
abc

Handel-C

Language Reference Manual

Handel-C Language Reference Manual

ii

Xilinx, XBLOX and XACTStep are trademarks of Xilinx Corp.
Altera, MAX+PLUS II, FLEX, FLEX 10K and FLEX 8000 are trademarks and/or service marks of
Altera Corp.
Microsoft and MS-DOS are registered trademarks and Windows, Windows 95 and Windows NT
are trademarks of Microsoft Corporation.

This manual was written by Matthew Bowen

 Embedded Solutions Limited. All rights reserved
Version 2.1

Embedded Solutions Limited

iii

Table of Contents
Conventions...viii

1. OVERVIEW... 1

1.1 Introduction ..2

1.2 References..3

1.3 Chapter Summary...4

1.4 Basic Concepts...5
1.4.1 Handel-C Programs ..5
1.4.2 Parallel Programs ...5
1.4.3 Channel Communications..6
1.4.4 Scope and Variable Sharing ..7

1.5 Design Flow Overview ..9

2. LANGUAGE BASICS...11

2.1 Introduction .. 12

2.2 Program Structure .. 13
2.2.1 Using the Preprocessor ... 14
2.2.2 Comments.. 14

2.3 Declarations.. 15
2.3.1 Handel-C Values and Widths... 15
2.3.2 Constants... 15
2.3.3 Variables.. 16
2.3.4 Setting the Width of Integers.. 17
2.3.5 Variable Initialisation ... 18
2.3.6 Pointers.. 19
2.3.7 Arrays .. 19
2.3.8 Channels.. 19
2.3.9 Arrays of Channels ... 20
2.3.10 Internal RAMs and ROMs.. 21

2.4 Statements.. 23
2.4.1 Sequential and Parallel Execution .. 23
2.4.2 Assignments... 24
2.4.3 Channel Communication ... 25
2.4.4 Conditional Execution.. 26
2.4.5 While Loops ... 27
2.4.6 Do ... While Loops... 27
2.4.7 For Loops... 28
2.4.8 Switch Statements .. 29
2.4.9 Prialt Statements .. 30
2.4.10 Break ... 31
2.4.11 Delay ... 32

Handel-C Language Reference Manual

iv

2.5 Expressions .. 33
2.5.1 Restrictions on RAMs and ROMs... 34
2.5.2 Bit Manipulation Operators .. 35
2.5.3 Arithmetic Operators ... 37
2.5.4 Relational Operators ... 39
2.5.5 Relational Logical Operators.. 40
2.5.6 Bitwise Logical Operators.. 41
2.5.7 Conditional Operator ... 42
2.5.8 Casting of Expression Types ... 42
2.5.9 Compile Time Constant Expressions.. 44

2.6 Summary .. 45
2.6.1 Type Summary ... 45
2.6.2 Statement Summary ... 46
2.6.3 Operator Summary ... 47

3. BASIC EXAMPLES...49

3.1 Introduction .. 50

3.2 The Accumulator Example ... 51
3.2.1 Source Code Listing.. 51
3.2.2 Compiling and Simulating the Program... 52
3.2.3 Detailed Explanation ... 53
3.2.4 Summary.. 54

3.3 The Divider Example... 55
3.3.1 Source Code Listing.. 55
3.3.2 Compiling and Simulating the Program... 56
3.3.3 Detailed Explanation ... 57
3.3.4 Summary.. 57

3.4 The Queue Example ... 58
3.4.1 Source Code Listing.. 58
3.4.2 Compiling and Simulating the Program... 59
3.4.3 Detailed Explanation ... 60
3.4.4 Summary.. 60

3.5 The Microprocessor Example... 61
3.5.1 Source Code Listing.. 61
3.5.2 Compiling and Simulating the Program... 63
3.5.3 Detailed Explanation ... 64
3.5.4 Summary.. 65

4. MACROS ..67

4.1 Introduction .. 68

4.2 Macro Expressions ... 69
4.2.1 Constant Macro Expressions ... 69
4.2.2 Parameterised Macro Expressions... 69
4.2.3 The select Operator .. 70
4.2.4 Recursive Macro Expressions.. 71
4.2.5 Recursive Macro Expressions - A Larger Example .. 72

Embedded Solutions Limited

v

4.2.6 Shared Expressions.. 73
4.2.7 Using Recursion to Generate Shared Expressions .. 74
4.2.8 Restrictions on Shared Expressions... 75

4.3 Macro Procedures... 76

5. TIMING AND EFFICIENCY INFORMATION ..79

5.1 Introduction .. 80

5.2 Clock Cycle Timing of Language Constructs.. 81
5.2.1 Statement Timing.. 81
5.2.2 Avoiding Combinatorial Loops ... 85
5.2.3 Parallel Access to Variables .. 87
5.2.4 Multiple Simultaneous Use of RAMs and ROMs.. 88
5.2.5 Detailed Timing Example... 89

5.3 Time Efficiency of Handel-C Hardware ... 91
5.3.1 Reducing Logic Depth ... 91
5.3.2 Pipelining ... 94

6. TARGETTING HARDWARE ...99

6.1 Introduction .. 100

6.2 Interfacing with the Simulator... 101
6.2.1 Single Word Transfers... 101
6.2.2 Block Data Transfers... 102

6.3 Targeting FPGA Devices... 104
6.3.1 Targeting Specific Devices .. 104
6.3.2 Locating the Clock .. 105

6.4 Use of RAMs and ROMs with Handel-C... 107
6.4.1 Using On-Chip RAMs in Xilinx Devices... 107
6.4.2 Using On-Chip RAMs in Altera Devices.. 108
6.4.3 Using External RAMs .. 109
6.4.4 Using External ROMs.. 114
6.4.5 Using Other RAMs.. 114

6.5 Interfacing With External Hardware.. 115
6.5.1 Off-chip Interfaces... 115
6.5.2 Reading from External Pins ... 116
6.5.3 Latched Reading from External Pins .. 116
6.5.4 Clocked Reading from External Pins .. 117
6.5.5 Writing to External Pins ... 117
6.5.6 Bi-directional Data Transfer ... 118
6.5.7 Bi-directional Data Transfer with Latched Input ... 119
6.5.8 Bi-directional Data Transfer with Clocked Input ... 120
6.5.9 Buses and the Simulator.. 121
6.5.10 Timing Considerations of Buses... 121
6.5.11 Metastability ... 124

6.6 Object Specifications.. 126

Handel-C Language Reference Manual

vi

6.6.1 The show Specification.. 127
6.6.2 The base Specification .. 127
6.6.3 The infile and outfile Specifications .. 127
6.6.4 The warn Specification .. 128
6.6.5 The speed Specification .. 128
6.6.6 The pull Specification .. 128
6.6.7 The offchip Specification.. 129
6.6.8 The wegate Specification... 129
6.6.9 The westart and welength Specifications ... 129
6.6.10 Specifying Pinouts .. 130

6.7 An Example Hardware Interface ... 131

7. STANDARD MACRO EXPRESSIONS ...135

7.1 Introduction .. 136

7.2 Constant Definitions ... 137

7.3 Bit Manipulation Macros ... 138
7.3.1 adjs.. 138
7.3.2 adju.. 139
7.3.3 copy... 140
7.3.4 lmo .. 141
7.3.5 lmz .. 142
7.3.6 population .. 143
7.3.7 rmo .. 144
7.3.8 rmz .. 145
7.3.9 top ... 146

7.4 Arithmetic Macros... 147
7.4.1 abs .. 147
7.4.2 addsat.. 148
7.4.3 decode... 149
7.4.4 div.. 150
7.4.5 exp2... 151
7.4.6 incwrap .. 152
7.4.7 log2ceil... 153
7.4.8 log2floor ... 154
7.4.9 mod ... 155
7.4.10 sign.. 156
7.4.11 subsat.. 157

8. PORTING C TO HANDEL-C...159

8.1 Introduction .. 160

8.2 General Porting Issues.. 161

8.3 Comparison Between Conventional C and Handel-C.. 162
8.3.1 Types, Type Operators and Objects... 162
8.3.2 Statements... 162
8.3.3 Expressions.. 163

Embedded Solutions Limited

vii

8.4 Porting Example - An Edge Detector... 164
8.4.1 The Original Program.. 164
8.4.2 The Target Architecture... 166
8.4.3 Mapping to the Target Architecture... 166
8.4.4 First Attempt Handel-C Program .. 167
8.4.5 First Optimisations of the Handel-C Program ... 169
8.4.6 Adding Fine Grain Parallelism.. 170
8.4.7 Further Fine Grain Parallelism ... 174
8.4.8 Adding the Hardware Interfaces... 176

8.5 Summary .. 180

9. COMPLETE LANGUAGE SYNTAX...183

9.1 Introduction .. 184

9.2 Keywords.. 185

9.3 Complete Language Syntax.. 186
9.3.1 Identifiers ... 186
9.3.2 Integer Literals.. 186
9.3.3 Strings ... 186
9.3.4 Types... 187
9.3.5 Hardware Control.. 188
9.3.6 Declarations ... 189
9.3.7 Variable Declarations .. 189
9.3.8 Channel Declarations.. 190
9.3.9 Interface Declarations ... 191
9.3.10 RAM and ROM Declarations.. 192
9.3.11 Object Specifications... 193
9.3.12 Macro Expression Declarations.. 193
9.3.13 Shared Expression Declarations .. 194
9.3.14 Macro Procedure Declarations... 194
9.3.15 Expressions.. 194
9.3.16 Statements... 196
9.3.17 Program ... 197

INDEX..199

Handel-C Language Reference Manual

viii

Conventions

A number of conventions will be used throughout this document.
These conventions are detailed below.

Warning Message. These messages appear to warn you
that actions may potentially damage your hardware.

Information Note. These messages appear to draw your
attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The
convention used is that of prefixing the number with '0x' in common
with standard C syntax.

Sections of code or commands that you must type are given in
typewriter font like this:

void main();

Information about a type of object you must specify is given in italics
like this:

copy SourceFileName DestinationFileName

Embedded Solutions Limited

ix

Handel-C Language Reference Manual

x

1. Overview

Handel-C Language Reference Manual

2

1.1 Introduction

Handel-C is a programming language designed to enable the
compilation of programs into synchronous hardware. Handel-C is
not a hardware description language though; rather it is a
programming language aimed at compiling high level algorithms
directly into gate level hardware.

The Handel-C syntax is based on that of conventional C so
programmers familiar with conventional C will recognise almost all
the constructs in the Handel-C language. Readers unfamiliar with
conventional C should first read one of the standard texts on that
language (see reference 1).

This document describes the Handel-C language. The Handel-C
compiler and some detailed examples of its usage are described in
the Handel-C Compiler Reference Manual.

Overview

3

1.2 References

This document contains references to the following documents.

1. The C Programming Language
Kernighan, B. and Ritchie, D.
Prentice-Hall, 1988

2. The Programmable Logic Data Book
Xilinx 1996

3. Altera Databook
Altera 1996

4. Handel-C Preprocessor Reference Manual
Embedded Solutions Limited 1998

5. Handel-C Compiler Reference Manual
Embedded Solutions Limited 1998

Handel-C Language Reference Manual

4

1.3 Chapter Summary

The following chapters are designed to lead the reader through the
Handel-C language from the simple expressions and statements up
to full programs containing hardware interfaces.

Chapter 1 (this chapter) covers some fundamental concepts of the
language including the similarity with conventional C and some
additional features such as parallelism and channel communication.

Chapter 2 covers the language data types, expressions and
statements in detail.

Chapter 3 presents some examples illustrating the basic data types,
expressions and statements. It also introduces the hardware
simulator to test Handel-C programs.

Chapter 4 covers macro expressions and procedures which allow
complex hardware to be used as 'subroutines' to the main program.

Chapter 5 details clock cycle timing of Handel-C programs and how
to improve the performance of Handel-C code.

Chapter 6 details how to connect Handel-C programs to external
hardware such as RAMs, ROMs, custom and standard buses.

Chapter 7 details the set of standard macros supplied with the
Handel-C compiler.

Chapter 8 presents a detailed example of porting a conventional C
program to Handel-C.

Chapter 9 is a reference for the complete Handel-C language
syntax.

Overview

5

1.4 Basic Concepts

This section deals with some of the basics behind the Handel-C
language. Sequential programs can be written in Handel-C just as
in conventional C but to gain the most benefit in performance from
the target hardware its inherent parallelism must be exploited.
Handel-C therefore includes parallel constructs and these may be
new to some readers. Readers familiar with conventional C should
recognise virtually all the other language features.

As with conventional high level languages, Handel-C is designed to
allow you to express your algorithm without worrying too much
about exactly how the underlying computation engine works. This
philosophy makes Handel-C a programming language rather than a
hardware description language. In some senses, Handel-C is to
hardware what a conventional high level language is to
microprocessor assembly language.

1.4.1 Handel-C Programs

Handel-C is based around the syntax of conventional C. Therefore,
programs written in Handel-C are inherently sequential. Writing one
command after another indicates that those instructions should be
executed in that exact order.

Just like any other conventional language, Handel-C provides
constructs to control the flow of a program. For example, code can
be executed conditionally depending on the value of some
expression, or a block of code can be repeated a number of times
using loop constructs.

It is important to note that the hardware design that Handel-C
produces is exactly the hardware specified in the source program.
There is no intermediate 'interpreting' layer as exists in assembly
language when targeting general purpose microprocessors. The
logic gates that make up the final Handel-C circuit are the assembly
instructions of the Handel-C system.

1.4.2 Parallel Programs

Because the target of the Handel-C compiler is low-level hardware,
massive performance benefits are made possible by the use of
parallelism. Although Handel-C is inherently sequential, it is
possible (and indeed essential for efficient programs) to instruct the
compiler to build hardware to execute statements in parallel.

Handel-C Language Reference Manual

6

Handel-C parallelism is true parallelism - it is not the time-sliced
parallelism familiar from general purpose computers. In other
words, when instructed to execute two instructions in parallel, those
two instructions will be executed at exactly the same instant in time
by two separate pieces of hardware.

When a parallel block in encountered, execution flow splits at the
start of the parallel block and each branch of the block executes
simultaneously. Execution flow then re-joins at the end of the block
when all branches have completed. Any branches that complete
early are forced to wait for the slowest branch before continuing.
This is illustrated in the diagram below.

This diagram illustrates the branching and re-joining of the
execution flow. The left hand and middle branches must wait to
ensure that all branches have completed before the instruction
following the parallel construct can be executed.

1.4.3 Channel Communications

Channels provide a link between parallel branches. One parallel
branch outputs data onto the channel and the other branch reads
data from the channel. Channels also provide synchronisation
between parallel branches because the data transfer can only
complete when both parties are ready for it. If the transmitter is not
ready for the communication then the receiver must wait for it to
become ready and vice versa.

Parallel
Block

Statement

Overview

7

The link between parallel branches can be seen from the diagram
below.

Here, the channel is shown transferring data from the left branch to
the right branch. If the left branch reaches point a before the right
branch reaches point b, the left branch waits at point a until the right
branch reaches point b.

1.4.4 Scope and Variable Sharing

The scope of declarations is, as in conventional C, based around
code blocks. A code block is denoted with {...} brackets. Basically,
this means that global variables must be declared outside all code
blocks and that an identifier is in scope within a code block and any
sub-blocks of that block. The scope of variables is illustrated below:

int w;

void main(void)
{
 int x;

 {
 int y;

 }
 {
 int z;

 }
}

y

z

x

w

Channel

Scope of Variable

Statement

a b

Handel-C Language Reference Manual

8

Since parallel constructs are simply code blocks (see chapter 2),
variables can be in scope in two parallel branches of code. This
can lead to resource conflicts if the variable is accessed
simultaneously by more than one of the branches. Handel-C syntax
states that a single variable must not be accessed by more than
one parallel branch. Unfortunately, as is shown in chapter 5 on
timing and efficiency, this precludes the use of some powerful
operations so in reality this rule is relaxed. See chapter 5 for further
details.

