Virtex-II XC2V40/XC2V1000NM Reference Board User's Guide

Version 1.2 December 2001

Revisions

Rev 1.2 Corrected pin numbers in Table 16 – J12 User I/O Connector

Table of Contents

1	OVE	RVIEW	7
2	VIRT	TEX-II REFERENCE BOARD BLOCK DIAGRAM	7
	2.1	VIRTEX-II DEVICE	. 9
	2.2	OPTIONAL DDR USER MEMORY	9
	2.3	CLOCK GENERATION	9
	2.3.1	Oscillators	10
	2.3.2	User Clock Inputs	10
	2.3.3	User Clock Outputs	10
	2.4	USER 7-SEGMENT DISPLAY	10
	2.4.1	7-Segment LED Display Jumper Settings	11
	2.4.2	7-Segment Display Signal Description	11
	2.5	USER LED	11
	2.6	USER PUSH BUTTON SWITCHES (SW3 & SW4)	11
	2.6.1	User Push Button Switch Interface	12
	2.6.2	User Push Button Switch Jumper Settings	12
	2.6.3	User Push Button Switch Signal Assignments	12
	2.7	USER DIP SWITCH (SW2)	12
	2.7.1	User DIP Switch Interface	12
	2.7.2	User DIP Switch Jumper Settings	13
	2.7.3	User DIP Switch Signal Assignments	13
	2.8	RS232 PORT	13
	2.8.1	RS232 Interface	14
	2.8.2	RS232 Jumper Settings	14
	2.8.3	RS232 Signal Descriptions	14
	2.9	JTAG PORT	14
	2.9.1	JTAG Connector	14
	2.9.2	JTAG Signal Descriptions	15
	2.9.3	JTAG Chain	15
	2.9.4	JTAG Chain Jumper Settings	16
	2.10	BANK I/O VOLTAGE	16
	2.10.	l Bank I/O Voltage Jumper Settings	17
	2.11	BANK REFERENCE VOLTAGE	18
	2.11.	l Bank Reference Voltage Generation	19
	2.11.2	2 Bank Reference Voltage Jumper Settings	20
	2.12	BANK REFERENCE RESISTORS	20
	2.13	DCI DEMONSTRATION	23
	2.14	VIRTEX-II POWER DOWN MODE	24
	2.15	VIRTEX-II VBAT	25
	2.16	ISP PROM	25
	2.17	LVDS PORT	25
	2.17.	l LVDS Port Interface	26

	2.17.2	LVDS Port Signal Descriptions	26
	2.18 US	er I/O Connectors	27
	2.18.1	User I/O Connectors Signal Assignments	28
	2.19 DD	R MEMORY TEST CONNECTORS	30
	2.19.1	DDR Memory Test Connectors Signal Assignments	30
	2.20 Pro	DGRAM SWITCH (SW1)	31
	2.21 Vol	LTAGE REGULATORS	31
	2.21.1	Voltage Regulators Jumper Settings	32
	2.22 VIR	TEX-II CONFIGURATION MODE SELECT	32
3	DESIGN	DOWNLOAD	33
	3.1 JTA	AG INTERFACE	33
	3.1.1	Configuring the Virtex-II FPGA	33
	3.1.2	Programming the XC18V512/04 ISP PROM	33

Figures

FIGURE 2 - 7-SEGMENT LED DISPLAY INTERFACE 10 FIGURE 3 - 7-SEGMENT LED DISPLAY JUMPER SETTINGS 11	0 1 2 2
FIGURE 3 - 7-SEGMENT LED DISPLAY JUMPER SETTINGS	1 2 2
	2
FIGURE 4 – USER PUSH BUTTON SWITCHES	2
FIGURE 5 – USER PUSH BUTTON SWITCH JUMPER SETTINGS	-
FIGURE 6 – USER DIP SWITCH INTERFACE	3
FIGURE 7 – USER DIP SWITCH JUMPER SETTINGS	3
FIGURE 8 – RS232 INTERFACE	4
FIGURE 9 – RS232 JUMPER SETTINGS	4
FIGURE 10 – JTAG CONNECTOR	5
FIGURE 11 – VIRTEX-II REFERENCE BOARD JTAG CHAIN	б
FIGURE 12 - XC2V40/XC2V1000 VCCO CONNECTIONS	7
FIGURE 13 – REFERENCE VOLTAGE IN A VIRTEX-II BANK	9
FIGURE 14 – DCI IN A VIRTEX-II BANK	1
FIGURE 15 - VIRTEX-II DCI REFERENCE RESISTORS	2
FIGURE 16 – DCI TEST SETUP	3
FIGURE 17 – VIRTEX-II POWER DOWN MODE	4
FIGURE 18 – ISP PROM INTERFACE	5
FIGURE 19 – LVDS TRANSMIT AND RECEIVE PORTS	б
FIGURE 20 - VIRTEX-II REFERENCE BOARD I/O CONNECTORS	8
FIGURE 21 – DDR MEMORY INTERFACE TEST CONNECTORS	0
FIGURE 22 - VIRTEX-II REFERENCE BOARD VOLTAGE REGULATORS	1
FIGURE 23 – JTAG DOWNLOAD SETUP	3

Tables

TABLE 1 - DDR MEMORY INTERFACE SIGNAL DESCRIPTIONS	9
TABLE 2 - VIRTEX-II REFERENCE BOARD MASTER CLOCKS	10
TABLE 3 - 7-SEGMENT DISPLAY SIGNAL DESCRIPTIONS	11
TABLE 4 - USER PUSH BUTTON SWITCH SIGNAL ASSIGNMENTS	12
TABLE 5 - USER DIP SWITCH SIGNAL ASSIGNMENTS	13
TABLE 6 - RS232 SIGNAL DESCRIPTIONS	14
TABLE 7 - JTAG SIGNAL DESCRIPTIONS	15
TABLE 8 - JTAG CHAIN JUMPER SETTINGS	16
TABLE 9 - BANK I/O VOLTAGE JUMPER SETTINGS	17
TABLE 10 - XC2V40/XC2V1000 SUPPORTED I/O STANDARDS AND THEIR REQUIRED VREF	18
TABLE 11 - VIRTEX-II BANK SOURCE VOLTAGE AND RESISTOR JUMPERS	20
TABLE 12 - VIRTEX-II BANK REFERENCE VOLTAGE JUMPER SETTINGS	20
TABLE 13 - VIRTEX-II REFERENCE RESISTORS SUMMARY	22
TABLE 14 - LVDS TRANSMIT PORT SIGNAL DESCRIPTIONS	27
TABLE 15 - LVDS RECEIVE PORT SIGNAL DESCRIPTIONS	27
TABLE 16 - J12 USER I/O CONNECTOR	
TABLE 17 - J11 USER I/O CONNECTOR	29
TABLE 18 – JP14 DDR MEMORY TEST CONNECTOR	30
TABLE 19 – JP15 DDR MEMORY TEST CONNECTOR	31
TABLE 20 - VOLTAGE REGULATORS JUMPER SETTINGS	32
TABLE 21 - VIRTEX-II CONFIGURATION MODE SELECT	32

