for SlotNum in range(2,SlotNumMax+1) : # i.e. slots 2,...21

 # Load T7 Firmware
 Config_Fpga (MasterNum = MasterNum,
 SlaveNum = SlaveNum,
 SlotNum = SlotNum,
 FpgaMask = 0x3, # 1: fpga#0, 2: fpga#1, 3: both
 BitStream = BitStreamDir + T7_FirmwareName)

 # Initialize Card
 Adf_InitCard (MasterNum = MasterNum,
 SlaveNum = SlaveNum,
 SlotNum = SlotNum)

 # park the shifters
 Exec_ComFile (ComFile = CommandFileDir+'Setup_Stop_PRN_Shifters.cmd', ArgDict = ArgDict)

 # Load the pseudorandom seeds
 for TTNum in range(16) :

 FpgaThisTTNum = TTNum / 8
 TTNumThisFpga = TTNum % 8

 # load the PRN seed for this EM channel
 EMSeedRegAddr = 0x2000 * TTNum + 0x300 + 6
 Rio_Write(MasterNum = MasterNum,
 SlaveNum = SlaveNum,
 SlotNum = SlotNum,
 ChipNum = FpgaThisTTNum,
 RegAddr = EMSeedRegAddr,
 DataOut = PseudoRandomSeeds[2*TTNum+0])

 ...
L1Cal Ilb Control Software

- L1Cal_Ilbb_TCC (Control Code)
 - Leveraged current L1 TCC code
 - Use C++ for robustness and execution speed
 - Software actually performing the VME IOs
 - Control and monitor both ADF and TAB/GAB
 - Interface presenting one L1CAL to COOR, Monitoring
 - Support local command files (like Run Ilb)
 - Keeps a Logfile of all actions
Reference: Example
L1Cal TCC Console/LogFile
Interface with TAB/GAB Hardware/Software

• Commissioning/Tests
 – Current and future Nevis Test programs can be used for tests or diagnostics

• Physics Running = L1Cal_IIb_TCC (only)
 – Call Nevis C code (common with Tests) to configure, initialize, program the TAB/GAB
 – Only tried with trivial case so far, more shortly
L1Cal Ilb Control Software

• **L1Cal_Ilb_TCC main functions**
 – Control
 • Configuration
 – After power up
 • Initialization
 – Defined initial state for COOR
 • Programming
 – Run-dependent requirements from COOR
 – Monitoring
 – Tests/Diagnostics
Interface to COOR

- Current highest priority is defining the syntax for COOR to program run dependent resources (references, parameters, thresholds, etc)
 e.g. “L1CAL_Ref_Set Jet_Et_Ref_Set 0 TT_Eta(-20:20) TT_Phi(1:32) Energy_Threshold 10.0”
- Most programmable resources are in TAB/GAB
- Philippe is working with Hal and Mike to produce a document defining the outside view of the system to COOR/Scott
- Implementation will leverage syntax parsing from IIa and call TAB/GAB code provided by Mike(&Philippe)
Reference: Interface to COOR

- Ref. L1Cal IIa programming
 http://www.pa.msu.edu/hep/d0/ftp/tcc/coor/coor_to_tcc_I1ct_message_syntax.txt

- Ref: L1Cal IIb resources
L1Cal Monitoring (Control aspect of)

- **Serve L1Cal Monitoring Data**
 - Subset of events tagged for monitoring (~1 per 5s)
 - Hardware programmed to capture snapshot
 - Capture not just triggered crossing (whole turn for ADF-2)
 - L1Cal TCC reads data from hardware
 - e.g. TT ADC counts (ADF-2 Outputs, TAB inputs)
 - Oversampled data
 - ADF-2 raw 4x oversampled data
 - For calibration/verification
 - Special mode: set TT threshold to wait/capture bigger pulse
 - Server Infrastructure ported from IIa