A single variable should not normally be accessed in
more than one parallel branch.

Overview

9

1.5 Design Flow Overview

This section will give an overview of the design flow for a Handel-C
program. For a detailed look at how to design hardware using
Handel-C, consult the Handel-C compiler reference manual.

The basic design flow is presented below:

Compile program to .net
file for simulator

Use simulator to evaluate
and debug design

Modify/debug program

Add interfaces to
external hardware

Use Handel-C compiler to
target hardware netlist

Use FPGA tools to
 place and route netlist

Program FPGA with result
of place and route

Port algorithm
to Handel-C

Handel-C Language Reference Manual

10

2. Language Basics

Handel-C Language Reference Manual

12

2.1 Introduction

This chapter deals with the basics of producing Handel-C programs
including their overall structure, declarations, expressions and
statements. The next chapter details a number of examples that
use only the basic language constructs described here. Later
chapters discuss more complex language constructs and interfaces
with the outside world.

Language Basics

13

2.2 Program Structure

Just like a conventional C program, a Handel-C program consists of
a series of statements which execute sequentially. These
statements are contained within a main() function to inform the
compiler of where the program begins. The body of the main
function may be split into a number of blocks using {...} brackets to
break the program into readable chunks and restrict the scope of
variables and identifiers.

Handel-C also has variables and expressions similar to
conventional C although there are a number of restrictions to these
where operations are not appropriate to hardware implementation
and some extensions where hardware implementation allows
additional functionality.

Unlike conventional C, Handel-C programs can also have
statements that execute in parallel. This feature is crucial when
targeting hardware because parallelism is the main way to increase
performance by using hardware.

The overall program structure is as follows:

Global Declarations

void main(void)
{
 Local Declarations

 Body Code
}

Note that the main() function takes no arguments and returns no
value. This is in line with a hardware implementation where there
are no command line arguments and no environment to return
values to. The argc, argv and envp parameters and the return
value familiar from conventional C can be replaced with explicit
communications with an external system (e.g. a host
microprocessor) within the body of the program.

Handel-C Language Reference Manual

14

2.2.1 Using the Preprocessor

As with conventional C, the Handel-C source code is first passed
through a C preprocessor before compilation. Therefore, the usual
#include and #define constructs may be used to perform textual
manipulation on the source code before compilation. See the
Handel-C Preprocessor Reference Manual for further details.

Handel-C also provides additional support for macros which cannot
be achieved by using the preprocessor. See chapter 4 on macros
for further details.

2.2.2 Comments

Handel-C uses the standard /* ... */ delimiters for comments.
These comments may not be nested. For example:

/* Valid comment */

/* This is /* NOT */ valid */

Handel-C also provides the C++ style // comment marker which
tells the compiler to ignore everything up to the next newline. For
example

x = x + 1; // This is a comment

Language Basics

15

2.3 Declarations

This section details the types of declarations that can be made. It is
important to understand how the type system differs from that of
conventional C so this is also dealt with here also.

2.3.1 Handel-C Values and Widths

A crucial difference between Handel-C and conventional C is its
ability to handle values of arbitrary width. Since conventional C is
targeted at general purpose microprocessors it handles 8, 16 and
32 bit values well but cannot easily handle other widths. When
targeting hardware, there is no reason to be tied to these data
widths and so Handel-C has been extended to allow values of any
number of bits.

In addition, Handel-C has been extended to cope with extracting
bits from values and joining values together to form wider values.
These operations require no hardware and can provide great
performance improvements over software.

When writing programs in Handel-C, care should be taken that data
paths are no wider than necessary to minimise hardware usage.
While it may be valid to use 32 bit values for all items, a large
amount of unnecessary hardware is produced if none of these
values exceed 4 bits.

Care must also be taken that values do not overflow their width.
This is more of an issue with Handel-C than with conventional C
because variables should be only just wide enough to contain the
largest value.

2.3.2 Constants

Constants may be used within expressions where required.
Decimal constants are written as simply the number while
hexadecimal constants must be prefixed with 0x or 0X, octal
constants must be prefixed with a zero and binary constants must
be prefixed with 0b or 0B. For example:

w = 1234; /* Decimal */
x = 0x1234; /* Hexadecimal */
y = 01234; /* Octal */
z = 0b00100110; /* Binary */

Handel-C Language Reference Manual

16

The width of a constant may be explicitly given by 'casting'. For
example:

x = (unsigned int 3) 1;

Casting may be necessary where the compiler is unable to infer the
width of the constant from its usage. See section 2.5.8 for further
details of casting.

2.3.3 Variables

There is only one fundamental type for variables: int. In addition,
the int type may be qualified with the unsigned keyword to
indicate that the variable only contains positive integers. For
example:

int 5 x;
unsigned int 13 y;

These two lines declare two variables: a 5-bit signed integer x and
a 13-bit positive only integer y. In the second example here, the
int keyword is optional. Thus, the following two declarations are
equivalent.

unsigned int 6 x;
unsigned 6 x;

Note that the range of an 8 bit signed integer is -128 to 127 while
the range of an 8 bit unsigned integer is 0 to 255 inclusive. This is
because signed integers use 2's complement representation.

It is also possible to declare a number of variables of the same type
and width simultaneously. For example:

int 17 x, y, z;

This declares three 17 bit wide signed integers x, y and z.

The Handel-C compiler can sometimes infer the width of variables
from their usage. It is therefore not always necessary to explicitly
define the width of all variables and the undefined keyword has
been added to indicate that the compiler should attempt to infer the
width of a variable. For example:

Language Basics

17

int 6 x;
int undefined y;

x = y;

In this example the variable x has been declared to be 6 bits wide
while the variable y has been declared with no explicit width. The
compiler can infer that y must be 6 bits wide from the assignment
operation later in the program and sets the width of y to this value.

If the compiler cannot infer all the undefined widths, it will generate
errors detailing which widths it could not infer.

Handel-C also provides support for porting applications from
conventional C by allowing the types char, short and long. For
example:

unsigned char w;
short y;
unsigned long z;

The widths assumed for each of these types is as follows:

Type Width
char 8 bits
short 16 bits
long 32 bits

Smaller and more efficient hardware will be produced by
only using variables of the smallest possible width.

2.3.4 Setting the Width of Integers

As mentioned above, the following line will declare an integer of
undefined width:

int undefined x;

The compiler attempts to infer the width of the variable from its
usage. By default, the following declaration will also declare a
variable of undefined width and is directly equivalent to the example
above:

int x;

Handel-C Language Reference Manual

18

In other words, by default the undefined keyword is optional.
Handel-C provides an extension to allow you to override this
behaviour to ease porting from conventional C. This is done as
follows:

set intwidth = 16;

int x;
unsigned int y;

This declares a 16 bit wide signed integer x and a 16 bit wide
unsigned integer y although any width may be used in the set
intwidth instruction.

It is possible to set integers to be a particular width in this way and
still declare variables that must have their width inferred by using
the undefined keyword. For example:

set intwidth = 27;

unsigned x;
unsigned undefined y;

This example declares a variable x with a width of 27 bits and a
variable y that has its width inferred by the compiler. This example
also illustrates that the int keyword may be omitted when declaring
unsigned integers.

2.3.5 Variable Initialisation

Global variables (i.e. those declared outside the main() function)
may be initialised with their declaration. For example:

int 15 x = 1234;

Note that variables declared within the main() function may not be
initialised in this way. Rather, you should use an explicit sequential
or parallel list of assignments following your declarations to achieve
the same effect. For example:

{
 int 4 x;
 unsigned 5 y;

 x = 5;
 y = 4;
}

Language Basics

19

2.3.6 Pointers

Pointers do not exist in Handel-C.

2.3.7 Arrays

It is possible to declare arrays of variables in the same way that
arrays are declared in conventional C. For example:

int 6 x[7];

This declares 7 registers each of which is 6 bits wide. Accessing
the variables is exactly as in conventional C. For example, to
access the fifth variable in the array:

x[4] = 1;

Note that as in conventional C, the first variable has an index of 0
and the last has an index of n-1 where n is the total number of
variables in the array.

It is also possible to declare multi-dimensional arrays of variables.
For example:

unsigned int 6 x[4][5][6];

This declares 4x5x6 = 120 variables each of which is 6 bits wide.
Accessing the variables is as expected from conventional C. For
example:

y = x[2][3][1];

When accessing an array, the index must be a compile
time constant. If you require random access of an array
of values, consider using a RAM or ROM as described
below.

2.3.8 Channels

Handel-C provides channels for communicating between parallel
branches of code. One branch writes to a channel and a second
branch reads from it. The communication only occurs when both
tasks are ready for the transfer at which point one item of data is
transferred between the two branches.

Channels are declared with the chan keyword. For example:

Handel-C Language Reference Manual

20

chan int 7 link;

As with variables, the Handel-C compiler can infer the width of a
channel from its usage if it is declared with the undefined keyword.
Channels can also be declared with no explicit type. The compiler
infers the type and width of the channel from its usage. For
example:

set intwidth = undefined;

chan int Link1;
chan unsigned undefined Link2;
chan Link3;

The compiler generates warnings if any single process uses a
channel for both input and output or if more than one parallel
process uses the same channel for either input or output.

See section 2.4.3 for details of how to communicate via channels.

2.3.9 Arrays of Channels

Handel-C allows arrays of channels to be declared. For example:

chan unsigned int 5 x[6];

This is equivalent to declaring 6 channels each of which is 5 bits
wide. Channels can then be accessed by specifying the index of
the channel required similar to the way that arrays of variables are
de-referenced. For example:

x[4] ! 3; // Output 3 on channel x[4]
x[3] ? y; // Input to y from channel x[3]

It is also possible to declare multi-dimensional arrays of channels.
For example:

chan unsigned int 6 x[4][5][6];

This declares 4x5x6 = 120 channels each of which is 6 bits wide.
Accessing the channels is as expected from conventional C. For
example:

x[2][3][1] ! 4; // Output 4 on channel x[2][3][1]

See section 2.4.3 for details of how to communicate via channels.

Language Basics

21

As with arrays of variables, the index of an array of
channels must be a compile time constant.

2.3.10 Internal RAMs and ROMs

RAMs and ROMs may be built from the logic provided in the FPGA
using the ram and rom keywords. For example:

ram int 6 a[43];
rom int 16 b[4] = { 23, 46, 69, 92 };

This example constructs a RAM consisting of 43 entries each of
which is 6 bits wide and a ROM consisting of 4 entries each of
which is 16 bits wide. The ROM is initialised with the constants
given in the following list in much the same way as an array would
be initialised in C. In this example, the ROM entries are given the
following values:

ROM entry Value
b[0] 23
b[1] 46
b[2] 69
b[3] 92

The Handel-C compiler can also infer the widths, types and the
number of entries in RAMs and ROMs from their usage. Thus, it is
not always necessary to explicitly declare these attributes. For
example:

ram int undefined a[123];
ram int 6 b[];
ram c[43];
ram d[];

RAMs and ROMs are accessed in much the same way that arrays
are accessed in conventional C. For example:

ram int 6 b[56];

b[7] = 4;

This sets the eighth entry of the RAM to the value 4. Note that as in
conventional C, the first entry in the memory has an index of 0 and

Handel-C Language Reference Manual

22

the last has an index of n-1 where n is the total number of entries in
the RAM.

Note that RAMs differ from arrays in that an array is equivalent to
declaring a number of variables. Each entry in an array may be
used exactly like an individual variable with as many reads and
writes in a clock cycle as required. RAMs, however, are normally
more efficient to implement in terms of hardware resources than
arrays and also allow a non-constant index. Therefore, you should
use an array when you wish to access the elements more than
once in parallel and you should use a RAM when you wish to have
random access to the elements.

When accessing a RAM or ROM, the index need not be a
compile time constant.

Writing to internal RAMs can only be done in this way on Altera or
Xilinx devices with synchronous on-chip RAMs. This includes
Altera Flex 10K, Xilinx 4000E, 4000EX, 4000L, 4000XL and
4000XV series devices. See chapter 6 for further details of RAMs
and ROMs in Hanel-C.

RAMs and ROMs may only have one entry accessed in
any clock cycle. The Handel-C compiler generates
warnings if this condition is violated. This restriction is
discussed in more detail in section 2.5.1.

Language Basics

23

2.4 Statements

As with conventional C, the execution flow of a Handel-C program
is expressed as a series of statements such as assignment,
conditional execution and iteration. Handel-C includes most of the
statements from conventional C and these are detailed below.

2.4.1 Sequential and Parallel Execution

Handel-C implicitly executes instructions sequentially but when
targeting hardware it is extremely important to make as much use
as possible of parallelism. For this reason, Handel-C also has a
parallel composition keyword to allow statements in a block to be
executed in parallel.

The following example executes three assignments sequentially:

x = 1;
y = 2;
z = 3;

In contrast, the following example executes all three assignments in
parallel and in the same clock cycle:

par
{
 x = 1;
 y = 2;
 z = 3;
}

It should be noted that the second example executes all
assignments literally in parallel - this is not the time-sliced pseudo
parallelism of a conventional microprocessor implementation but
rather three specific pieces of hardware built just to perform these
three assignments.

Detailed timing analysis will be dealt with in chapter 5 but for now it
is enough to state that the first example executes in 3 clock cycles
while the second generates a similar quantity of hardware but
executes in 1 clock cycle. Therefore, it is obvious that parallelism is
a very important construct for targeting hardware.

Within parallel blocks of code, sequential branches can be added
by replacing each statement with a code block denoted with the {...}
brackets. For example:

Handel-C Language Reference Manual

24

par
{
 x = 1;
 {
 y = 2;
 z = 3;
 }
}

In this example, the first branch of the parallel statement executes
the assignment of x while the second branch sequentially executes
the assignments of y and z. The assignments to x and y occur in
the same clock cycle, the assignment to z occurs in the next clock
cycle.

The instruction following the par {...} will not be executed
until all branches of the parallel block complete.

2.4.2 Assignments

Handel-C assignments are of the form:

Variable = Expression;

For example:

x = 3;
y = a + b;

The expression on the right hand side must be of the same width
and type (signed or unsigned) as the variable on the left hand side.
The compiler generates an error if this is not the case.

The left hand side of the assignment may be any variable, array
element or RAM element. The right hand side of the assignment
may be any expression described in section 2.5.

Handel-C also provides a number of short cut assignment
statements. Note that these cannot be used in expressions as they
can in conventional C but only in stand alone statements. See
section 2.5 for further details. These short cuts are:

Language Basics

25

Statement Expansion
Variable ++; Variable = Variable + 1;
Variable --; Variable = Variable - 1;
++ Variable; Variable = Variable + 1;
-- Variable; Variable = Variable - 1;
Variable += Expression; Variable = Variable + Expression;
Variable -= Expression; Variable = Variable – Expression;
Variable *= Expression; Variable = Variable * Expression;
Variable <<= Constant; Variable = Variable << Constant;
Variable >>= Constant; Variable = Variable >> Constant;
Variable &= Expression; Variable = Variable & Expression;
Variable |= Expression; Variable = Variable | Expression;
Variable ^= Expression; Variable = Variable ^ Expression;

See section 2.5 for further details of each of these expansions.

2.4.3 Channel Communication

Reading from a channel is done as follows:

Channel ? Variable;

This assigns the value read from the channel to the variable. The
variable may also be an array element or RAM element. Writing to
a channel is as follows:

Channel ! Expression

This writes the value of the expression to the channel. Expression
may be any expression described in section 2.5. In both these
statements, Channel may also be an entry in an array of channels.