1 Overview

The Virtex-II Development Kit provides an easy to use development platform for prototyping and verifying Virtex-II based designs. The Virtex-II family is a platform FPGA developed for high performance, low to high-density designs utilizing IP cores and customized modules. The Virtex-II family delivers complete solutions for telecommunication, wireless, networking, video, and DSP applications. The performance and density of the Virtex-II family along with its supported I/O standards such as LVDS, high performance interfaces such as PCI and DDR enables FPGA designers to meet the design requirements of the next generation telecommunication and Networking applications. The Virtex-II reference board utilizes the Xilinx 40K/1M gate Virtex-II (XC2V40 or XC2V1000) device. The Xilinx Virtex-II FPGA along with its supporting I/O devices on this reference board, will assist FPGA designers to prototype high-performance memory and I/O interfaces such as complete high-performance differential signaling (LVDS) and high speed DDR memory interface.

The Virtex-II reference board utilizes the Xilinx XC18V512 or XC18V04 ISP PROM, allowing FPGA designers to quickly download revisions of a design and verify the design changes in order to meet the final system-level design requirements. In addition to the ISP PROM, the reference board provides a JTAG connector for direct configuration of the Virtex-II FPGA.

The Virtex-II high performance and flexible Digital Clock Manager (DCM) coupled with its on-chip Digital Controlled Impedance (DCI) for source/load terminations, enables the FPGA designers to perform high level of integration, reduces the board level cost, and improve the overall system level reliability and performance. The Virtex-II advanced features, the in-system programmability of the on-board ISP PROM, the complete high-performance differential signaling support, coupled with a library of pre-configured reference designs from the new Reference Design Center, make the Insight kit a perfect solution for FPGA and system designers needing a quick, flexible, and low cost prototyping platform.

The Insight Virtex-II reference board is bundled with VHDL and/or Verilog HDL reference design examples to help FPGA designers to shorten their development time and meet their time-to-market requirements.

2 Virtex-II Reference Board Block Diagram

A high-level block diagram of the Virtex-II reference board is shown in Figure 1 followed by a brief description of each sub-section.

Figure 1 - XC2V40/XC2V1000 Reference Board Block Diagram

2.1 Virtex-II Device

The Virtex-II reference board utilizes the Xilinx Virtex-II XC2V40-4FG256C or the XC2V1000-4FG256C depending on the development kit part number. The Virtex-II family is a platform FPGA developed for high performance, low to high-density designs utilizing IP cores and customized modules. The Virtex-II family delivers complete solutions for telecommunication, wireless, networking, video, and DSP applications. The performance and density of the Virtex-II family along with its supported I/O standards such as LVDS, high performance interfaces such as PCI and DDR enables FPGA designers to meet the design requirements of the next generation telecommunication and Networking applications. The Xilinx Virtex-II FPGA along with its supporting I/O devices on this reference board, will assist FPGA designers to prototype highperformance memory and I/O interfaces such as complete high-performance differential signaling (LVDS) and high speed DDR memory interface.

2.2 Optional DDR User Memory

The Virtex-II reference board provides 32M bytes of user DDR memory. This optional memory, which is only offered on the XC2V1000 board, is implemented using the Toshiba TC59WM815BFT 16Mx16 DDR memory. Due to the high-speed operation of the DDR memory interface, the interface signals must be dedicated and not be multiplexed for the purpose of using them as general-purpose I/O pins when the on-board DDR memory is not used. Since the DDR memory interface takes 40 I/O pins, and the XC2V40 device in the 256-pin package provides a maximum of 88 user I/O pins, the user DDR memory is not provided on the XC2V 40 reference board. The following table shows the DDR memory interface signal descriptions.

Signal Name	Description			
A[0:12]	Address Bus			
DQ[0:15]	Data Bus			
BS[0:1]	Bank Select			
LDM, UDM	Write Mask			
LDQS, UDQS	Write/Read Data Strobe			
CSn	Chip Select			
RASn	Row Address Strobe			
CASn	Column Address Strobe			
WEn	Write Enable			
CLK	Clock			
CLKn	Clock			
CKE	Clock Enable			

Table 1 - DDR Memory Interface Signal Descriptions

2.3 Clock Generation

The Virtex-II reference board provides four master clock inputs to the Virtex-II FPGA. In addition to the Virtex-II FPGA, these clock inputs are also connected to the User I/O connectors. The following table provides a brief description of these clock signals.

Signal Name	Virtex-II Pin #	Connector Pin #	Direction	Description
CLK.CAN1	Т9	J12 pin 61	Input	On-board 100 MHz Oscillator
CLK.CAN2	P9	J12 pin 62	Input	On-board 24 MHz Oscillator
CLK.SMB	R9	J12 pin 59 & J18	Input	User Clock Input 1
CLK.SMBALT	N9	J12 pin 60 & J17	Input	User Clock Input 2
FPGA.SMB1	B4	J16	Output	User Clock Output 1
FPGA.SMB2	E4	J15	Output	User Clock Output 2

Table 2 - Virtex-II Reference Board Master Clocks

2.3.1 Oscillators

The Virtex-II reference board provides two on-board oscillators running at 100Mhz (CLK.CAN1) and 24Mhz (CLK.CAN2). The 100Mhz oscillator is enabled when the JP37 jumper is open, while leaving the JP38 jumper open will enable the 24Mhz oscillator. In addition to the Virtex-II FPGA, these clock inputs are also connected to the J12 User I/O connector (pins 61 and 62).

2.3.2 User Clock Inputs

The Virtex-II reference board provides two connections (J18 and J17) for user clock inputs to the Virtex-II FPGA (CLK.SMB and CLK.SMBALT). In addition to the Virtex-II FPGA, these clock inputs are also connected to the J12 User I/O connector (pins 59 and 60).