In both cases the width and type (signed or unsigned) of the
channel must be the same as the width and type of the variable or
expression although the compiler can infer widths if the undefined
keyword was used when declaring the channel or variable(s).

No two statements may simultaneously write to a single channel
and no two statements may simultaneously read from a single
channel . For example, the following piece of code is illegal:

par
{
 out ! 3 // Parallel write to a channel
 out ! 4
}

Handel-C Language Reference Manual

26

Here, an attempt is made to write simultaneously to a single
channel. Similarly, the following code is illegal because an attempt
is made to read simultaneously from the same channel:

par
{
 in ? x; // Parallel read from a channel
 in ? y;
}

2.4.4 Conditional Execution

Handel-C provides the standard C conditional execution construct
as follows:

if (Expression)
 Statement
else

 Statement

As in conventional C, the else portion may be omitted if not
required. For example:

if (x == 1)
 x = x + 1;

Here, and throughout the rest of this document, Statement may be
replaced with a block of statements by enclosing the block in {...}
brackets. For example:

if (x>y)
{
 a = b;
 c = d;
}
else
{
 a = d;
 c = b;
}

The first branch of the conditional is executed if the expression is
true and the second branch is executed if the expression is false.
Handel-C treats zero values as false and non-zero values as true.
As will be seen in sections 2.5.4 and 2.5.5, the relational logical
operators return values to match this but it is also possible to use
variables as conditions. For example:

Language Basics

27

if (x)
 a = b;
else
 c = d;

This is expanded by the compiler to:

if (x!=0)
 a = b;
else
 c = d;

When executed, if x is not equal to 0 then b is assigned to a. If x is
0 then d is assigned to c.

2.4.5 While Loops

Handel-C provides while loops exactly as in conventional C:

while (Expression)
 Statement

The contents of the while loop may be executed zero or more
times depending on the value of Expression. While Expression is
true then Statement is executed repeatedly. Again, Statement may
be replaced with a block of statements. For example:

x = 0;
while (x != 45)
{
 y = y + 5;
 x = x + 1;
}

This code adds 5 to y 45 times (equivalent to adding 225 to y).

For details of conditional expressions, see sections 2.5.4 and 2.5.5.

2.4.6 Do ... While Loops

Handel-C provides do ... while loops exactly as in conventional C:

do

 Statement
while (Expression);

Handel-C Language Reference Manual

28

The contents of the do ... while loop is executed at least once
because the conditional expression is evaluated at the end of the
loop rather than at the beginning as is the case with while loops.
Again, Statement may be replaced with a block of statements. For
example:

do
{
 a = a + b;
 x = x - 1;
} while (x>y);

2.4.7 For Loops

Handel-C provides for loops similar to those in conventional C.

for (Initialisation ; Test ; Iteration)
 Statement

The body of the for loop may be executed zero or more times
according to the results of the condition test. There is a direct
correspondence between for loops and while loops.

for (Init; Test; Inc)
 Body;

Is directly equivalent to:

{
 Init;
 while (Test)
 {
 Body;
 Inc;
 }
}

Each of the initialisation, test and iteration statements are optional
and may be omitted if not required. As with all other Handel-C
constructs, Statement may be replaced with a block of statements.
For example:

for (; x>y ; x++)
{
 a = b;
 c = d;
}

Language Basics

29

The difference between a conventional C for loop and the Handel-
C version is in the initialisation and iteration phases. In
conventional C, these two fields contain expressions and by using
expression side effects (such as ++ and --) and the sequential
operator ',' conventional C allows complex operations to be
performed. Since Handel-C does not allow side effects in
expressions (see section 2.5 below) the initialisation and iteration
expressions have been replaced with statements. For example:

for (x = 0; x < 20; x = x+1)
{
 y = y + 2;
}

Here, the assignment of 0 to x and adding one to x are both
statements and not expressions. These initialisation and iteration
statements can also be replaced with blocks of statements by
enclosing the block in {...} brackets. For example:

for ({ x=0; y=23;} ; x < 20; {x+=1; x*=2;})
{
 y = y + 2;
}

2.4.8 Switch Statements

Handel-C provides switch statements similar to those in
conventional C.

switch (Expression)
{
 case Constant:
 Statement
 break;

 default:
 Statement
 break;
}

The switch expression is evaluated and checked against each of
the case compile time constants. The statement guarded by the
matching constant is executed until a break statement is
encountered.

Handel-C Language Reference Manual

30

If no matches are found, the default statement is executed, but if
no default option is provided, no statements are executed.

Each of the Statement lines above may be replaced with a block of
statements by enclosing the block in {...} brackets.

As with conventional C, it is possible to make execution drop
through case branches by omitting a break statement. For
example:

switch (x)
{
case 10:
 a = b;
case 11:
 c = d;
 break;

case 12:
 e = f;
 break;
}

Here, if x is 10, b is assigned to a and d is assigned to c, if x is 11,
d is assigned to c and if x is 12, f is assigned to e.

The values following each case branch must be compile
time constants.

2.4.9 Prialt Statements

Handel-C provides a prialt statement not found in conventional C
for selective channel communication.

prialt
{
 case CommsStatement:
 Statement
 break;

 default:

 Statement
 break;
}

The prialt statement can be used to select between
communication on a number of channels depending on the

Language Basics

31

readiness of the other end of the channel communication.
CommsStatement must be one of the following forms:

Channel ? Variable
Channel ! Expression

The first communication statement in the list of cases which
becomes ready to transfer data will execute. The statements up to
the next break statement will then be executed.

In a prialt statement with no default case, execution will halt
until one of the channels becomes ready to communicate. In a
prialt statement with a default case, if none of the channels is
ready to communicate immediately then the default branch
statements will execute and the prialt statement will terminate.

The prialt construct does not allow the same channel to be listed
twice in its cases and fallthrough of cases is prohibited. This
means that each case must be paired with its own break
statement.

2.4.10 Break

Handel-C provides the normal C break statement both for
terminating loops and separation of case branches in switch and
prialt statements.

When used within a while, do...while or for loop, the loop is
terminated and execution continues from the statement following
the loop. For example:

for (x=0; x<32; x++)
{
 if (a[x]==0)
 break;
 b[x]=a[x];
}
// Execution continues here

When used within a switch statement, execution of the case
branch terminates and the statement following the switch is
executed. For example:

Handel-C Language Reference Manual

32

switch (x)
{
 case 1:
 case 2:
 y++;
 break;
 case 3:
 z++;
 break;
}
// Execution continues here

When used within a prialt statement, execution of the case
branch terminates and the statement following the prialt is
executed. For example:

prialt
{
 case a ? x:
 x++;
 break;
 case b ! y:
 y++;
 break;
}
// Execution continues here

2.4.11 Delay

Handel-C provides a delay statement not found in conventional C
which does nothing but takes one clock cycle to do it. This may be
useful to avoid resource conflicts (for example to prevent two
accesses to one RAM in a single clock cycle) or to adjust execution
timing.

Delay can also be used to break combinatorial logic cycles. See
chapter 5 on timing and efficiency for details of this.

Language Basics

33

2.5 Expressions

Expressions in Handel-C take no clock cycles to be evaluated, and
so have no bearing on the number of clock cycles a given program
takes to execute. They do affect the maximum possible clock rate
for a program - the more complex an expression, the more
hardware is involved in its evaluation and the longer it is likely to
take because of combinatorial delays in the hardware. The clock
period for the entire hardware program is limited by the longest
such evaluation in the whole program. See chapter 5 for more
details on timing and efficiency considerations.

As a result of expressions not being allowed to take any clock
cycles, expressions with side effects are not permitted in Handel-C.
For example;

a = b++; /* NOT PERMITTED */

This is not permitted because the ++ operator has the side effect of
assigning b+1 to b which requires one clock cycle.

Note that even the longest and most complex C expression with
many side effects can be written in terms of a larger number of
simpler expressions. The resulting code is normally easier to read.
For example:

a = (b++) + (((c-- ? d++ : e--)) , f);

Can be rewritten as:

a = b + f;
b = b + 1;
if (c)
 d = d + 1;
else
 e = e - 1;
c = c - 1;

Note that Handel-C provides the prefix and postfix ++ and --
operations as statements rather than expressions. For example:

a++;
b--;
++c;
--d;

Handel-C Language Reference Manual

34

This example is directly equivalent to:

a = a + 1;
b = b - 1;
c = c + 1;
d = d - 1;

2.5.1 Restrictions on RAMs and ROMs

Because of their architecture, RAMs and ROMs are restricted to
performing operations sequentially. Only one element of a RAM or
ROM may be addressed in any given clock cycle and, as a result,
familiar looking statements are often disallowed. For example:

ram unsigned int 8 x[4];

x[1] = x[3] + 1;

This code is illegal because the assignment attempts to read from
the third element of x in the same cycle as it writes to the first
element. The compiler generates errors for this form of statement.

The following code is also disallowed:

ram unsigned int 8 x[4];

if (x[0]==0)
 x[1] = 1;

This is because the condition evaluation must read from element 0
of the RAM in the same clock cycle as the assignment writes to
element 1. Similar restrictions apply to while loops, do ... while
loops, for loops and switch statements - see chapter 5 for details
of the timing of Handel-C programs.

Note that arrays of variables do not have these restrictions but may
require substantially more hardware to implement than RAMs
depending on the target architecture. RAMs and ROMs also have
the advantage of random access - the index need not be a constant
as is the case with arrays of variables.

Language Basics

35

2.5.2 Bit Manipulation Operators

The following bit manipulation operators are provided in Handel-C:

Operator Meaning
<< Shift left
>> Shift right
<- Take least significant bits
\\ Drop least significant bits
@ Concatenate bits
[] Bit selection

width(Expression) Width of expression

The shift operators shift a value left or right by a constant number of
bits resulting in a value of the same width as the value being
shifted. Any bits shifted outside this width are lost.

When shifting unsigned values, the right shift pads the upper bits
with zeros. When right shifting signed values, the upper bits are
copies of the top bit of the original value. Thus, a shift right by 1
divides the value by 2 and preserves the sign. For example:

unsigned int 8 x;
int 8 y;

x = 192;
y = -8;

x = x >> 1;
y = y >> 1;

This results in x being set to 96 and y being set to -4.

The value following the shift operator must be a compile
time constant.

The take operator, <-, returns the n least significant bits of a value.
The drop operator, \\, returns all but the n least significant bits of a
value. For example:

Handel-C Language Reference Manual

36

unsigned int 8 x;
unsigned int 4 y;
unsigned int 4 z;

x = 0xC7;
y = x <- 4;
z = x \\ 4;

This results in y being set to 7 and z being set to 12 (or 0xC in
hexadecimal).

The value following the take and drop operators must be
a compile time constant.

The concatenation operator, @, joins two sets of bits together into a
result whose width is the sum of the widths of the two operands.
For example:

unsigned int 8 x;
unsigned int 4 y;
unsigned int 4 z;

y = 0xC;
z = 0x7;
x = y @ z;

This results in x being set to 0xC7. The left operand of the
concatenation operator forms the most significant bits of the result.

Individual bits or a range of bits may be selected from a value by
using the [] operator. Bit 0 is the least significant bit and bit n-1 is
the most significant bit where n is the width of the value. For
example:

unsigned int 8 x;
unsigned int 1 y;
unsigned int 5 z;

x = 0b01001001;
y = x[4];
z = x[7:3];

This results in y being set to 0 and z being set to 9. Note that the
range of bits is of the form MSB:LSB and is inclusive. Thus, the
range 7:3 is 5 bits wide.

Language Basics

37

The index value and range values for bit selection must
be compile time constants.

Bit selection in RAM, ROM and array elements is also possible. For
example:

ram int 7 w[23];
int 5 x[4];
int 3 y;
unsigned int 1 z;

y = w[10][4:2];
z = x[2][0];

Here, the 10 is the entry in the RAM and the 4:2 selects three bits
from the middle of the value in the RAM. Similarly, z is set to the
least significant bit in the x[2] variable.

The width() operator returns the width of an expression which is a
compile time constant. For example:

x = y <- width(x);

This takes the least significant bits of y and assigns them to x. The
width() operator ensures that the correct number of bits are taken
from y to match the width of x.

2.5.3 Arithmetic Operators

The following arithmetic operators are provided in Handel-C:

Operator Meaning
+ Addition
- Subtraction
* Multiplication

No division operator is provided because the hardware required for
the divide would be prohibitively large. See chapters 3 and 7 for
examples of how to write division routines in Handel-C.

Any attempt to perform one of these operations on two expressions
of differing widths or types results in a compiler error. For example:

Handel-C Language Reference Manual

38

int 4 w;
int 3 x;
int 4 y;
unsigned 4 z;

y = w + x; // ILLEGAL
z = w + y; // ILLEGAL

The first statement is illegal because w and x have different widths.
The second statement is illegal because w and y are signed
integers and z is an unsigned integer. See section 2.5.8 for details
of changing types of expressions.

All operators return results of the same width as their operands.
Thus, all overflow bits are lost. For example:

unsigned int 8 x;
unsigned int 8 y;
unsigned int 8 z;

x = 128;
y = 192;
z = 2;

x = x + y;
z = z * y;

This example results in x being set to 64 and z being set to 128.

By using the bit manipulation operators to expand the operands, it
is possible to obtain extra information from the arithmetic
operations. For instance, the carry bit of an addition or the overflow
bits of a multiplication may be obtained by first expanding the
operands to the maximum width required to contain this extra
information. For example:

unsigned int 8 u;
unsigned int 8 v;
unsigned int 9 w;
unsigned int 8 x;
unsigned int 8 y;
unsigned int 16 z;

w = (0 @ u) + (0 @ v);
z = (0 @ x) * (0 @ y);

In this example, w and z contain all the information obtainable from
the addition and multiplication operations. Note that the constant

Language Basics

39

zeros do not require a width specification because the compiler can
infer their widths form the usage. The zeros in the first assignment
must be 1 bit wide because the destination is 9 bits wide while the
source operands are only 8 bits wide. In the second assignment,
the zero constants must be 8 bits wide because the destination is
16 bits wide while the source operands are only 8 bits wide.

Precedence of operators is as expected from conventional C. For
example:

x = x + y * z;

This performs the multiplication before the addition. Brackets may
be used to ensure the correct calculation order as in conventional
C. See section 2.6.3 for details of operator precedence.

2.5.4 Relational Operators

The following relational operators are provided in Handel-C:

Operator Meaning
== Equal
!= Not equal
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal

These operators compare values of the same width and return a
single bit wide unsigned int value of 0 for false or 1 for true. This
means that the following conventional C code is invalid:

int 8 w, x, y, z;

w = x + (y>z); // NOT ALLOWED

Rather, you should write:

w = x + (0@(y>z));

Signed/signed compares and unsigned/unsigned compares are
handled automatically. Mixed signed and unsigned compares are
not handled automatically. For example:

Handel-C Language Reference Manual

40

unsigned 8 x;
int 8 y;

if (x>y) // Not allowed

To compare signed and unsigned values you must sign extend
each of the parameters. For example, the above code can be
rewritten as:

unsigned 8 x;
int 8 y;

if ((int)(0@x) > (y[7]@y))

The Handel-C compiler inserts implicit compares with zero if a value
is used as a condition on its own. For example:

while (1)
{

}

Is directly expanded to:

while (1 != 0)
{

}

2.5.5 Relational Logical Operators

The following relational logical operators are provided in Handel-C:

Operator Meaning
&& Logical and
|| Logical or
! Logical not

These operators are provided to combine conditions as in
conventional C. Each operator takes two 1 bit unsigned operands
and returns a 1 bit unsigned result.

Note that the operands of these operators need not be the results of
relational operators. For example:

Language Basics

41

if (x || y>z)
 w = 0;

In this example, the variable x need not be 1 bit wide - if it is wider,
the Handel-C compiler inserts a compare with 0. As in conventional
C, the condition of the if statement is true if x is not equal to 0 or y
is greater than z. This feature allows some familiar looking
conventional C constructs. For example:

while (x || y)
{

}

2.5.6 Bitwise Logical Operators

The following bitwise logical operators are provided in Handel-C:

Operator Meaning
& Bitwise and
| Bitwise or
^ Bitwise exclusive or
~ Bitwise not

These operators perform bitwise logical operations on values. Each
operand must be of the same width and the resulting value is also
of the same width. For example:

unsigned int 6 w;
unsigned int 6 x;
unsigned int 6 y;
unsigned int 6 z;

w = 0b101010;
x = 0b011100;
y = w & x;
z = w | x;
w = w ^ ~x;

This example results in y having the value 0b001000, z having the
value 0b111110 and w having the value 0b001001.

Handel-C Language Reference Manual

42

2.5.7 Conditional Operator

Handel-C provides the conditional expression construct familiar
from conventional C. Its format is:

Expression ? Expression : Expression

The first expression is evaluated and if true the whole expression
evaluates to the second expression. If the first expression is false,
the whole expression evaluates to the third expression. For
example:

x = (y > z) ? y : z;

This sets x to the maximum of y and z. This code is directly
equivalent to:

if (y > z)
 x = y;
else
 x = z;

The advantage of using this construct is that the result is an
expression so it can be embedded in a more complex expression.
For example:

x = ((y > z) ? y : z) + 4;

2.5.8 Casting of Expression Types

The following piece of Handel-C is invalid:

int 4 x; // Range of x: -8...7
unsigned int 4 y; // Range of y: 0...15

x = y; // Not allowed

This is because x is a signed integer while y is an unsigned integer.
When generating hardware, it is not clear what the compiler should
do here. It could simply assign the 4 bits of y to the 4 bits of x or it
could extend y with an extra zero as its most significant bit to
preserve its value and then assign these 5 bits to x assuming x was
declared to be 5 bits wide

To see the difference, consider the case when y is 10. By simply
assigning these 4 bits to a signed integer, a result of -6 would be

Language Basics

43

placed in x. A better solution might be to extend y to a five bit value
by adding a 0 bit as its MSB to preserve the value of 10.

The solution adopted by Handel-C is not to allow automatic
conversions between signed and unsigned values to avoid this
confusion. Instead, values must be 'cast' between types to ensure
that the programmer is aware that a conversion is occurring that
may alter the meaning of a value. The above example then
becomes:

int 4 x;
unsigned int 4 y;

x = (int 4)y;

It is now clear that the value of x is just the 4 bits extracted from y.
It is also possible to cast to a type of undefined width. For example:

int 4 x;
unsigned int undefined y;

x = (int undefined)y;

Here, the compiler will infer that y must be 4 bits wide.

Casting cannot be used to change the width of values. For
example, this is not allowed:

unsigned int 7 x;
int 12 y;

y = (int 12)x; // Not allowed

Instead, the conversion should be done by hand as follows:

y = (int 12)(0 @ x);

Here, the concatenation operation produces a 12 bit unsigned
value. The casting then changes this to a 12 bit signed integer for
assignment to y.

Again, this is to ensure that the programmer is aware of such
conversions. To illustrate why this is important, consider the
following example:

Handel-C Language Reference Manual

44

int 7 x;
unsigned int 12 y;

x = -5;
y = (unsigned int 12)x;

Here, there are two equally viable routes that the Handel-C
compiler could take. One would be to sign extend the value of x
and produce the result 4091. The second would be to zero pad the
value of x and produce the value of 123. Since neither method can
preserve the value of x in y Handel-C performs neither
automatically. Rather, it is left up to the programmer to decide
which approach is correct for their program and to write the
expression accordingly.

2.5.9 Compile Time Constant Expressions

In addition to all the operators listed in the previous sections,
Handel-C provides two extra operators for expressions consisting
only of compile time constants. These are:

Operator Meaning
/ Division
% Modulo arithmetic

Handel-C does not build hardware to evaluate these expressions
but the compiler can calculate constant expressions with these
operators. For example:

unsigned int 16 x;
unsigned int (width(x)/2) y;

y = 63552 % 256;

The compiler generates an error if one or both of the operands is
not a compile time constant.

Language Basics

45

2.6 Summary

This section summarises the previous sections by listing all the
Handel-C types, statements and operators. For a full language
description, refer to chapter 9

2.6.1 Type Summary

The following table lists all types that may be associated with a
variable.

Type Width
char 8 bits
unsigned char 8 bits
short 16 bits
unsigned short 16 bits
long 32 bits
unsigned long 32 bits
int See note 1
unsigned int See note 1
int n n bits
unsigned int n n bits
int undefined Compiler infers width
unsigned int undefined Compiler infers width
unsigned See note 1
unsigned n n bits
unsigned undefined Compiler infers width

Note 1: Width will be inferred by compiler unless the 'set
intwidth = n' command appears before the declaration. See

Section 2.3.4 for details.

The following table lists all prefixes to the above types for different
object types.

Prefix Object
chan Channel
chanin Simulator channel (see chapter 6)
chanout Simulator channel (see chapter 6)
ram Internal or external RAM
rom Internal or external ROM

Handel-C Language Reference Manual

46

2.6.2 Statement Summary

The following table lists all statements in the Handel-C language.

Note that the assignment group of operations and the increment
and decrement operations are included as statements to reflect the
fact that Handel-C expressions cannot contain side effects.

Statement Meaning
par {...} Parallel composition
Variable = Expression; Assignment
Variable ++; Increment
Variable --; Decrement
++ Variable; Increment
-- Variable; Decrement
Variable += Expression; Add and assign
Variable -= Expression; Subtract and assign
Variable *= Expression; Multiply and assign
Variable <<= Constant; Shift left and assign
Variable >>= Constant; Shift right and assign
Variable &= Expression; AND and assign
Variable |= Expression; OR and assign
Variable ^= Expression; XOR and assign
Channel ? Variable; Channel input
Channel ! Expression; Channel output
if (Expression) {...} else {...} Conditional execution
while (Expression) {...} Iteration
do {...} while (Expression); Iteration
for (Init ; Test ; Iter) {...} Iteration
break; Loop termination
switch (Expression) {...} Selection
prialt {...} Channel alternation
delay; Single cycle delay

Note: Internal RAM and ROM elements and array elements are
included in the set of variables in this table.

Language Basics

47

2.6.3 Operator Summary

The following table lists all operators in the Handel-C language.

Operator Meaning
Array [Constant] Array subscripting
Expression [Constant] Bit selection
Expression [Constant:Constant] Bit range extraction
RAM [Expression] RAM/ROM subscript
! Expression Logical NOT
~ Expression Bitwise NOT
- Expression Unary minus
(Type)Expression Type casting
Expression <- Constant Take LSBs
Expression \\ Constant Drop LSBs
Expression * Expression Multiplication
Constant / Constant Division
Constant % Constant Modulo arithmetic
Expression + Expression Addition
Expression - Expression Subtraction
Expression << Constant Shift left
Expression >> Constant Shift right
Expression @ Expression Concatenation
Expression < Expression Less than
Expression > Expression Greater than
Expression <= Expression Less than or equal
Expression >= Expression Greater than or equal
Expression == Expression Equal
Expression != Expression Not equal
Expression & Expression Bitwise AND
Expression ^ Expression Bitwise XOR
Expression | Expression Bitwise OR
Expression && Expression Logical AND
Expression || Expression Logical OR
Expression ? Expr : Expr Conditional selection
width(Expression) Width of expression
select(Constant, Expr, Expr) Compile-time selection

Note: Here, Constant means a compile time constant. The select
construct is described in chapter 4.

In this table, entries at the top have the highest precedence and
entries at the bottom have the lowest precedence. Entries within
the same group have the same precedence.

Handel-C Language Reference Manual

48

3. Basic Examples

Handel-C Language Reference Manual

50

3.1 Introduction

In this chapter the basic language features discussed in the
previous chapter are used in various examples designed to
illustrate the usage of the language.

The first example simply takes a number of values from the user
and calculates the sum of those values.

The second example divides one integer by another and calculates
the integer result.

The third example illustrates the use of channels by implementing a
queue.

Finally, a complete simple microprocessor example is presented
which illustrates that complex hardware can be generated from very
simple Handel-C programs.

The examples in this chapter all use the simulator provided with the
Handel-C compiler to execute the programs and so do not require
any additional hardware platform.

All the examples in this chapter are provided on the disk with the
compiler. Refer to the Handel-C Compiler Reference Manual for
details of the directory structure.

Basic Examples

51

3.2 The Accumulator Example

This program takes a number of values from the user and
calculates the sum of those values. It illustrates the basics of
producing a Handel-C program and demonstrates the use of the
simulator to help get programs correct before implementation in
hardware.

3.2.1 Source Code Listing

The complete Handel-C listing is shown below. This program is
also provided on the disk with the Handel-C compiler.

void main(void)
{
 unsigned int 16 sum;
 unsigned int 8 data;
 chanin input;
 chanout output;

 sum = 0;
 do
 {
 input ? data;
 sum = sum + (0 @ data);
 } while (data!=0);

 output ! sum;
}

Handel-C Language Reference Manual

52

3.2.2 Compiling and Simulating the Program

Compilation and simulation of the program is performed by typing
the following at the command prompt:

> handelc -s sum.c

This will generate some lines something like this:

 Compiled : 0 gates, 0 inverters, 4 latches, 26 others
Optimised : 0 gates, 0 inverters, 4 latches, 23 others
 Expanded : 75 gates, 19 inverters, 30 latches, 8 others
Optimised : 26 gates, 4 inverters, 30 latches, 8 others

This is the result of the compilation phase and details the number of
hardware gates required to implement the program. The simulator
then starts immediately and prompts you for some input. Continue
to type in numbers until you wish to quit when you should enter
zero. The simulator then asks you whether you are ready for the
output from the program. When you respond with a 'y', the
simulator returns the sum of the numbers that you typed in. An
example session might look something like this:

 0: sum=0 data=0
 1: sum=0 data=0
 1: Input to `input' ? 1
 2: sum=0 data=1
 3: sum=1 data=1
 3: Input to `input' ? 2
 4: sum=1 data=2
 5: sum=3 data=2
 5: Input to `input' ? 3
 6: sum=3 data=3
 7: sum=6 data=3
 7: Input to `input' ? 4
 8: sum=6 data=4
 9: sum=10 data=4
 9: Input to `input' ? 0
 10: sum=10 data=0
 11: sum=10 data=0
 11: Ready to accept output from `output' ? (y/n) y
 11: Output from channel `output' = 10
 12: sum=10 data=0

Basic Examples

53

3.2.3 Detailed Explanation

At this point, a detailed explanation of the example is required.
Looking at the program the first line simply declares the main()
function as you would expect in conventional C. Note that the
main() function in Handel-C takes no parameters and returns no
value as you would expect in a hardware implementation - the
compiler does not know where data should come from and where it
should go. If parameters and return values are required for your
program you should explicitly transfer the values to your
surrounding environment. See chapter 6 for how to interface your
Handel-C programs with the outside world.

The next couple of lines of the program declare two variables, sum
and data. Both variables are unsigned integers - sum is 16 bits
wide and data is 8 bits wide.

Next, two channels are declared, input and output. Note that the
channels are declared with the chanin and chanout keywords
rather than the normal chan keyword. This tells the compiler to
connect the input or output of the channel to the simulator so that
you can type values to be passed into the channel and see the
outputs from channels on the screen. Interfacing with the simulator
is discussed in more detail in chapter 6 but for now it is enough to
see how to pass single words between your program and the
simulator.

Note that the channels have been declared without a specific width
or type. The Handel-C compiler creates channels of the correct
width and type for the usage of the channels. In this case, the
compiler can infer that the input channel must be 8 bits wide and
unsigned from the input statement:

input ? data;

Since the variable data is explicitly defined to be 8 bits wide, the
input channel must also be 8 bits wide. If the data variable
declaration were modified to make it 10 bits wide, the input
channel would then become 10 bits wide also. Thus, you can see
that you need not explicitly declare the width of all items in the
program although you may if you wish.

Using similar arguments, the output channel in this example is
inferred to be 16 bits wide.

Handel-C Language Reference Manual

54

The line following the channel declarations initialises the variable
sum to zero. Note that there is no width associated with the
constant 0. The compiler can infer that its width must be equal to
the width of the sum variable - in this case 16 bits.

The main part of the program is the do...while loop. This construct
should be familiar from conventional C. The loop is executed until
the data variable becomes 0. Since the loop is a do...while
construct rather than a while loop, it is executed at least once.

The first statement in the loop reads a value from the input
channel into the variable data. As discussed earlier, the input
channel is connected to the simulator because it was declared with
the chanin keyword so whenever this statement is executed, the
user is prompted for some input to the channel.

The second statement in the loop adds the value read from the
input channel to the running total stored in the variable sum. The
variables data and sum are not of the same width so the data
variable must be padded with zeros in its most significant bits
before being added to the previous value in sum. The constant zero
does not have a width associated with it - the compiler can infer that
it must be 8 bits wide from the fact that sum is 16 bits and data is 8
bits wide.

Finally, the last statement simply outputs the sum on the output
channel. Since the output channel was declared with the chanout
keyword, this causes the simulator to wait for the user to become
ready before displaying the result on the screen.

3.2.4 Summary

Although this example is extremely simple it illustrates most of the
important points of writing programs in Handel-C. It covers
variables of differing widths, channels, connecting to the simulator
and basic statements and expressions. The next examples build on
this to introduce more complex features of the language.

Basic Examples

55

3.3 The Divider Example

This program does simple integer division using the long division
method. The program is an infinite loop so multiple runs can be
performed without recompiling. It inputs two values, a and b, and
returns the integer part of a/b. Although not very useful in itself, the
body of the program could be run in parallel with some other task,
giving Handel-C programs access to division which is not provided
as one of the standard arithmetic operators.

3.3.1 Source Code Listing

The complete Handel-C listing is shown below. This program is
also provided on the disk with the Handel-C compiler.

#define DATA_WIDTH 16
void main(void)
{
 unsigned int DATA_WIDTH a, mult, result;
 unsigned int (DATA_WIDTH*2 - 1) b;
 chanin input;
 chanout output;

 while (1)
 {
 input ? a;
 input ? result;
 b = result @ 0;
 mult = 1<<(DATA_WIDTH-1);
 result = 0;
 while (mult!=0)
 {
 if ((0 @ a) >= b)
 par
 {
 a -= b <- width(a);
 result |= mult;
 }
 par
 {
 b = b >> 1;
 mult = mult >> 1;
 }
 }
 output ! result;
 }
}

Handel-C Language Reference Manual

56

3.3.2 Compiling and Simulating the Program

Compilation and simulation of the program is performed by typing
the following at the command prompt:

> handelc -s divide.c

This generates some lines something like this:

 Compiled : 1 gate, 0 inverters, 10 latches, 60 others
Optimised : 1 gate, 0 inverters, 7 latches, 52 others
 Expanded : 521 gates, 179 inverters, 89 latches, 14 others
Optimised : 331 gates, 72 inverters, 89 latches, 12 others

This is the result of the compilation phase and details the number of
hardware gates required to implement the program. The simulator
then starts immediately and prompts you for some input. The first
input is the value of a, the second is the value of b. The simulator
then executes the program and returns the integer value of a/b. An
example session might look something like this:

 0: a=0 mult=0 result=0 b=0
 0: Input to `input' ? 56
 1: a=56 mult=0 result=0 b=0
 1: Input to `input' ? 6
 2: a=56 mult=0 result=6 b=0
 3: a=56 mult=0 result=6 b=196608
 4: a=56 mult=32768 result=6 b=196608
 5: a=56 mult=32768 result=0 b=196608
 6: a=56 mult=16384 result=0 b=98304
 7: a=56 mult=8192 result=0 b=49152
 8: a=56 mult=4096 result=0 b=24576
 9: a=56 mult=2048 result=0 b=12288
 10: a=56 mult=1024 result=0 b=6144
 11: a=56 mult=512 result=0 b=3072
 12: a=56 mult=256 result=0 b=1536
 13: a=56 mult=128 result=0 b=768
 14: a=56 mult=64 result=0 b=384
 15: a=56 mult=32 result=0 b=192
 16: a=56 mult=16 result=0 b=96
 17: a=56 mult=8 result=0 b=48
 18: a=8 mult=8 result=8 b=48
 19: a=8 mult=4 result=8 b=24
 20: a=8 mult=2 result=8 b=12
 21: a=8 mult=1 result=8 b=6
 22: a=2 mult=1 result=9 b=6
 23: a=2 mult=0 result=9 b=3
 23: Ready to accept output from `output' ? (y/n) y
 23: Output from channel `output' = 9
 24: a=2 mult=0 result=9 b=3

The program has correctly calculated that the integer part of 56/6 is
9.