2.3.3 User Clock Outputs

The Virtex-II reference board provides two connections (J16 and J15) for user clock outputs. These two clock outputs, which are connected to the Virtex-II pins B4 and E4 respectively (through impedance-controlled traces) can be used to generate system level clock signals utilizing the Virtex-II Digital Clock Manager (DCM). The combination of the impedance-controlled traces, quality SMB connectors (J16 & J15), and the advanced features of the Virtex-II DCM provides a reliable platform for generating high-speed system level user clocks.

2.4 User 7-Segment Display

The Virtex-II reference board utilizes a common-cathode 7-segment LED display that can be used during the test and debugging phase of a design. The user can turn a given segment on by driving the associated signal high. The following figure shows the user 7-segment display interface to the Virtex-II FPGA.

Figure 2 - 7-Segment LED Display Interface

2.4.1 7-Segment LED Display Jumper Settings

The following figure shows the jumper settings for using the user 7-segment LED display. Removing the jumpers from the headers will disconnect the FPGA I/O pins from the display, allowing the FPGA pins to be used as general-purpose I/O pins.

Figure 3 - 7-Segment LED Display Jumper Settings

2.4.2 7-Segment Display Signal Description

The following table shows the 7-Segment LED display pin descriptions. The 7-segment LED display pins are connected to the Virtex-II FPGA as well as the User I/O connector.

Table 5 - 7-Segment Display Signal Descriptions					
Signal	Virtex-II	J12 User I/O	Description		
Name	Pin #	Connector Pin #			
FPGA.DISPLAY7	A10	19	7-Segment LED Display, Blank Input		
FPGA.DISPLAY6	D9	14	7-Segment LED Display, Segment G		
FPGA.DISPLAY5	C9	13	7-Segment LED Display, Segment F		
FPGA.DISPLAY4	B9	15	7-Segment LED Display, Segment E		
FPGA.DISPLAY3	A9	16	7-Segment LED Display, Segment D		
FPGA.DISPLAY2	B13	20	7-Segment LED Display, Segment C		
FPGA.DISPLAY1	C12	18	7-Segment LED Display, Segment B		
FPGA.DISPLAY0	D12	17	7-Segment LED Display, Segment A		

 Table 3 - 7-Segment Display Signal Descriptions

2.5 User LED

The Virtex-II reference board provides a single user LED. Pin C13 of the Virtex-II FPGA is used to drive this active low signal. This signal is also connected to the pin 23 of the J12 User I/O connector.

2.6 User Push Button Switches (SW3 & SW4)

The Virtex-II reference board design provides two user push button switch inputs to the Virtex-II FPGA. In addition to the Virtex-II FPGA, these switch inputs are also connected to the J11 User I/O connector (pins 61 and 62). Each push button switch can be used to generate an active low signal.

2.6.1 User Push Button Switch Interface

The following figure shows the user push button switch interface to the Virtex-II FPGA.

Figure 4 – User Push Button Switches

2.6.2 User Push Button Switch Jumper Settings

The following figure shows the jumper settings for using the user push button switches. A given switch is not used when its associated jumper is removed. Removing the jumper will disconnect the switch input from the Virtex-II FPGA and the User I/O connector.

Figure 5 – User Push Button Switch Jumper Settings

2.6.3 User Push Button Switch Signal Assignments

The following table shows the pin assignments for the user push button switches.

	Table 4 - Oser Push Button Switch Signal Assignments					
Signal Name	Virtex-II Pin #	J11 User I/O Connector Pin #	Description			
FPGA.PUSH1	M4	61	User Push Button Switch Input 1 (SW3)			
FPGA.PUSH2	T7	62	User Push Button Switch Input 2 (SW4)			

Table 4 - User Push Button Switch Signal Assignments

2.7 User DIP Switch (SW2)

The Virtex-II reference board provides 8 user switch inputs. These switches can be statically set to a low or high logic level.

2.7.1 User DIP Switch Interface

The following figure shows the user DIP switch interface to the Virtex-II FPGA.

Figure 6 – User DIP Switch Interface

2.7.2 User DIP Switch Jumper Settings

The following figure shows the jumper settings for using the user DIP switch. A given switch is not used when its associated jumper is removed. Removing the jumper will disconnect the switch input from the Virtex-II FPGA and the User I/O connector.

JP33				
2			1	
4		Ĵ	3	
6			5	
8			7	
10			9	
12			11	
14	Ċ.		13	
16	(15	

Figure 7 – User DIP Switch Jumper Settings

2.7.3 User DIP Switch Signal Assignments

The following table shows the user switch pin assignments.

Table 5 - User DIP Switch Signal Assignments						
Signal Name	Virtex-II Pin #	J12 User I/O Connector Pin #	Description			
FPGA.DIP8	J15	51	User Switch Input 8			
FPGA.DIP7	J16	52	User Switch Input 7			
FPGA.DIP6	M13	53	User Switch Input 6			
FPGA.DIP5	N16	54	User Switch Input 5			
FPGA.DIP4	P16	55	User Switch Input 4			
FPGA.DIP3	T14	56	User Switch Input 3			
FPGA.DIP2	R13	57	User Switch Input 2			
FPGA.DIP1	T10	58	User Switch Input 1			

Fable 5 - User DIP Switch Signal Assignments

2.8 RS232 Port

The Virtex-II reference board provides RS232 drivers and connector that can be driven by the Virtex-II FPGA or the User I/O connector. A subset of the RS232 signals is used on the Virtex-II reference board to implement this interface (RD and TD signals).

2.8.1 RS232 Interface

The Virtex-II reference board provides a DB-9 connection for a simple RS232 port. This board utilizes the Dallas Semiconductor DS276S RS232 driver for driving the RD and TD signals. The RS232 UART code, which resides in the Virtex-II FPGA is provided by the user.

Figure 8 – RS232 Interface

2.8.2 RS232 Jumper Settings

The following figure shows the jumper settings for the RS232 interface. A specific signal is used when its associated jumper is closed. Removing a jumper will disconnect its associated signals from the Virtex-II and the User I/O connector.

Figure 9 – RS232 Jumper Settings

2.8.3 RS232 Signal Descriptions

The following table shows the RS232 signals and their pin assignments to the Virtex-II FPGA and the J15 User I/O connector.

Signal	Virtex-II	J11 User I/O	Description		
Name	Pin #	Connector Pin #			
FPGA.SP0	C8	25	Received Data, RD		
FPGA.SP1	D8	26	Transmit Data, TD		

Table 6 - RS232 Signal Descriptions

2.9 JTAG Port

The Virtex-II reference board design provides a JTAG port that can be used to configure and/or program various devices on the board and JTAG devices connected to the User I/O connector.