Basic Examples

57

3.3.3 Detailed Explanation

Although the algorithm is a standard long division, some
explanation of the details is now in order. The two values
corresponding to the dividend and divisor are input from the
simulator in that order via the input channel.

The variable mult contains a single bit, initially in the most
significant bit, which is shifted right by 1 place at each iteration.
The variable b is maintained to be the divisor multiplied by mult at
each stage.

The comparison in the if statement checks whether a is greater
than mult multiplied by the divisor (which is stored in b). If this is
the case then mult multiplied by the divisor (stored in b) is
subtracted from a and mult is added to the result.

When mult reaches zero, the division is complete and the result is
output on the output channel.

For clarification, refer to the example traced out by the simulator for
56/6. The while loop starts at cycle 5 and ends at cycle 22. You
can see that at each stage mult is divided by 2 and that b is
maintained as mult multiplied by the divisor, 6. At each stage
where a is greater than b, result has mult added to it and a has b
subtracted from it.

By cycle 23, result contains 9 which is the correct answer for this
calculation and a is the remainder of the division - i.e. 2.

3.3.4 Summary

While this example may seem trivial and tedious you should bear in
mind what has been achieved. This program, with the help of the
Handel-C compiler, has generated the hardware necessary for a 16
bit integer divider that executes in around 16 clock cycles (the
actual execution time depends on the values passed in this
example).

The way that this was achieved was by expressing the required
algorithm in the Handel-C language much as it could have been
done if targeting software. At no time was any knowledge of the
actual hardware of a divider required to produce the result.

Handel-C Language Reference Manual

58

3.4 The Queue Example

This program illustrates the use of parallel tasks and channel
communications by implementing a simple four place queue. Each
task holds one piece of data and has an input channel connected to
the previous queue location and an output channel connected to the
next queue location.

3.4.1 Source Code Listing

The complete Handel-C listing is shown below. This program is
also provided on the disk with the Handel-C compiler.

void main(void)
{
 chan unsigned int undefined link[3];
 chanin unsigned int 8 input;
 chanout unsigned int 8 output;
 unsigned int undefined state[4];

 par
 {
 // First queue location
 while (1)
 {
 input ? state[0];
 link[0] ! state[0];
 }
 // Second queue location
 while (1)
 {
 link[0] ? state[1];
 link[1] ! state[1];
 }
 // Third queue location
 while (1)
 {
 link[1] ? state[2];
 link[2] ! state[2];
 }
 // Fourth queue location
 while (1)
 {
 link[2] ? state[3];
 output ! state[3];
 }
 }
}

Basic Examples

59

3.4.2 Compiling and Simulating the Program

Compilation and simulation of the program is performed by typing
the following at the command prompt:

> handelc -s queue.c

This generates some lines something like this:

 Compiled : 0 gates, 0 inverters, 8 latches, 52 others
Optimised : 0 gates, 0 inverters, 8 latches, 41 others
 Expanded : 63 gates, 13 inverters, 52 latches, 7 others
Optimised : 32 gates, 9 inverters, 52 latches, 7 others

This is the result of the compilation phase and details the number of
hardware gates required to implement the program. The simulator
then starts immediately and prompts you for some input. You
should continue to input data and read data from the queue and find
that the output is delayed by 4 clock cycles from the input. An
example session might look something like this:

 0: state[0]=0 state[1]=0 state[2]=0 state[3]=0
 0: Input to `input' ? 1
 1: state[0]=1 state[1]=0 state[2]=0 state[3]=0
 2: state[0]=1 state[1]=1 state[2]=0 state[3]=0
 2: Input to `input' ? 2
 3: state[0]=2 state[1]=1 state[2]=1 state[3]=0
 4: state[0]=2 state[1]=2 state[2]=1 state[3]=1
 4: Ready to accept output from `output' ? (y/n) y
 4: Output from channel `output' = 1
 4: Input to `input' ? 3
 5: state[0]=3 state[1]=2 state[2]=2 state[3]=1
 6: state[0]=3 state[1]=3 state[2]=2 state[3]=2
 6: Ready to accept output from `output' ? (y/n) y
 6: Output from channel `output' = 2
 6: Input to `input' ? 4
 7: state[0]=4 state[1]=3 state[2]=3 state[3]=2
 8: state[0]=4 state[1]=4 state[2]=3 state[3]=3
 8: Ready to accept output from `output' ? (y/n) y
 8: Output from channel `output' = 3
 8: Input to `input' ? 5
 9: state[0]=5 state[1]=4 state[2]=4 state[3]=3
 10: state[0]=5 state[1]=5 state[2]=4 state[3]=4
 10: Ready to accept output from `output' ? (y/n) y
 10: Output from channel `output' = 4
 10: Input to `input' ? 6
 11: state[0]=6 state[1]=5 state[2]=5 state[3]=4
 12: state[0]=6 state[1]=6 state[2]=5 state[3]=5
 12: Ready to accept output from `output' ? (y/n) y
 12: Output from channel `output' = 5

Note how data is delayed by 4 clock cycles. For example, the value
3 was input on clock cycle 4 and output on clock cycle 8.

Handel-C Language Reference Manual

60

3.4.3 Detailed Explanation

This example uses four parallel tasks each containing one word of
data as its state. At each iteration, one word is passed between
each of these tasks in a chain like this:

The links between the processes are entries in the links array of
channels while the input and output to and from the system are
connected to the simulator using the now familiar chanin and
chanout keywords.

The queue only reads data and writes data on every other clock
cycle.

3.4.4 Summary

This example has shown how to create parallel tasks and how to
communicate between those tasks. It has also illustrated arrays of
variables and arrays of channels.

Also, the queue presented here is parameterised on the width of the
input and output channels because the width of all internal variables
are undefined and inferred by the compiler.

State[0] State[1] State[2] State[3]

Basic Examples

61

3.5 The Microprocessor Example

As a final example for this chapter, Handel-C is used to implement
a simple microprocessor. This microprocessor executes a program
stored in ROM to calculate the first few members of the Fibonacci
number sequence.

3.5.1 Source Code Listing

The complete Handel-C listing is shown below. This program is
also provided on the disk with the Handel-C compiler.

chanin input;
chanout output;

// Parameterisation
#define dw 32 /* Data width */
#define opcw 4 /* Op-code width */
#define oprw 4 /* Operand width */

#define rom_aw 4 /* Width of ROM address bus */
#define ram_aw 4 /* Width of RAM address bus */

// The opcodes
#define HALT 0
#define LOAD 1
#define LOADI 2
#define STORE 3
#define ADD 4
#define SUB 5
#define JUMP 6
#define JUMPNZ 7
#define INPUT 8
#define OUTPUT 9

// The assembler macro
#define _asm_(opc, opr) (opc + (opr << opcw))

// Rom program data
rom unsigned int undefined program[] =
{
 asm(LOADI, 1), /* 0 */ /* Get a one */
 asm(STORE, 3), /* 1 */ /* Store this */
 asm(STORE, 1), /* 2 */
 asm(INPUT, 0), /* 3 */ /* Read value from user */
 asm(STORE, 2), /* 4 */ /* Store this */
 asm(LOAD, 1), /* 5 */ /* Loop entry point */
 asm(ADD, 0), /* 6 */ /* Make a fib number */
 asm(STORE, 0), /* 7 */ /* Store it */
 asm(OUTPUT, 0), /* 8 */ /* Output it */
 asm(ADD, 1), /* 9 */ /* Make a fib number */
 asm(STORE, 1), /* a */ /* Store it */
 asm(OUTPUT, 0), /* b */ /* Output it */
 asm(LOAD, 2), /* c */ /* Decrement counter */
 asm(SUB, 3), /* d */
 asm(JUMPNZ, 4), /* e */ /* Repeat if not zero */
 asm(HALT, 0) /* f */

Handel-C Language Reference Manual

62

};

/* RAM for processor */
ram unsigned int dw data[1 << ram_aw];

/* Processor registers */
unsigned int rom_aw pc; /* Program counter */
unsigned int (opcw+oprw) ir; /* Instruction register */
unsigned int dw x; /* Accumulator */

/* Macros to extract opcode and operand fields */
#define opcode (ir <- opcw)
#define operand (ir \\ opcw)

/* Main program */
void main(void)
{
 pc = 0;

 // Processor loop
 do
 {
 // fetch
 par
 {
 ir = program[pc];
 pc = pc + 1;
 }

 // decode and execute
 switch (opcode)
 {
 case LOAD : x = data[operand<-ram_aw]; break;
 case LOADI : x = 0 @ operand; break;
 case STORE : data[operand<-ram_aw] = x; break;
 case ADD : x = x+data[operand<-ram_aw]; break;
 case SUB : x = x-data[operand<-ram_aw]; break;
 case JUMP : pc = operand<-rom_aw; break;
 case JUMPNZ : if (x!=0) pc=operand<-rom_aw; break;
 case INPUT : input ? x; break;
 case OUTPUT : output ! x; break;
 default : while(1) delay; // unknown opcode
 }

 } while (opcode != HALT);
}

Basic Examples

63

3.5.2 Compiling and Simulating the Program

Compilation and simulation of the program is performed by typing
the following at the command prompt:

> handelc -s proc.c

This generates some lines something like this:

 Compiled : 1 gate, 0 inverters, 13 latches, 120 others
Optimised : 1 gate, 0 inverters, 12 latches, 101 others
 Expanded : 509 gates, 55 inverters, 58 latches, 23 others
Optimised : 369 gates, 79 inverters, 57 latches, 22 others

This is the result of the compilation phase and details the number of
hardware gates required to implement the program.

The simulator then starts immediately and prompts you for some
input. You should enter a number here. The simulator then
continues and outputs 2xn numbers from the Fibonacci series
where n is the number you entered.

 0: pc=0 ir=0 x=0
 1: pc=0 ir=0 x=0
 2: pc=1 ir=18 x=0
 3: pc=1 ir=18 x=1
 4: pc=2 ir=51 x=1
 5: pc=2 ir=51 x=1
 6: pc=3 ir=19 x=1
 7: pc=3 ir=19 x=1
 8: pc=4 ir=8 x=1
 8: Input to `input' ? 2
 9: pc=4 ir=8 x=2
 10: pc=5 ir=35 x=2
 11: pc=5 ir=35 x=2
 12: pc=6 ir=17 x=2
 13: pc=6 ir=17 x=1
 14: pc=7 ir=4 x=1
 15: pc=7 ir=4 x=1
 16: pc=8 ir=3 x=1
 17: pc=8 ir=3 x=1
 18: pc=9 ir=9 x=1
 18: Ready to accept output from `output' ? (y/n) y
 18: Output from channel `output' = 1
 19: pc=9 ir=9 x=1
 20: pc=10 ir=20 x=1
 21: pc=10 ir=20 x=2
 22: pc=11 ir=19 x=2
 23: pc=11 ir=19 x=2
 24: pc=12 ir=9 x=2
 24: Ready to accept output from `output' ? (y/n) y
 24: Output from channel `output' = 2
 25: pc=12 ir=9 x=2

Handel-C Language Reference Manual

64

 26: pc=13 ir=33 x=2
 27: pc=13 ir=33 x=2
 28: pc=14 ir=53 x=2
 29: pc=14 ir=53 x=1
 30: pc=15 ir=71 x=1
 31: pc=4 ir=71 x=1
 32: pc=5 ir=35 x=1
 33: pc=5 ir=35 x=1
 34: pc=6 ir=17 x=1
 35: pc=6 ir=17 x=2
 36: pc=7 ir=4 x=2
 37: pc=7 ir=4 x=3
 38: pc=8 ir=3 x=3
 39: pc=8 ir=3 x=3
 40: pc=9 ir=9 x=3
 40: Ready to accept output from `output' ? (y/n) y
 40: Output from channel `output' = 3
 41: pc=9 ir=9 x=3
 42: pc=10 ir=20 x=3
 43: pc=10 ir=20 x=5
 44: pc=11 ir=19 x=5
 45: pc=11 ir=19 x=5
 46: pc=12 ir=9 x=5
 46: Ready to accept output from `output' ? (y/n) y
 46: Output from channel `output' = 5
 47: pc=12 ir=9 x=5
 48: pc=13 ir=33 x=5
 49: pc=13 ir=33 x=1
 50: pc=14 ir=53 x=1
 51: pc=14 ir=53 x=0
 52: pc=15 ir=71 x=0
 53: pc=0 ir=0 x=0

Thus, the first 4 numbers, 1, 2, 3 and 5 have been returned
correctly.

3.5.3 Detailed Explanation

The system described in this example consists of a ROM containing
the program to execute, a RAM containing some scratch variables
and a processor that understands 10 opcodes. Each instruction is
made up of a 4 bit opcode and a 4 bit operand. The _asm_
preprocessor macro is the assembler for this language and is used
to fill in the entries in the program ROM declaration.

The processor has three registers: a program counter, pc, that
points to the next instruction to be fetched from the ROM, an
instruction register, ir, containing the instruction being executed
and an accumulator register, x, used as one input to the 'ALU'.

The instructions that the processor can execute are:

Basic Examples

65

Opcode Description
HALT Stop processing
LOAD Load a value from RAM into x
LOADI Load a constant into x
STORE Store x to RAM
ADD Add a value from RAM to x
SUB Subtract a value from RAM from x
JUMP Unconditional jump to a ROM location
JUMPNZ Jump to a ROM location if x is not 0
INPUT Read a word from user into x
OUTPUT Write x to the user

Using these instructions, a ROM is built containing a program to
generate the Fibonacci numbers.

The execution unit of the processor simply fetches instructions from
the program ROM and executes them using a switch statement.

3.5.4 Summary

This example has demonstrated a large number of the most
common constructs used in Handel-C. While it may appear to be a
simple example it should be easy to see how this example could be
extended to implement a more complex processor.

What we have produced here is a processor which only contains
the instructions necessary to calculate Fibonacci numbers. It is
equally possible to produce processors which contain specialised
instructions for any application. Thus, you could use Handel-C to
develop processors capable of executing programs for specialised
applications with the minimum of effort.

Handel-C Language Reference Manual

66

4. Macros

Handel-C Language Reference Manual

68

4.1 Introduction

As mentioned in previous chapters, the Handel-C compiler passes
source code through a standard C preprocessor before compilation
allowing the use of #define to define constants and macros in the
usual manner. There are some limitations to this approach. Since
the preprocessor can only perform textual substitution, some useful
macro constructs cannot be expressed. For example, there is no
way to create recursive macros using the preprocessor.