2.9.1 JTAG Connector

The Virtex-II reference board provides a JTAG connector that can be used to program the onboard ISP PROM, configure the Virtex-II FPGA, and program and/or configure JTAG devices connected to the User I/O connector. The following figure shows the pin assignments for the JTAG connector on the Virtex-II reference board.

Figure 10 – JTAG Connector

2.9.2 JTAG Signal Descriptions

The following table provides a brief description of the JTAG signals and their pin assignments to the Virtex-II FPGA and the User I/O connector.

Signal	Virtex-II	J1 JTAG	Description		
Name	Pin #	Connector Pin #			
TDI	C2	7	JTAG Data Input		
TCK	A15	4	JTAG Clock Input		
TMS	B14	9	JTAG Test Mode Input		
TDO	C15	6	JTAG Data Output		

Table 7 - JTAG Signal Descriptions

2.9.3 JTAG Chain

The following figure shows the JTAG chain on the Virtex-II reference board. If any of the devices in the chain are not populated, their associated jumper must be closed in order to maintain the chainintegrity. If no JTAG device is connected to the User I/O connector, the TDI signal connected to this connector must be shorted to the TDO pin. This can be accomplished by closing the JP7 jumper.

Figure 11 – Virtex-II Reference Board JTAG Chain

2.9.4 JTAG Chain Jumper Settings

The following table shows the JTAG chain jumper setting on the Virtex-II reference board.

Jumper	Setting	Description
JP6	Open	XC18V512/04 ISP PROM is populated
	Closed	XC18V512/04 ISP PROM is not populated
JP5	Open	Virtex-II FPGA is populated
	Closed	Virtex-II FPGA is not populated
JP7	Open	JTAG device(s) is connected to the User I/O connector
	Closed	JTAG device(s) is not connected to the User I/O connector

Table 8 - JTAG Chain Jumper Settings

2.10 Bank I/O Voltage

The Virtex-II reference board allows the Virtex-II I/O pins to be configured for 1.5V, 1.8V, 2.5V, or 3.3V operation. All Virtex-II user I/O pins are grouped in 8 different banks. Each bank of I/O pins on the board can be configured to operate in the 1.5V, 1.8V, 2.5V, or the 3.3V mode. The following figure shows the bank I/O voltage selection on a given Virtex-II bank.

Figure 12 – XC2V40/XC2V1000 VCCO Connections

2.10.1 Bank I/O Voltage Jumper Settings

The following table shows the jumper settings for the Virtex-II bank I/O voltage (VCCO) selection. Each bank can be set to 1.5V, 1.8V, 2.5V, or 3.3V.

Book #	Panle 4 Vistor I Bin 4							
Bank #	virtex-II Pin #		Jump	VO voltage				
			J6					
		1-2	3-4	5-6	7-8			
		Closed	Open	Open	Open	3.3V		
0	F8, F7, E8	Open	Closed	Open	Open	2.5V		
		Open	Open	Closed	Open	1.8V		
		Open	Open	Open	Closed	1.5V		
			J7					
		1-2	3-4	5-6	7-8			
		Closed	Open	Open	Open	3.3V		
1	F10, F9, E9	Open	Closed	Open	Open	2.5V		
		Open	Open	Closed	Open	1.8V		
		Open	Open	Open	Closed	1.5V		
			J8					
		1-2	3-4	5-6	7-8			
		Closed	Open	Open	Open	3.3V		
2	H12, H11, G11	Open	Closed	Open	Open	2.5V		
		Open	Open	Closed	Open	1.8V		
		Open	Open	Open	Closed	1.5V		
			J9					
		1-2	3-4	5-6	7-8			
		Closed	Open	Open	Open	3.3V		
3	J12, J11, K11	Open	Closed	Open	Open	2.5V		
		Open	Open	Closed	Open	1.8V		
		Open	Open	Open	Closed	1.5V		

Table 9 - Bank I/O Voltage Jumper Settings

			J1()		
		1-2	3-4	5-6	7-8	
		Closed	Open	Open	Open	3.3V
4	L10, L9, M9	Open	Closed	Open	Open	2.5V
		Open	Open	Closed	Open	1.8V
		Open	Open	Open	Closed	1.5V
			J3			
		1-2	3-4	5-6	7-8	
_		Closed	Open	Open	Open	3.3V
5	L8, L7, M8	Open	Closed	Open	Open	2.5V
		Open	Open	Closed	Open	1.8V
		Open	Open	Open	Closed	1.5V
			J4			
	J6, J5, K6	1-2	3-4	5-6	7-8	
		Closed	Open	Open	Open	3.3V
6		Open	Closed	Open	Open	2.5V
		Open	Open	Closed	Open	1.8V
		Open	Open	Open	Closed	1.5V
			J5			
7		1-2	3-4	5-6	7-8	
		Closed	Open	Open	Open	3.3V
	H6, H5, G6	Open	Closed	Open	Open	2.5V
		Open	Open	Closed	Open	1.8V
		Open	Open	Open	Closed	1.5V

2.11 Bank Reference Voltage

Some input standards require a user supplied threshold voltage, VREF. In this case, certain user I/O pins are automatically configured as inputs for the VREF voltage.

VREF pins within a bank are interconnected internally, and consequently only one VREF voltage can be used within each bank. However, for correct operation, all VREF pins in the bank must be connected to the external reference voltage source.

In order to support all I/O standards provided by the XC2V40/XC2V1000 FPGA, a number of Reference Voltages must be supplied to the FPGA. The following table shows the I/O standards supported by the XC2V40/XC2V1000 FPGA and their required VREF.

I/O Standard	VREF (Volts)	Comments
GTL	0.80	Not provided on the Virtex-II reference board
GTLP	1.00	Provided on the Virtex-II reference board
HSTL_I	0.75	Provided on the Virtex-II reference board
HSTL_II	0.75	Provided on the Virtex-II reference board
HSTL_III	0.90	Provided on the Virtex-II reference board
HSTL_IV	0.90	Provided on the Virtex-II reference board
SSTL2_I	1.25	Provided on the Virtex-II reference board
SSTL2_II	1.25	Provided on the Virtex-II reference board
SSTL3_I	1.50	Provided on the Virtex-II reference board
SSTL3_II	1.50	Provided on the Virtex-II reference board
AGP-2X/AGP	1.32	Not provided on the Virtex-II reference board
SSTL2_I_DCI	1.25	Provided on the Virtex-II reference board
SSTL2 II DCI	1.25	Provided on the Virtex-II reference board

Table 10 - XC2V40/XC2V1000 Supported I/O Standards and their Required VREF

SSTL3_I_DCI	1.50	Provided on the Virtex-II reference board
SSTL3_II_DCI	1.50	Provided on the Virtex-II reference board
HSTL_I_DCI	0.75	Provided on the Virtex-II reference board
HSTL_II_DCI	0.75	Provided on the Virtex-II reference board
HSTL_III_DCI	0.90	Provided on the Virtex-II reference board
HSTL_IV_DCI	0.90	Provided on the Virtex-II reference board
GTL_DCI	0.80	Not provided on the Virtex-II reference board
GTLP_DCI	1.00	Provided on the Virtex-II reference board

2.11.1 Bank Reference Voltage Generation

The following figure shows how the bank reference voltage is generated on the Virtex-II reference board. Two 1x3 jumpers are used on each Virtex-II bank to generate various reference voltages ranging from 0.75V to 1.5V. The following circuit is replicated on each bank to allow maximum flexibility for bank reference voltage generation.

The Source Voltage Jumper allows the selection of the 1.5V or the 2.5V supply as the source voltage to the reference voltage generator circuit while the Source Resistor Jumper provides various voltage divide capability for this circuit. The output of the resistor divider is fed into an Operational Amplifier prior to reaching the Virtex-II VREF input pins.

Reference Voltage in a Virtex-II Bank

Figure 13 – Reference Voltage in a Virtex-II Bank

Each bank of the Virtex-II FPGA has a dedicated Source Voltage jumper and a Source Resistor jumper. The following figure shows the Source Voltage and Resistor jumpers for each Virtex-II bank.

······································						
Bank #	Source Voltage Jumper	Source Resistor Jumper				
0	JP16	JP18				
1	JP16	JP19				
2	JP16	JP22				
3	JP16	JP23				
4	JP24	JP26				
5	JP24	JP27				
6	JP24	JP30				
7	JP24	JP31				

Table 11 - Virtex-II Bank Source Voltage and Resistor Jumpers

2.11.2 Bank Reference Voltage Jumper Settings

The following figure shows the Source Voltage and Resistor jumper settings for each Virtex-II bank. This table must be used along with the above table (bank specific jumpers) to set the bank reference voltage to the desired value.

Source Voltage Jumper		Source Res	sistor Jumper	Bank VREF
1-2	2-3	1-2	2-3	
Closed	Open	Open	Open	1.25V
Closed	Open	Open	Closed	1.50V
Closed	Open	Closed	Open	1.00V
Open	Closed	Open	Open	0.75V
Open	Closed	Open	Closed	0.90V
Open	Closed	Closed	Open	0.60V
Open	Open	NA	NA	0.00V

Table 12 - Virtex-II Bank Reference Voltage Jumper Settings

2.12 Bank Reference Resistors

In order to support high-speed I/O interfaces, which require output signals with fast edge rates, terminations would be needed to prevent reflections and maintain signal integrity. High pin count packages (especially ball grid arrays) cannot accommodate external termination resistors. XC2V40/XC2V1000 DCI provides controlled impedance drivers and on-chip termination for single-ended I/Os. This eliminates the need for external resistors, and improves signal integrity.

The DCI feature can be used on any IOB by selecting one of the DCI I/O standards. When applied to inputs, DCI provides input parallel termination. When applied to outputs, DCI provides controlled impedance drivers (series termination) or output parallel termination. DCI operates independently on each I/O bank. When a DCI I/O standard is used in a particular I/O bank, external reference resistors must be connected to two dual-function pins on the bank. These resistors, voltage reference of N transistor (VRN) and the voltage reference of P transistor (VRP) are shown in the following figure.

Figure 14 – DCI in a Virtex-II Bank

When used with a terminated I/O standard, the value of the resistor is specified by the standard (typically 50 Ohms). When used with a controlled impedance driver, the resistor sets the output impedance of the driver within the specified range (25 Ohms to 150 Ohms). The resistors connected to VRN and VRP do not need to be the same value. 1% resistors are recommended.

The figure below shows the reference resistors connected to the Virtex-II FPGA on the reference board followed by a table that shows a summary of the reference resistors. It should be noted that all resistors for banks 1-4 and bank 7 are 50 Ohms with 1% variation. Bank 5 and 6 of the Virtex-II FPGA are used to implement a 4-bit bi-directional LVDS port. For these two banks, the VRN and VRP pins are used as I/O pins and are utilized in the implementation of the LVDS port. Hence, the reference resistors are not provided for on these two banks.

The VRN and VRP within the bank 0 of the Virtex-II FPGA are connected to two Potentiometers, R56 and R57 respectively. These potentiometers are 500 Ohms in series with 24 Ohms. Hence, the range would be 24-524 Ohms. Utilizing these potentiometers for bank 0 makes this bank extremely flexible for various standard I/O design.

Bank #	VRN/VRP (Ohms)	Description					
0	24-524 potentiometer	VRN /VRP can be set to a value from 24 to 524 Ohms.					
1	50/50 Ohms	Both VRN and VRP are set to 50 Ohms resistors.					
2	50/50 Ohms	Both VRN and VRP are set to 50 Ohms resistors.					
3	50/50 Ohms	Both VRN and VRP are set to 50 Ohms resistors.					
4	50/50 Ohms	Both VRN and VRP are set to 50 Ohms resistors.					
5	No resistors	VRN and VRP are used as I/O pins.					
6	No resistors	VRN and VRP are used as I/O pins.					
7	50/50 Ohms	Both VRN and VRP are set to 50 Ohms resistors.					

Table 13 - Virtex-II Reference Resistors Summary

2.13 DCI Demonstration

The following figure shows how the Virtex-II reference board can be used to demonstrate the effect of DCI. The bank 0 of the Virtex-II FPGA will be used for this demonstration. Two variable reference resistors (24-524 Ohms) are connected to the VRN and VRP pins of this bank. In order to perform this test, the following steps must be taken:

- 1. Set the VCCO of bank 0 to 2.5V as described earlier
- 2. Place a jumper on pins 32 and 34 of the J11 User I/O connector (this would provide a loopback, which would effectively provide a load on the Virtex-II output pin D5).
- Program the Virtex-II FPGA with a design that would take the test_input signal (100Mhz) as an input and sets the dci_out signal to the test_input signal. For this step of the test, no DCI buffer is used for the dci_out output signal.
- 4. Connect a scope to the test points (JP43 and JP44) and view the dci_out output signal. Document any overshot and/or undershoot present on this signal.
- 5. Modify the design in step 3 to include DCI input and output buffers (IBUF_LVDS_25 and OBUF_LVDS_25) for the dci_out and dci_in signals. These two buffers would effectively provide source and load terminations for the dci_out signal.
- 6. Connect a scope to the test points (JP43 and JP44) and view the dci_out output signal while varying R57 and R56 reference resistors. Document any overshot and/or undershoot present on this signal and compare the results with results obtained in step 4.