Handel-C provides additional macro support as part of the language
which allows more powerful macros to be defined (for example,
recursive macro expressions). In addition, Handel-C supports
shared macros to generate one piece of hardware which is shared
by a number of parts of the overall program similar to the way that
procedures allow conventional C to share one piece of code
between many parts of a conventional program.

This chapter details how to define macros and shared hardware.

Macros

69

4.2 Macro Expressions

Macros may be used to replace expressions to avoid tedious
repetition. Handel-C provides some powerful macro constructs to
allow complex expressions to be generated simply.

4.2.1 Constant Macro Expressions

This first form of the macro is an expression. For example:

macro expr DATA_WIDTH = 15;

int DATA_WIDTH x;

This form of the macro is similar to the #define macro. Whenever
DATA_WIDTH appears in the program, the constant 15 is inserted in
its place.

More generally, real expressions can be used. For example:

macro expr sum = (x + y) @ (y + z);

v = sum;
w = sum;

4.2.2 Parameterised Macro Expressions

Handel-C also allows macros with parameters. For example:

macro expr add3(x) = x+3;

y = add3(z);

This is equivalent to the following code:

y = z + 3;

Again, this form of the macro is similar to the #define macro in that
every time the add3() macro is referenced, it is expanded in the
manner shown above. In other words, in this example, an adder is
generated in hardware every time the add3() macro is used.

Handel-C Language Reference Manual

70

4.2.3 The select Operator

Handel-C provides a select(...)operator which is used to mean
‘select at compile time’. Its general usage is:

select(Expression, Expression, Expression)

Here, the first expression must be a compile time constant. If the
first expression evaluates to true then the Handel-C compiler
replaces the whole expression with the second expression. If the
first expression evaluates to false then the Handel-C compiler
replaces the whole expression with the second expression. The
difference between this and the ? : operators is best illustrated with
an example.

w = (width(x)==4 ? y : z);

This example generates hardware to compare the width of the
variable x with 4 and set w to the value of y or z depending on
whether this value is equal to 4 or not. This is probably not what
was intended in this case because both width(x) and 4 are
constants. What was probably intended was for the compiler to
check whether the width of x was 4 and then simply replace the
whole expression above with y or z according to the value. This
can be written as follows:

w = select(width(x)==4 , y , z);

In this example, the compiler evaluates the first expression and
replaces the whole line with either w=y; or w=z;. No hardware for
the conditional is generated.

A more useful example can be seen when macros are combined
with this feature. For example:

macro expr adjust(x, n) =
 select(width(x) < n, (0 @ x), (x <- n));

unsigned 4 a;
unsigned 5 b;
unsigned 6 c;

b = adjust(a, width(b));
b = adjust(c, width(b));

This example is for a macro that equalises widths of variables in an
assignment. If the right hand side of an assignment is narrower
than the left hand side then the right hand side must be padded with

Macros

71

zeros in its most significant bits. If the right hand side is wider than
the left hand side, the least significant bits of the right hand side
must be taken and assigned to the left hand side.

The select(...) operator is used here to tell the compiler to
generate different expressions depending on the width of one of the
parameters to the macro. The last two lines of the example could
have been written by hand as follows:

b = 0 @ a;
b = c <- 5;

However, the macro comes into its own if the width of one of the
variables changes. For example, suppose that during debugging, it
is discovered that the variable a is not wide enough and needs to
be 8 bits wide to hold some values used during the calculation. By
using the macro, the only change required would be to alter the
declaration of the variable a. The compiler would then replace the
statement b = 0 @ a; with b = a <- 5; automatically.

Another example of where this form of macro comes in useful is
when variables of undefined width are used. If the compiler is used
to infer widths of variables, it may be tedious to work out by hand
which form of the assignment is required. By using the select(...)
operator in this way, the correct expression is generated without
you having to know the widths of variables at any stage.

4.2.4 Recursive Macro Expressions

A serious limitation with preprocessor macros (those defined with
#define) is their inability to generate recursive expressions. By
combining Handel-C macros (those defined with macro expr) and
the select(...) operator discussed above, recursive macros can be
used to simply express complex hardware. This type of macro is
particularly important in Handel-C where the exact form of the
macro may depend on the width of a parameter to the macro.

As an example, let us take sign extension of a variable. When
assigning a narrow signed variable to a wider variable, the most
significant bits of the wide variable should be padded with the sign
bit (MSB) of the narrow variable. For example, the 4 bit
representation of -2 is 0b1110. When assigned to an 8 bit wide
variable, this should become 0b11111110. In contrast, the 4 bit
representation of 6 is 0b0110. When assigned to an 8 bit wide
variable, this should become 0b00000110.

Handel-C Language Reference Manual

72

In this example, the following code would suffice:

int 8 x;
int 4 y;

x = y[3] @ y[3] @ y[3] @ y[3] @ y;

As you can see, this can rapidly become tedious for variables that
differ by a significant number of bits. Also, what if the exact widths
of the variables are not known? What is needed is a macro to sign
extend a variable. For example:

macro expr copy(x, n) =
 select(n==1, x, (x @ copy(x, n-1)));

macro expr extend(y, m) =
 copy(y[width(y)-1], m-width(y)) @ y;

int a;
int b; // Where b is known to be wider than a

b = extend(a, width(b));

Here, the copy macro generates n copies of the expression x
concatenated together. The macro is recursive and uses the
select(...) operator to evaluate whether it is on its last iteration in
which case it just evaluates to the expression or whether it should
continue to recurse by a further level.

The extend macro simply concatenates the sign bit of its parameter
m-k times onto the most significant bits of the parameter. Here, m
is the required width of the expression y and k is the actual width of
the expression y.

The final assignment correctly sign extends a to the width of b for
any variable widths where width(b) is greater than width(a).

4.2.5 Recursive Macro Expressions - A Larger Example

A second example of the use of recursive macro expressions is
now given to illustrate the generation of large quantities of hardware
from simple macros. The example used is that of a multiplier
whose width depends on the parameters of the macro. Although
Handel-C includes a multiplication operator as part of the language,
this example serves as a starting point for generating large regular
hardware structures using macros.

Macros

73

The multiplier generates the hardware for a single cycle long
multiplication operation from a single macro. The source code is:

macro expr multiply(x, y) =
 select(width(x) == 0, 0,
 multiply(x \\ 1, y << 1) +
 (x[0] == 1 ? y : 0));

a = multiply (b , c);

At each stage of recursion, the multiplier tests whether the bottom
bit of the x parameter is 1. If it is then y is added to the ‘running
total’. The multiplier then recurses by dropping the LSB of x and
multiplying y by 2 until there are no bits left in x. The overall result
is an expression that is the sum of each bit in x multiplied by y
which is the familiar long multiplication structure. For example, if
both parameters are 4 bits wide, the macro expands to:

a = ((b \\ 3)[0]==1 ? c<<3 : 0) +
 ((b \\ 2)[0]==1 ? c<<2 : 0) +
 ((b \\ 1)[0]==1 ? c<<1 : 0) +
 (b[0]==1 ? c : 0);

This code is equivalent to:

a = ((b & 8)==1 ? c*8 : 0) +
 ((b & 4)==1 ? c*4 : 0) +
 ((b & 2)==1 ? c*2 : 0) +
 ((b & 1)==1 ? c : 0);

which is a standard long multiplication calculation.

4.2.6 Shared Expressions

By default, Handel-C generates all the hardware required for every
expression in the whole program. In many programs, this means
that large parts of the hardware will be idle for long periods of time.
The shared expression allows hardware to be shared between
different parts of the program to decrease hardware usage.

The shared expression has the same format as a macro expression
but does not allow recursion.

An example program where shared expressions are extremely
useful is:

Handel-C Language Reference Manual

74

a = b * c;
d = e * f;
g = h * i;

Here, three multipliers will be generated but each one will only be
used once and none of them simultaneously. This is a massive
waste of hardware. The way to improve this program is:

shared expr mult(x, y) = x * y;

a = mult(b, c);
d = mult(e, f);
g = mult(h, i);

In this example, only one multiplier is built and it is used on every
clock cycle which is a better use of hardware. (In fact, the above
example could be built as three multipliers executing in parallel if
the maximum performance is required).

It is not always the case that less hardware is generated by using
shared expressions because multiplexers may need to be built to
route the data paths. Some expressions use less hardware than
the multiplexers associated with the shared expression.

4.2.7 Using Recursion to Generate Shared Expressions

Although shared expressions cannot use recursion directly, macro
expressions can be used to generate hardware which can then be
shared using a shared expression. For example, to share the
recursive multiplier macro example above you could write:

macro expr multiply(x, y) =
 select(width(x) == 0, 0,
 multiply(x \\ 1, y << 1) +
 (x[0] == 1 ? y : 0));

shared expr mult(x, y) = multiply(x, y);

a = mult(b, c);
d = mult(e, f);

Here, the macro expression builds a multiplier and the shared
expression allows that hardware to be shared between the two
assignments.

Macros

75

4.2.8 Restrictions on Shared Expressions

A limitation to shared expressions is that they must not be shared
by two different parts of the program on the same clock cycle. For
example:

shared expr mult(x, y) = x * y;

par
{
 a = mult(b, c);
 d = mult(e, f); // NOT ALLOWED
}

This is not allowed because the single multiplier is used twice in the
same clock cycle. The compiler generates a warning if you attempt
to perform such an operation.

Refer to chapter 5 for more details on timing of Handel-C programs
and for details of how you can tell which clock cycle operations are
performed on. This becomes an important skill when using shared
expressions.

Handel-C Language Reference Manual

76

4.3 Macro Procedures

Macros may be used to replace statements to avoid tedious
repetition. Handel-C provides simple macro constructs to expand
single statements into complex blocks of code.

The general syntax of macro procedures is:

macro proc Name(Params) Statement

For example:

macro proc output(x, y)
 {
 out ! x;
 out ! y;
 }

output(a + b, c * d);
output(a + b, c * d);

This example writes the two expressions a+b and c*d twice to the
channel out. This example also illustrates that the statement may
be a code block - in this case two instructions executed
sequentially.

Macro procedures generates the hardware for their statement every
time they are referenced. The above example expands to 4
channel output statements.

Macro procedures differ from preprocessor macros in that they are
not simple text replacements. The statement section of the
definition must be a valid Handel-C statement. For example:

#define test(x,y) if (x!=(y<<2))

test(a,b)
{
 a++;
}
else
{
 b++;
}

This is a valid preprocessor macro definition. However, the
following code is not allowed:

Macros

77

macro proc test(x,y) if (x!=(y<<2));

test(a,b) // NOT ALLOWED
{
 a++;
}
else
{
 b++;
}

Here, the macro procedure is not defined to be a complete
statement so the Handel-C compiler generates an error. This
restriction provides protection against writing code such as these
examples which is generally unreadable and difficult to maintain.

Handel-C Language Reference Manual

78

5. Timing and Efficiency Information

Handel-C Language Reference Manual

80

5.1 Introduction

A Handel-C program executes with one clock source for the whole
program. It is important to be aware exactly which parts of the code
execute on which clock cycles. This is not only important for writing
code that executes in fewer clock cycles but may mean the
difference between correct and incorrect code when using Handel-
C’s parallelism.

Knowing about clock cycles also becomes important when
considering interfaces to external hardware. This subject is
covered in greater detail in chapter 6 but it is important to
understand timing issues before moving on to implementing such
interfaces because it likely that the external device places
constraints on when signals should change.

This chapter also deals with the subject of overall performance. We
shall see that avoiding certain constructs has a dramatic influence
on the maximum clock rate that your Handel-C program can run at
and some guidelines are given for improving your hardware
performance.

An example is given that covers the considerations for real time
constraints on a system.

Timing and Efficiency Information

81

5.2 Clock Cycle Timing of Language Constructs

This section deals with the analysis of a program in terms of the
number of clock cycles it takes to execute. The Handel-C language
has been designed so that an experienced programmer can
immediately tell which instructions execute on which clock cycles.
This information becomes particularly important when your program
contains multiple interacting parallel processes.

5.2.1 Statement Timing

The basic rule for cycles used in a Handel-C program is:

Assignment and delay take 1 clock cycle.
Everything else is free.

What this means is that every time you write an assignment
statement or a delay statement, you use one clock cycle but you
can write any other piece of code and not use any clock cycles to
execute it.

The only exception is channel communication which takes one
clock cycle only if both parties are ready to communicate. This
means that if one parallel branch is ready to output on a channel
when another branch is ready to receive then it takes one clock
cycle for the data to be assigned to the variable in the input
statement. If one of the branches is not ready for the data transfer
then execution of the other branch waits until both branches
become ready. Even if both branches are ready for the transfer
then one clock cycle is used because channel input is a form of
assignment.

Some simple examples with their timings are shown below.

x = y;
x = (((y * z) + (w * v))<<2)<-7;

Each of these statements takes one clock cycle. Notice that even
the most complex expression can be evaluated in a single clock
cycle. Handel-C simply builds the combinatorial hardware to
evaluate such expressions, they do not need to be broken down
into simpler assembly instructions as would be the case for
conventional C.

Handel-C Language Reference Manual

82

par
{
 x = y;
 a = b * c;
}

This code executes in a single cycle because each branch of the
parallel statement takes only one clock cycle. This example
illustrates the benefits of parallelism. You can have as many non-
interdependent instructions as you wish in the branches of a parallel
statement and the total time for execution is just the length of time
that the longest branch takes to execute. For example:

par
{
 x = y;
 {
 a = b;
 c = d;
 }
}

This code takes two clock cycles to execute. On the first cycle, x =
y and a = b take place. On the second clock cycle, c = d takes
place. Since both branches of the par statement must complete
before the par block can complete, the first branch delays for one
clock cycle while the second instruction in the second branch is
executed.

x = 5;
while (x>0)
{
 x--;
}

This code takes a total of 6 clock cycles to execute. One cycle is
taken by the assignment of 5 to x. Each iteration of the while loop
takes 1 clock cycle for the assignment of x-1 to x and the loop body
is executed 5 times. Notice how the condition of the while loop
takes no clock cycles because there is no assignment involved.

for (x = 0; x < 5; x ++)
{
 a += b;
 b *= 2;
}

Timing and Efficiency Information

83

As discussed in chapter 2, this code has a direct equivalent which
is:

{
 x = 0;
 while (x<5)
 {
 a += b;
 b *= 2;
 x ++;
 }
}

This code takes 16 clock cycles to execute. One is required for the
initialisation of a and three for each execution of the body. Since
the body is executed 5 times, this gives a total of 16 clock cycles.

if (a>b)
{
 x = a;
}
else
{
 x = b;
}

This code takes exactly one clock cycle to execute. Only one of the
branches of the if statement is executed, either x = a or x = b.
Each of these assignments takes one clock cycle. Notice again that
no time is taken for the test because no assignment is made. A
slightly different example is:

if (a>b)
{
 x = a;
}

Here, if a is not greater than b, there is no else branch. This code
therefore takes either 1 clock cycle if a is greater than b or no clock
cycles if a is not greater than b.

Channel communications are more complex. The simplest example
is:

par
{
 link ! x; // Transmit
 link ? y; // Receive
}

Handel-C Language Reference Manual

84

This code takes a single clock cycle to execute because both the
transmitting and receiving branches are ready to transfer at the
same time. All that is required is the assignment of x to y which,
like all assignments, takes 1 clock cycle. A more complex example
would be:

par
{
 { // Parallel branch 1
 a = b;
 c = d;
 link ! x;
 }

 link ? y; // Parallel branch 2
}

Here, the first branch of the par statement takes a total of three
clock cycles to execute. However, the second branch of the par
statement also takes three clock cycles to execute because it must
wait for two cycles before the transmitting branch is ready. The
usage of clock cycles is as follows:

Cycle Branch 1 Branch 2
1 a = b; delay

2 c = d; delay

3 Channel output Channel input

This approach extends to all the other Handel-C statements. A
summary of statement timings is given below.

Timing and Efficiency Information

85

Statement Timing
{...} Sum of all statements in sequential block
par {...} Length of longest branch in block
Variable = Expression; 1 clock cycle
Variable ++; 1 clock cycle
Variable --; 1 clock cycle
++ Variable; 1 clock cycle
-- Variable; 1 clock cycle
Variable += Expression; 1 clock cycle
Variable -= Expression; 1 clock cycle
Variable *= Expression; 1 clock cycle
Variable <<= Constant; 1 clock cycle
Variable >>= Constant; 1 clock cycle
Variable &= Expression; 1 clock cycle
Variable |= Expression; 1 clock cycle
Variable ^= Expression; 1 clock cycle
Channel ? Variable; 1 clock cycle when transmitter is ready
Channel ! Expression; 1 clock cycle when receiver is ready
if (Expression) {...} else {...} Length of executed branch
while (Expression) {...} Length of loop body * number of iterations
do {...} while (Expression); Length of loop body * number of iterations
for (Init ; Test ; Iter) {...} Length of Init + (Length of body + length of

Iter) * number of iterations
switch (Expression) {...} Length of executed case branch
prialt {...} 1 clock cycle for case communication when

other party is ready plus length of executed
case branch
or length of default branch if present and
no communication case is ready
or infinite if no default branch and no
communication case is ready

delay; 1 clock cycle

Note: The Handel-C compiler may insert delay statements to break combinatorial loops. See
next section for details.

5.2.2 Avoiding Combinatorial Loops

Consider the following example:

while (x!=3); // WARNING!!

If x is modified in a parallel process then this loop should wait for x
to become 3 before allowing the program to continue. However,
this code is not allowed in Handel-C because it generates a

Handel-C Language Reference Manual

86

combinatorial loop in the logic because of the way that Handel-C
expressions are built to evaluate in zero clock cycles. This loop
must be broken by changing the code to:

while (x!=3)
{
 delay;
}

This loop takes no longer to execute than the first one but does not
contain a combinatorial loop because of the clock cycle delay in the
loop body.

In actual fact, the Handel-C compiler spots this form of error and
inserts the delay statement itself and generates a warning. It is
considered better practice to include the delay statement in the
code to make it more readable.

Beware of code which may look correct but has the same error. For
example:

while (x!=3)
{
 if (y>z)
 {
 a++;
 }
}

As seen above, this if statement may take zero clock cycles to
execute if y is not greater than z so even though this loop body
does not look empty a combinatorial loop is still generated. The
solution in this example is to add the else part of the if construct as
follows:

while (x!=3)
{
 if (y>z)
 {
 a++;
 }
 else
 {
 delay;
 }
}

Timing and Efficiency Information

87

Similar problems occur with do ... while loops and switch
statements.

5.2.3 Parallel Access to Variables

As discussed in chapter 1, the rules of parallelism state that the
same variable must not be accessed from two separate parallel
branches. This rule is there to avoid resource conflicts on the
variables. However, if care is taken then this rule may be relaxed
to state that the same variable must not be assigned to more than
once on the same clock cycle but may be read as many times as
required. The analysis presented in this chapter allows the
programmer to determine precisely when an assignment will take
place and avoid such conflicts.

This relaxation allows some useful and powerful programming
techniques. For example:

par
{
 a = b;
 b = a;
}

This code swaps the values of a and b in a single clock cycle.

Since exact execution time may be run-time dependant, the
Handel-C compiler cannot determine when two assignments are
made to the same variable on the same clock cycle. It therefore
generate warnings based on the strict rule that the same variable
may not be used in more than one parallel branch. These warnings
should be taken seriously and each one checked to ensure that the
relaxed rule of parallelism is still obeyed.

Using this technique, a four place queue can be written:

Handel-C Language Reference Manual

88

while(1)
{
 par
 {
 int x[3];

 x[0] = in;
 x[1] = x[0];
 x[2] = x[1];
 out = x[2];
 }
}

Here, the value of out is the value of in delayed by 4 clock cycles.
On each clock cycle, values will move one place through the x
array. For example:

Clock in x[0] x[1] x[2] out

1 5 0 0 0 0
2 6 5 0 0 0
3 7 6 5 0 0
4 8 7 6 5 0
5 9 8 7 6 5
5 10 9 8 7 6
6 11 10 9 8 7
7 12 11 10 9 8
8 13 12 11 10 9

5.2.4 Multiple Simultaneous Use of RAMs and ROMs

Beware of the following code:

x = y>z ? RamA[1] : RamA[2];

This code does not execute correctly because of the multiple use of
the RAM in the expression. The Handel-C compiler generates a
warning for this code and the simulator fails if it encounters it. The
solution is to re-write the code as follows:

x = RamA[y>z ? 1 : 2];

Here, there is only a single access to the RAM so the problem does
not occur.

Timing and Efficiency Information

89

5.2.5 Detailed Timing Example

We now illustrate the analysis of Handel-C programs by an example
that generates signals tied to real-world constraints. The example
used is the generation of a signals for a real time clock. The
signals required are for microseconds, seconds, minutes and hours.

The hardware generated will eventually be driven from an external
clock. In order to write the program, the rate of this clock must be
known so we assume a value of 5 MHz. The Handel-C program is
shown below.

The loop body takes one clock cycle to execute. The Count
variable is used to divide the clock by 5 to generate microsecond
increments. As each variable wraps round to zero, the next time
step up is incremented.

Handel-C Language Reference Manual

90

void main(void)
{
 unsigned 20 MicroSeconds;
 unsigned 6 Seconds;
 unsigned 6 Minutes;
 unsigned 16 Hours;
 unsigned 3 Count;

 par
 {
 Count = 0;
 MicroSeconds = 0;
 Seconds = 0;
 Minutes = 0;
 Hours = 0;
 }
 while (1)
 {
 if (Count!=4)
 Count++;
 else
 par
 {
 Count = 0;
 if (MicroSeconds!=999999)
 MicroSeconds++;
 else
 par
 {
 MicroSeconds = 0;
 if (Seconds!=59)
 Seconds++;
 else
 par
 {
 Seconds = 0;
 if (Minutes!=59)
 Minutes++;
 else
 par
 {
 Minutes = 0;
 Hours++;
 }
 }
 }
 }
 }

Timing and Efficiency Information

91

5.3 Time Efficiency of Handel-C Hardware

Handle-C requires that the clock period for a program is longer than
the longest path through combinatorial logic in the whole program.
This means that, for example, once FPGA place and route has
been completed, the maximum clock rate for the system can be
calculated from the reciprocal of the longest path delay in the
circuit.

For example, suppose the FPGA place and route tools calculate
that the longest path delay between flip-flops in a design is 70nS.
The maximum clock rate that that circuit should be run at is then
1/70nS = 14.3MHz.

But what if this calculated rate is not fast enough for the system
performance or real time constraints? This section deals with
optimisations that can be made to your program to reduce the
longest path delay and increase the maximum possible clock rate.

5.3.1 Reducing Logic Depth

It is important to remember when designing Handel-C programs
which operations combine to produce deep logic. Deep logic
results in long path delays in the final circuit so reducing logic depth
should help to increase clock speed. Some guidelines will now be
given for reducing logic depth.

1. The operator that produces the deepest logic is multiplication. A
single cycle multiplier produces a large amount of hardware and
long delays through deep logic so you should avoid using
multipliers wherever possible. Remember that most common
multiplications can be done with the shift operators. Also
consider using a long multiplication with a loop, shift and add
routine or a pipelined multiplier (see section 5.3.2).

2. Wide adders require deep logic for the carry ripple. Consider
using more clock cycles with shorter adders. For example, to
reduce a single, 8 bit wide adder to 3, narrower adders:

Handel-C Language Reference Manual

92

unsigned 8 x;
unsigned 8 y;
unsigned 5 temp1;
unsigned 4 temp2;

par
{
 temp1 = (0@(x<-4)) + (0@(y<-4));
 temp2 = (x \\ 4) + (y \\ 4);
}
x = (temp2+(0@temp1[4])) @ temp1[3:0];

3. Avoid greater than and less than comparisons - they produce
deep logic. For example:

while (x<y)
{

 x++;
}

can be replaced with:

while (x!=y)
{

 x++;
}

The == and != comparisons produce much shallower logic
although in some cases it is possible to remove the comparison
altogether. Consider the following code:

unsigned 8 x;

x = 0;
do
{

 x = x + 1;
} while (x != 0);

This code iterates the loop body 256 times but it can be re-
written as follows:

Timing and Efficiency Information

93

unsigned 9 x;

x = 0;
do
{

 x = x + 1;
} while (!x[8]);

By widening x by a single bit and just checking the top bit, we
have removed an 8 bit comparison.

4. Reduce complex expressions into a number of stages. For
example:

x = a + b + c + d + e + f + g + h;

reduces to:

par
{
 temp1 = a + b;
 temp2 = c + d;
 temp3 = e + f;
 temp4 = g + h;
}
par
{
 temp1 = temp1 + temp2;
 temp3 = temp3 + temp4;
}
x = temp1 + temp3;

This code takes three clocks cycles as opposed to one but each
clock cycle is much shorter and so the rest of the circuit should
be speeded up by the faster clock rate permitted.

5. Avoid long strings of empty statements. Empty statements
result from, for example, missing else conditions from if
statements. For example:

Handel-C Language Reference Manual

94

if (a>b)
 x++;
if (b>c)
 x++;
if (c>d)
 x++;
if (d>e)
 x++;
if (e>f)
 x++;

If none of these conditions is met then all the comparisons must
be made in one clock cycle. By filling in the else statements
with delays, the long path through all these if statements can
be split at the expense of having each if statement take one
clock cycle whether the condition is true or not.

5.3.2 Pipelining

A classic way to increase clock rates in hardware is to pipeline. A
pipelined circuit takes more than one clock cycle to calculate any
result but can produce one result every clock cycle. The trade off is
an increased latency for a higher throughput so pipelining is only
effective if there is a large quantity of data to be processed - it is not
practical for single calculations. An example of a pipelined
multiplier is given below.

Timing and Efficiency Information

95

unsigned 8 sum[8];
unsigned 8 a[8];
unsigned 8 b[8];
chanin inputa;
chanin inputb;
chanout output;

par
{
 while(1)
 inputa ? a[0];

 while(1)
 inputb ? b[0];

 while(1)
 output ! sum[7];

 while(1)
 {
 par
 {
 macro proc level(x)
 par
 {
 sum[x] = sum[x - 1] +
 ((a[x][0] == 0) ? 0 : b[x]);
 a[x] = a[x - 1] >> 1;
 b[x] = b[x - 1] << 1;
 }

 sum[0] = ((a[0][0] == 0) ? 0 : b[0]);
 level(1);
 level(2);
 level(3);
 level(4);
 level(5);
 level(6);
 level(7);
 }
 }
}

This multiplier calculates the 8 LSBs of the result of an 8 bit by 8 bit
multiply using long multiplication. The multiplier produces one
result per clock cycle with a latency of 8 clock cycles. This means
that although any one result takes 8 clock cycles, you get a
throughput of 1 multiply per clock cycle. Since each pipeline stage
is very simple, combinatorial logic is shallow and a much higher
clock rate is achieved than would be possible with a complete
single cycle multiplier.

At each clock cycle, partial results pass through each stage of the
multiplier in the sum array. Each stage adds on 2n multiplied by the

Handel-C Language Reference Manual

96

b operand if required. The LSB of the a operand at each stage tells
the multiply stage whether to add this value or not. Stages are
generated with a macro procedure to avoid tedious repetition of
code.

Operands are fed in on every clock cycle through a[0] and b[0].
Results appear 8 clock cycles later on every clock cycle through
sum[7].

Timing and Efficiency Information

97

Handel-C Language Reference Manual

98

6. Targetting Hardware

Handel-C Language Reference Manual

100

6.1 Introduction

The previous chapters have covered most aspects of writing
Handel-C programs. What has not yet been discussed is how to
get data into and out of those programs. One of the major
advantages of using custom hardware such as that which can be
produced with Handel-C is its ability to interface directly with
external components such as RAM, custom and non-custom buses.

This chapter deals with getting data into and out from your Handel-
C program. We start with a discussion of using the simulator
provided with the Handel-C compiler to ensure that your program is
correct before moving on to detail interfacing with real hardware
devices connected to the pins of the chip containing your hardware.

The simulator executes Handel-C programs on the compiling
machine without any additional hardware. It allows output to the
screen or a file and input from the keyboard or a file. It is a
powerful tool that allows programs to be tested thoroughly before
custom hardware is manufactured.

While no specific hardware platform is detailed here, a number of
examples are given of interfacing to theoretical hardware.

Targetting Hardware

101

6.2 Interfacing with the Simulator

The earlier chapter of simple examples (chapter 3) briefly described
how to get single words from the simulator to your Handel-C
program and how to get results back to the screen. In this section,
this procedure is covered in more detail and is extended to cover
transferring blocks of data through your program to allow debugging
with real data.

6.2.1 Single Word Transfers

Communication with the simulator takes place over channels.
Special channels must be defined for inputting information from the
simulator and outputting information back to the simulator. For
example:

chanin int 8 input;
chanout int 15 output;

input ? x;
output ! y;

This example declares two channels - one for input from the
simulator and one for output to the simulator. The standard channel
communication statements can then be used to transfer data from
and to the simulator.

Note that channels connected for input from the simulator are
declared with the keyword chanin rather than chan as would be
used for internal channels. Similarly, channels connected for output
to the simulator are declared with the keyword chanout rather than
chan.

It is also valid to declare multiple channels for input and output. For
example:

chanin int 8 input_1;
chanin int 16 input_2;
chanout unsigned 3 output_1;
chanout char output_2;

input_1 ? a;
input_2 ? b;
output_1 ! (unsigned 3)(((0 @ a) + b) <- 3);
output_2 ! a;

Handel-C Language Reference Manual

102

When simulated, such a program prompts for input to the named
channels from the simulating computer and displays the name of
channels before outputting their value on the simulating computer
screen.

6.2.2 Block Data Transfers

When processing large quantities of data or repeatedly running
programs such as might be required for debugging, typing individual
words into the simulator rapidly becomes tedious. The Handel-C
simulator also has the ability to read data from a file and write
results to another file. For example:

chanin int 16 input with {infile = “in.dat”};
chanout int 16 output with
 {outfile = “out.dat”};

void main (void)
{
 while (1)
 {
 int value;

 input ? value;
 output ! value+1;
 }
}

This program reads data from the file in.dat and writes its results
to the file out.dat. The in.dat file should have one number per
line separated by newline characters (either DOS or Unix format
text files may be used). Each number may be in any format
normally used for constants by Handel-C. For example:

56
0x34
0654
0b001001

When simulated with this input file, the above program generates a
file out.dat containing the decimal results as follows:

57
53
429
10

Targetting Hardware

103

This feature allows algorithms to be debugged and tested without
needing to build actual hardware. For example, an image
processing application may store a source image in a file and place
its results in a second file. All that need be done outside the
Handel-C compiler is a conversion from the image (e.g. JPEG file)
into the text file taken by the simulator and a conversion back from
the output file to an image format. The results can then be viewed
and the correct operation of the Handel-C program confirmed.
Chapter 8 demonstrates just such a process by implementing an
edge detector in Handel-C and using the simulator to debug the
program.

Handel-C Language Reference Manual

104

6.3 Targeting FPGA Devices

The Handel-C language is designed to target real hardware
devices. There are a number of important pieces of information that
must be supplied to the compiler to allow it to do this. These are
the FPGA part that the design is to be implemented in and the
location of a clock source. These parameters are specified using
the ‘set’ command.