This test will show how the DCI feature of the Virtex-II FPGA can be used to provide source and load terminations on a high-speed signal and match these terminations to the impedance of the transmission line in order to minimize the signal overshoot and undershoot.

Figure 16 – DCI Test setup

2.14 Virtex-II Power Down Mode

The Virtex-II FPGA family utilizes a dedicated pin called PWRDWN_B that can be used to place the Virtex-II FPGA into a low-power and inactive state. In the normal operating mode, the PWRDWN_B pin would be pulled up. Forcing the PWRDWN_B pin to logic 0 would place the Virtex-II FPGA in power-down mode. The following figure shows the Virtex-II Power Down on the Virtex-II reference board.

Figure 17 – Virtex-II Power Down Mode

As shown in the above figure, the Virtex-II FPGA can be placed in the power-down mode on the Virtex-II reference board by closing the JP34 jumper (permanently placing it in the power-down mode until the jumper is removed), or by forcing the pin 63 of the J12 User I/O connector to logic 0 state. The Virtex-II reference board users can use this pin to place the Virtex-II FPGA in the power-down mode momentarily.

The Virtex-II FPGA provides Power-Down status information via the DONE pin if the PWRDWN_STAT option is selected using BitGen. The DONE pin is asserted upon entry to the power-down mode. After a successful wake-up, the DONE status pin is de-asserted (The wake-up sequence is the reverse of the power-down sequence). While in power-down mode, the only active pins are the PWRDWN_B and DONE. All inputs are off and all outputs are 3-stated.

While in the Power-Down state, the Power On Reset (POR) circuit is still active, but it does not reset the device if VCCINT, VCCO, or VCCAUX falls below its minimum value. The POR circuit waits until the PWRDWN_B pin is released before resetting the device. Also, the PROG_B pin is not sampled while the device is in the Power-Down state. The PROG_B pin becomes active when the PWRDWN_B pin is released. Therefore, the device cannot be reset while in the Power-Down state.

2.15 Virtex-II VBAT

The Virtex-II VBAT input pin (pin A14) is connected to the 3.3V supply on the Virtex-II reference board through the JP42 jumper. The 2x1 header for JP42 is not installed on the board allowing customers to install the jumper should they choose to drive the VBAT pin.

2.16 ISP PROM

The Virtex-II reference board utilizes the Xilinx XC18V512 or XC18V04 ISP PROM, allowing FPGA designers to quickly download revisions of a design and verify the design changes in order to meet the final system-level design requirements. The XC18V512/04 ISP PROM uses two interfaces to accomplish the configuration of the Virtex-II FPGA. The XC18V512 is used on the XC2V40 board while the XC18V04 is used on the XC2V1000 board.

The JTAG port on the XC18V512/04 device is used to program the PROM with the design bit file. Once the XC18V512/04 has been programmed, the user can initiate the configuration of the Virtex-II device by asserting the PROGn signal. Upon activation of the PROGn signal (SW1), the XC18V512/04 device will use its FPGA Configuration Port to configure the Virtex-II FPGA. The Virtex-II Configuration Port consists of the PROGn, INITn, CEn, CCLK, and the DIN signals. The following figure shows the ISP PROM interface to the JTAG port and the Virtex-II FPGA configuration port.

Figure 18 – ISP PROM Interface

2.17 LVDS Port

The Virtex-II reference board provides a complete high-performance differential signaling (LVDS) interface, enabling the designers to prototype high-speed serial communication links. The Virtex-II I/Os are designed to comply with the IEEE electrical specifications for LVDS to make system and board design easier. With the addition of an LVDS current-mode driver in the IOBs, which eliminates the need for external source termination in point-to-point applications, and with the choice of two different voltage modes and an extended mode, Virtex-II devices provide the most flexible solution for doing an LVDS design in an FPGA.

2.17.1 LVDS Port Interface

The design of the LVDS port on this reference board allows data widths of 1 to 4 bits in addition to the LVDS differential clock signal. The 4 transmit data signals, 4 receive data signals, and the transmit and receive clocks can be used to prototype various high performance and high speed interfaces. The following figure shows the LVDS interface on the Virtex-II reference board. LVDS termination networks are provided between the Virtex-II FPGA and the LVDS user connectors. It should be noted that no LVDS source terminations are needed when using the Virtex-II FPGA family in point-to-point applications.

Figure 19 – LVDS Transmit and Receive Ports

2.17.2 LVDS Port Signal Descriptions

The following table shows the LVDS port signal descriptions and the port signal assignments to the Virtex-II FPGA.

		-	•
Signal Name	Virtex-II Pin #	J35 Pin #	Description
LVDSOUT4P	P1	1	Positive Data Transmit Bit 4
LVDSOUT4N	N1	2	Negative Data Transmit Bit 4
LVDSOUT3P	N3	3	Positive Data Transmit Bit 3
LVDSOUT3N	N2	4	Negative Data Transmit Bit 3
GND	NA	5	Ground
GND	NA	6	Ground
LVDSOUT2P	J4	7	Positive Data Transmit Bit 2
LVDSOUT2N	J3	8	Negative Data Transmit Bit 2
LVDSOUT1P	J2	9	Positive Data Transmit Bit 1
LVDSOUT1N	J1	10	Negative Data Transmit Bit 1
GND	NA	11	Ground
GND	NA	12	Ground
LVDSOUTCLKP	H1	13	Positive Transmit Clock
LVDSOUTCLKN	H2	14	Negative Transmit Clock
GND	NA	15	Ground
GND	NA	16	Ground

Table 14 - LVDS Transmit Port Signal Descriptions

Table 15 - LVDS Receive Port Signal Descriptions

Signal Name	Virtex-II Pin #	J41 Pin #	Description
LVDSIN4P	N8	1	Positive Data Receive Bit 4
LVDSIN4N	P8	2	Negative Data Receive Bit 4
LVDSIN3P	R8	3	Positive Data Receive Bit 3
LVDSIN3N	T8	4	Negative Data Receive Bit 3
GND	NA	5	Ground
GND	NA	6	Ground
LVDSIN2P	N5	7	Positive Data Receive Bit 2
LVDSIN2N	P5	8	Negative Data Receive Bit 2
LVDSIN1P	P4	9	Positive Data Receive Bit 1
LVDSIN1N	R4	10	Negative Data Receive Bit 1
GND	NA	11	Ground
GND	NA	12	Ground
LVDSINCLKP	Т3	13	Positive Receive Clock
LVDSINCLKN	T4	14	Negative Receive Clock
GND	NA	15	Ground
GND	NA	16	Ground

2.18 User I/O Connectors

The following figure shows the user I/O connectors located on the Virtex-II reference board. All Virtex-II I/O pins with the exception of the LVDS port, the user clock outputs, and the user DDR memory interface are available to the user via these two 64-pin connectors. The LVDS signals are available to the user via J34 and J36 connectors, while the user clock outputs would be accessible by the user via J17 and J18. The DDR memory interface signals would be available as test points via JP40 and JP41 connectors (the pin assignments to these two connectors are described in a later section).

Figure 20 – Virtex-II Reference Board I/O Connectors

2.18.1 User I/O Connectors Signal Assignments

The following tables show the Virtex-II pin assignments to the user I/O connectors (J11 & J12).

Signal Name	Virtex-II Pin #	J12 Pin #	Signal Name	Virtex-II Pin #	J12 Pin #		
1.5V	NA	1	V1000.L14	L14	33		
2.5V	NA	2	V1000.L15	L15	34		
1.8V	NA	3	V1000.L12	L12	35		
3.3V	NA	4	V1000.L13	L13	36		
GND	NA	5	V1000.M15	M15	37		
GND	NA	6	V1000.M16	M16	38		
ТСК	A15	7	V1000.T11	T11	39		
TDI	C2	8	V1000.T12	T12	40		
TMS	B14	9	V1000.M11	M11	41		
TDO	C15	10	V1000.P11	P11	42		
GND	NA	11	V1000.P10	P10	43		
GND	NA	12	V1000.N11	N11	44		
FPGA.DISPLAY5	C9	13	V1000.M10	M10	45		
FPGA.DISPLAY6	D9	14	V1000.N10	N10	46		
FPGA.DISPLAY4	B9	15	FPGA.J13	J13	47		
FPGA.DISPLAY3	A9	16	FPGA.J14	J14	48		
FPGA.DISPLAY0	D12	17	GND	NA	49		

Table 16 - J12 User I/O Connector

FPGA.DISPLAY1	C12	18	GND	NA	50
FPGA.DISPLAY7	A10	19	FPGA.DIP8	J15	51
FPGA.DISPLAY2	B13	20	FPGA.DIP7	J16	52
GND	NA	21	FPGA.DIP6	M13	53
GND	NA	22	FPGA.DIP5	N16	54
FPGA.ULED	C13	23	FPGA.DIP4	P16	55
FPGA.C16	C16	24	FPGA.DIP3	T14	56
FPGA.D16	D16	25	FPGA.DIP2	R13	57
FPGA.E13	E13	26	FPGA.DIP1	T10	58
FPGA.H13	H13	27	CLK.SMB	R9	59
FPGA.H14	H14	28	CLK.SMBALT	N9	60
FPGA.H15	H15	29	CLK.CAN1	Т9	61
FPGA.H16	H16	30	CLK.CAN2	P9	62
GND	NA	31	FPGA.PWRDWN	T15	63
GND	NA	32	GND	NA	64

Table 17 - J11 User I/O Connector

Signal	Virtex-II	J11 Pin #	J11 Pin # Signal		J11 Pin #
Name	Pin #	Name		Pin #	
3.3V	NA	1 NC		NA	33
3.3V	NA	2	FPGA.C4	C4	34
NC	NA	3	1.8V	NA	35
NC	NA	4	1.8V	NA	36
GND	NA	5	FPGA.C1	C1	37
GND	NA	6	NC	NA	38
NC	NA	7	NC	NA	39
NC	NA	8	FPGA.D1	D1	40
NC	NA	9	FPGA.H3	H3	41
NC	NA	10	FPGA.H4	H4	42
GND	NA	11	GND	NA	43
GND	NA	12	GND	NA	44
NC	NA	13	V1000.L2	L2	45
NC	NA	14	V1000.L3	L3	46
NC	NA	15	V1000.L4	L4	47
NC	NA	16	V1000.M1	M1	48
NC	NA	17	GND	NA	49
NC	NA	18	GND	NA	50
2.5V	NA	19	V1000.M2	M2	51
2.5V	NA	20	V1000.M6	M6	52
NC	NA	21	V1000.L5	L5	53
NC	NA	22	V1000.T6	T6	54
NC	NA	23	V1000.T5	T5	55
FPGA.A7	A7	24	V1000.N6	N6	56
FPGA.SP0	C8	25	V1000.P6	P6	57
FPGA.SP1	D8	26	V1000.P7	P7	58
GND	NA	27	V1000.N7	N7	59
GND	NA	28	V1000.M7	M7	60
FPGA.A8	A8	29	FPGA.PUSH1	M4	61
FPGA.B8	B8	30	FPGA.PUSH2	T7	62
FPGA.C5	C5	31	GND	NA	63
FPGA.D5	D5	32	GND	NA	64

2.19 DDR Memory Test Connectors

The following figure shows the DDR memory test connectors (JP14 & JP15). These connectors are provided on the Virtex-II reference board for test purposes and they should not be used as extension of the DDR memory interface.

Figure 21 – DDR Memory Interface Test Connectors

DDR Memory Test Connectors Signal Assignments 2.19.1

The following tables show the Virtex-II pin assignments to the DDR memory test connectors.

Table 18 – JP14 DDR Memory Test Connector						
Signal	Virtex-II	JP14 Pin #	Signal	Virtex-II	JP14 Pin #	
Name	Pin #		Name	Pin #		
GND	NA	1	MEM.WEn	F4	13	
GND	NA	2	MEM.CASn	F5	14	
MEM.D0	L1	3	MEM.RASn	E1	15	
MEM.D1	K2	4	MEM.CSn	E2	16	
MEM.D2	K3	5	MEM.BS0	A6	17	
MEM.D3	K4	6	MEM.BS1	B6	18	
MEM.D4	G2	7	MEM.A10/AP	E6	19	
MEM.D5	G3	8	MEM.A0	C6	20	
MEM.D6	G4	9	MEM.A1	C7	21	
MEM.D7	F1	10	MEM.A2	D7	22	
MEM.LDQS	F2	11	MEM.A3	E7	23	
MEM.LDM	F3	12	GND	NA	24	

Table 18 – JP14 DDR Memory Test Connector

Signal Name	Virtex-II Pin #	JP15 Pin #	Signal Name	Virtex-II Pin #	JP15 Pin #
GND	NA	1	MEM.CLKn	F14	13
GND	NA	2	MEM.UDM	F13	14
MEM.A4	E10	3	MEM.UDQS	F15	15
MEM.A5	D10	4	MEM.D8	F16	16
MEM.A6	C10	5	MEM.D9	G15	17
MEM.A7	A11	6	MEM.D10	G14	18
MEM.A8	B11	7	MEM.D11	G13	19
MEM.A9	C11	8	MEM.D12	K15	20
MEM.A11	E11	9	MEM.D13	K14	21
MEM.A12	E16	10	MEM.D14	K13	22
MEM.CKE	E15	11	MEM.D15	L16	23
MEM.CLK	F12	12	GND	NA	24

Table 19 – JP15 DDR Memory Test Connector

2.20 Program Switch (SW1)

The Virtex-II reference board provi des a push button switch for initiating the configuration of the Virtex-II FPGA. This switch is used when the XC18V512/04 ISP PROM configures the Virtex-II FPGA. After programming of the XC18V512/04 ISP PROM, this switch can assert the PROGn signal. Upon activation of the PROGn signal, the XC18V512/04 ISP PROM initiates the configuration of the Virtex-II FPGA.

2.21 Voltage Regulators

The following figure shows the voltage regulators that are used on the Virtex-II reference board to provide various on-board voltage sources. As shown in the following figure, JP12 connector is used to provide the main 5.0V voltage to the board. This voltage source is provided to all on-board regulators to generate the 1.5V, 1.8V, 2.5V, and 3.3V voltages.

Figure 22 – Virtex-II Reference Board Voltage Regulators

For any one of the on-board voltages (1.5V 1.8V, 2.5V, and 3.3V), if the current provided by the on-board regulator is not sufficient for some applications, the user can directly drive the voltage

source and bypass the on-board regulators. This can be accomplished by removing jumpers JP10, JP17, JP25, and JP29 for voltages 3.3V through 1.5V respectively.

2.21.1 Voltage Regulators Jumper Settings

The following table shows the jumper setting for the 3.3V, 2.5V, 1.8V, and the 1.5V supply voltages on the Virtex-II reference board.

Jumper	Jumper Setting	3.3V Source	2.5V Source	1.8V Source	1.5V Source
JP10	Open	External 3.3V supply via JP9 connector	NA	NA	NA
	Closed	On-board 3.3V regulator	NA	NA	NA
JP17	Open	NA	External 2.5V supply via JP13 connector	NA	NA
	Closed	NA	On-board 2.5V regulator	NA	NA
JP25	Open	NA	NA	External 1.8V supply via JP21 connector	NA
	Closed	NA	NA	On-board 1.8V regulator	NA
JP29	Open	NA	NA	NA	External 1.5V supply via JP32 connector
	Closed	NA	NA	NA	On-board 1.5V regulator

Table 20 - Voltage Regulators Jumper Settings

2.22 Virtex-II Configuration Mode Select

The following table shows the Virtex-II Configuration Mode Select jumper settings. The jumper position 7-8 (M3) is connected to the HSWAP_EN pin of the Virtex-II FPGA. When this jumper is closed, the Virtex-II internal I/O pull-ups are enabled during the configuration.

U U						
Mode	PC Pull-up	J14				
		1-2 (M0)	3-4 (M1)	5-6 (M2)	7-8 (M3)	
Master Serial	Yes	Closed	Closed	Closed	Closed	
Master Serial	No	Open	Closed	Closed	Closed	
Slave Parallel	Yes	Closed	Open	Closed	Closed	
Slave Parallel	No	Open	Open	Closed	Closed	
JTAG	Yes	Closed	Closed	Open	Open	
JTAG	No	Open	Closed	Open	Open	
Slave Serial	Yes	Closed	Open	Open	Open	
Slave Serial	No	Open	Open	Open	Open	

Table 21 - Virtex-II Configuration Mode Select

3 Design Download

The Virtex-II reference board supports multiple methods of configuring the Virtex-II FPGA. The JTAG port on the Virtex-II reference board can be used to directly configure the Virtex-II FPGA, or to program the on-board XC18V512/04 ISP PROM. Once the ISP PROM is programmed, it can be used to configure the Virtex-II FPGA. The following sections provide a brief description of each method of configuring the Virtex-II FPGA.

3.1 JTAG Interface

The J1 JTAG connector on the Virtex-II reference board can be used to configure the Virtex-II or to program the on-board XC18V512/04 ISP PROM. The following figure shows the setup for using the JTAG port on the Virtex-II reference board. The Insight JTAG cable is connected to the Virtex-II reference board via J1 at one end and to the PC parallel port at the other end.

Figure 23 – JTAG Download Setup

3.1.1 Configuring the Virtex-II FPGA

When the JTAG port is used to configure the Virtex-II FPGA, the following steps must be taken:

- Using Table 21 set the Configuration Mode of the Virtex-II FPGA to JTAG Mode.
- The on-board 18V512/04 ISP PROM is placed in the Bypass Mode in the Xilinx programming window. You will need to associate the ISP PROM with either a dummy .mcs file, or a .bsd file to allow the JTAG programming software to pass data through the ISP PROM.
- Close jumper JP7 (if no JTAG devices are connected to the USER I/O connector).
- The design .bit file is used to download the design into the Virtex-II FPGA.

3.1.2 Programming the XC18V512/04 ISP PROM

When the JTAG port is used to program the ISP PROM, the following steps must be taken:

- Using Table 21 set the Configuration Mode of the Virtex-II FPGA to Master Serial Mode.
- The Virtex-II FPGA is placed in the Bypass Mode in the Xilinx programming window. You will need to associate the FPGA with either a dummy .bit file or a .bsd file to allow the JTAG programming software to pass data through the FPGA.
- Close jumper JP7 (if no JTAG devices are connected to the USER I/O connector).
- The design .mcs file is used to download the design into the 18V512/04 ISP PROM.
- Upon programming of the 18V512/04 ISP PROM, the on-board PROGn push button switch (SW1) is used to initiate the Virtex-II FPGA configuration.