6.3.1 Targeting Specific Devices

In order to target a specific FPGA, the compiler must be supplied
with the FPGA part number. Ultimately, this information is passed
to the FPGA place and route tool to inform it of the device it should
target.

Targeting devices consists of two parts - the target family and the
target device. The general syntax is:

set family = Family;
set part = Chip Number;

Recognised families are:

Family Name Description
Xilinx3000 3000 series Xilinx FPGAs
Xilinx4000 4000 series Xilinx FPGAs
Xilinx4000A 4000A series Xilinx FPGAs
Xilinx4000D 4000D series Xilinx FPGAs
Xilinx4000H 4000H series Xilinx FPGAs
Xilinx4000E 4000E series Xilinx FPGAs
Xilinx4000L 4000L series Xilinx FPGAs
Xilinx4000EX 4000EX series Xilinx FPGAs
Xilinx4000XL 4000XL series Xilinx FPGAs
Xilinx4000XV 4000XV series Xilinx FPGAs
Altera6K Flex6K series Altera FPGAs
Altera8K Flex8K series Altera FPGAs
Altera10K Flex10K series Altera FPGAs

The chip number is the complete Xilinx or Altera device string. For
example:

set family = Xilinx4000E;
set part = “4010EPC84-1”;

Targetting Hardware

105

This instructs the compiler to target a XC4010E device in a PLCC84
package. It also specifies that the device is a -1 speed grade. This
last piece of information is required for the timing analysis of your
design by the Xilinx tools.

The family is used to inform the compiler of which special blocks it
may generate. The Xilinx3000 family covers all Xilinx 3000
devices with any suffix.

To target Altera devices:

set family = Altera10K;
set part = “EPF10K20RC240-3”;

This instructs the compiler to target an Altera Flex 10K20 device in
a RC240 package. It also specifies that the device is a -3 speed
grade. This last piece of information is required for the timing
analysis of your design by the Altera Max Plus II tools. Note that
when performing place and route on the resulting design, the device
and package must also be selected via the menus in the Max Plus
II software. Refer to chapter 4 in the Compiler Reference Manual
for further details of selecting FPGA part numbers.

6.3.2 Locating the Clock

Since Handel-C generates synchronous hardware, a single clock
source is required to run your program. The clock is normally
provided on one of the external pins of the FPGA but may also be
generated internally on Xilinx 4000 devices. The general syntax of
the clock specification is:

set clock = Location;

Location may be any of the following:

Location Meaning
internal Frequency Clock from internal clock

generator (Xilinx 4000
series devices only).

internal_divide Frequency Factor Clock from internal clock
generator with integer
division (Xilinx 4000 series
devices only).

external Pin Clock from device pin.
external_divide Pin Factor Clock from device pin with

integer division.

Handel-C Language Reference Manual

106

Examples of clocks taken from external device pins are:

set clock = external “P35”;
set clock = external_divide “P35” 3;

The first of these examples specifies a clock taken from pin P35.
The second of these examples specifies a clock taken from pin P35
which is divided on the FPGA by a factor of 3.

Examples of clocks taken from the Xilinx 4000 series internal clock
generator are:

set clock = internal “F8M”;
set clock = internal_divide “F8M” 3;

Currently, the frequency of the internal clock may take one of the
following values:

Specification String Frequency
“F15” 15Hz
“F490” 490Hz
“F16K” 16kHz
“F500K” 500kHz
“F8M” 8MHz

Note that the tolerance for these values is -50% to +25% so you
should not rely on the internal clock being at exactly these
frequencies.

Internal clocks are only supported on Xilinx 4000 series
parts.

The clock division specified with the internal_divide and
external_divide keywords must be a constant integer.

Targetting Hardware

107

6.4 Use of RAMs and ROMs with Handel-C

Handel-C provides support for interfacing to both on-chip and off-
chip RAMs and ROMs using the ram and rom keywords.

6.4.1 Using On-Chip RAMs in Xilinx Devices

Xilinx 4000 series devices can implement RAMs and ROMs in the
look up tables on the device. Handel-C supports the synchronous
RAMs on the 4000E, 4000EX, 4000L, 4000XL and 4000XV series
parts directly simply by declaring a RAM or ROM in the way
described in section 2.3.10. For example:

ram unsigned 6 x[34];

This will declare a RAM with 34 entries, each of which is 6 bits
wide. For simplicity, it is recommended that new designs use Xilinx
parts with synchronous RAMs.

RAM on other Xilinx 4000 series devices is asynchronous but can
still be accessed in one of three ways. If the external clock is faster
than the internal clock (i.e. the location of the clock is
internal_divide or external_divide with a division factor
greater than 1) then Handel-C can generate a write strobe for the
RAM which is positioned within the Handel-C clock cycle. This is
done with the westart and welength specifications. For example:

set clock = external_divide "P78" 4;
ram unsigned 6 x[34] with { westart = 2,
 welength = 1 };

The write strobe can be positioned with the granularity of the
external (undivided) clock. The above example starts the pulse 2
external clock cycles into the Handel-C clock cycle and gives it a
duration of 1 external clock cycle. Since the external clock is
divided by a factor of 4, this is equivalent to a strobe that starts half
way through the internal clock cycle and has a duration of one
quarter of the internal clock cycle. This signal is shown below:

External clock

Handel-C clock

Write strobe

Handel-C Language Reference Manual

108

This timing allows half a clock cycle for the RAM setup time on the
address and data lines and one quarter of a clock cycle for the RAM
hold times. This is the recommended way to access asynchronous
RAMs.

The second method of accessing asynchronous RAMs should be
used when the external clock runs at the same rate as the Handel-
C clock. It involves using multiple Handel-C RAM accesses to meet
the setup and hold times of the RAM. For example, to write to an
asynchronous RAM, the following code could be used.

ram unsigned 6 x[34];

Dummy = x[3];
x[3] = Data;
Dummy = x[3];

This code holds the address constant around the RAM write cycle.

The third method of accessing asynchronous RAMs is half way
between the two previous methods. The wegate specification
allows the write strobe to be placed in either the first half or the
second half of an undivided clock. It is still necessary to hold the
address constant either in the clock cycle before or in the clock
cycle after the access. For example:

ram unsigned 6 x[34] with { wegate = 1 };

x[3] = Data;
Dummy = x[3];

This places the write strobe in the second half of the clock cycle
(use a value of -1 to put it in the first half) and holds the address for
the clock cycle after the write. The RAM therefore has half a clock
cycle of setup time and one clock cycle of hold time on its address
lines.

6.4.2 Using On-Chip RAMs in Altera Devices

On-chip RAMs in Altera Flex10K devices use the EAB structures.
These blocks can be configured in a number of data width/address
width combinations. When writing Handel-C programs, you must
be careful not to exceed the number of EAB blocks in the target
device or the design will not place and route successfully. While it
is possible to use RAMs that do not match one of the data
width/address width combinations, EAB space may be wasted by
such a RAM.

Targetting Hardware

109

As with Xilinx devices, the RAM blocks in Flex 10K parts can be
configured to be either synchronous or asynchronous. By default,
Handel-C will use a synchronous access by utilising the falling edge
of the clock as the input clock signal to the RAM. This is the
recommended method for using RAMs.

By adding one of the westart, welength or wegate specifications
described in the previous section, the Handel-C compiler will
generate an asynchronous RAM. This may help with the timing
characteristics of the design.

RAM/ROM initialisation files with a .mif extension will be generated
on compilation to feed into the Max+Plus II software. This process
is transparent as long as they are in the same directory as the EDIF
(.edf extension) file generated by the Handel-C compiler.

6.4.3 Using External RAMs

Handel-C provides support for accessing off-chip static RAMs in the
same way as you access internal RAMs. The syntax for an external
RAM declaration is:

ram Type Name[Size] with {
offchip = 1,
data = Pins,
addr = Pins,
we = Pins,
oe = Pins,
cs = Pins};

For example, to declare a 16Kbyte by 8 bit RAM:

ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 data = {“P1”, “P2”, “P3”, “P4”,
 “P5”, “P6”, “P7”, “P8”},
 addr = {“P9”, “P10”, “P11”, “P12”,

 “P13”, “P14”, “P15”, “P16”,
 “P17”, “P18”, “P19”, “P20”,
 “P21”, “P22”},
 we = {“P23”},
 oe = {“P24”},
 cs = {“P25”}};

Note that the lists of address and data pins are in the order of most
significant to least significant. It is possible for the compiler to infer

Handel-C Language Reference Manual

110

the width of the RAM (8 bits in this example) and the number of
address lines used (14 in this example) from the RAM’s usage.
However, this is not recommended since this declaration deals with
real external hardware which has a fixed definition.

Accessing the RAM is the same as for accessing internal RAM. For
example:

ExtRAM[1234] = 23;
y = ExtRam[5678];

Similar restrictions apply as with internal RAM - only one access
may be made to the RAM in any one clock cycle. See chapter 2 for
details of this restriction.

The compiled hardware generates the following cycle for a write to
external RAM:

The compiled hardware generates the following cycle for a read
from external RAM:

Handel-C clock

Address

Data

CS#

WE#

OE#

Handel-C clock

Address

Data

CS#

WE#

OE#

Targetting Hardware

111

This cycle may not be suitable for the RAM device in use. In
particular, asynchronous static RAM may not work with the above
cycle due to setup and hold timing violations. For this reason, the
westart, welength and wegate specifications described in section
6.4.1 may also be used with external RAM declarations.

For example, to declare a 16Kbyte by 8 bit RAM with the same
strobe characteristics described in section 6.4.1:

set clock = external_divide "P99" 4;

ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 westart = 2,
 welength = 1,
 data = {“P1”, “P2”, “P3”, “P4”,
 “P5”, “P6”, “P7”, “P8”},
 addr = {“P9”, “P10”, “P11”, “P12”,
 “P13”, “P14”, “P15”, “P16”,
 “P17”, “P18”, “P19”, “P20”,
 “P21”, “P22”},
 we = {“P23”},
 oe = {“P24”},
 cs = {“P25”}};

The compiled hardware generates the following cycle for a write to
external RAM:

Handel-C clock

Address

Data

CS#

WE#

OE#

Handel-C Language Reference Manual

112

The compiled hardware generates the following cycle for a read
from external RAM:

Accessing the RAM is the same as for accessing internal RAM. For
example:

ExtRAM[1234] = 23;
y = ExtRam[5678];

Similar restrictions apply as with internal RAM - only one access
may be made to the RAM in any one clock cycle. See section 2 for
details of this restriction.

While this is the recommended method for accessing external
RAMs, the wegate specification may be used when a multiplied
clock is not available. For example, to declare a 16Kbyte by 8 bit
RAM:

ram unsigned 8 ExtRAM[16384] with {
 offchip = 1,
 wegate = 1,
 data = {“P1”, “P2”, “P3”, “P4”,
 “P5”, “P6”, “P7”, “P8”},
 addr = {“P9”, “P10”, “P11”, “P12”,
 “P13”, “P14”, “P15”, “P16”,
 “P17”, “P18”, “P19”, “P20”,
 “P21”, “P22”},
 we = {“P23”},
 oe = {“P24”},
 cs = {“P25”}};

Handel-C clock

Address

Data

CS#

WE#

OE#

Targetting Hardware

113

The compiled hardware generates the following cycle for a write to
external RAM:

The compiled hardware generates the following cycle for a read
from external RAM:

Accessing the RAM is the same as for accessing internal RAM. For
example:

ExtRAM[3] = Data;
Dummy = ExtRAM[3];

Similar restrictions apply as with internal RAM - only one access
may be made to the RAM in any one clock cycle. See section 2 for
details of this restriction.

Handel-C clock

Address

Data

CS#

WE#

OE#

Handel-C clock

Address

Data

CS#

WE#

OE#

Handel-C Language Reference Manual

114

Note that the timing diagram above may violate the hold time for
some asynchronous RAM devices. If the delay between rising
clock edge and rising write enable is longer than the delay between
rising clock edge and the change in data or address then corruption
in the write may occur in these devices. The two cycle access does
not solve this problem since it is not possible to hold the data lines
constant beyond the end of the clock cycle. If this causes a
problem then a multiplied external clock must be used as described
above.

Using the wegate specification may violate the hold time
for some asynchronous RAM devices.

6.4.4 Using External ROMs

External ROMs are simply declared as an external RAM with an
empty write enable pin list. For example:

ram unsigned 8 ExtROM[16384] with {
 offchip = 1,
 data = {“P1”, “P2”, “P3”, “P4”,
 “P5”, “P6”, “P7”, “P8”},
 addr = {“P9”, “P10”, “P11”, “P12”,
 “P13”, “P14”, “P15”, “P16”,

 “P17”, “P18”, “P19”, “P20”,
 “P21”, “P22”},
 we = {},
 oe = {“P24”},
 cs = {“P25”}};

Note that no westart, welength or wegate specification is required
since there is not write strobe signal on a ROM device.

6.4.5 Using Other RAMs

The interface to other types of RAM such as DRAM or synchronous
pipelined SRAM should be written by hand using interface
declarations described in the following sections. Macro procedures
can then be written to perform complex or even multi-cycle
accesses to the external device.

Targetting Hardware

115

6.5 Interfacing With External Hardware

While the simulator allows debugging of Handel-C programs, the
real target of the compiler is hardware. It is therefore essential that
the compiler can generate hardware that interfaces with external
components. These next sections detail the building blocks of such
hardware interfaces.

All off-chip accesses are based on the idea of a bus which is just a
collection of external pins. Handel-C provides the ability to read the
state of pins for input from the outside world and set the state of
pins for writing to the outside world. Tri-state buses are also
supported to allow bi-directional data transfers through the same
pins.

Note that Handel-C provides no information about the timing of the
change of state of a signal within a Handel-C clock cycle. Timing
analysis is available from the FPGA manufacturer's place-and-route
tools.

6.5.1 Off-chip Interfaces

All off-chip interfaces other than RAMs are declared with the
interface keyword. The general syntax of interfaces is as follows:

interface Sort(Types) Name(Args) with {Specs};

Here, the Sort field specifies what sort of interface is required,
Types describes the types of values associated with objects coming
from the interface, Name specifies an identifier for the interface,
Args specifies any parameters that the interface may require and
Specs give hardware details of the interface such as chip pin
numbers.

Handel-C currently provides the following interface sorts:

Type Identifier Description
bus_in Input bus from pins
bus_latch_in Latched input bus from pins
bus_clock_in Clocked input bus from pins
bus_out Output bus to pins
bus_ts Bi-directional tri-state bus
bus_ts_latch_in Bi-directional tri-state bus with latched input
bus_ts_clock_in Bi-directional tri-state bus with clocked input

Handel-C Language Reference Manual

116

6.5.2 Reading from External Pins

The bus_in interface sort allows Handel-C programs to read from
external pins. Its general usage is:

interface bus_in(Type) Name()
 with {data = {Pin List}};

A specific example might be:

interface bus_in(int 4) InBus() with {data =
 {“P1”, “P2”, “P3”, “P4”}};

This declares a bus connected to pins P1, P2, P3 and P4 where pin
P1 is the most significant bit and pin P4 is the least significant bit.
Reading the bus is performed by accessing the identifier Name.in
as a variable which will return the value on those pins at that clock
edge. For example:

int 4 x;

x = InBus.in;

This sets the variable x to the value on the external pins. The type
of InBus.in is int 4 as specified in the type list after the bus_in
keyword.

6.5.3 Latched Reading from External Pins

The bus_latch_in interface sort is similar to the bus_in interface
sort but allows the input to be latched on a condition. This may be
required to sample the signal at particular times. Its general usage
is:

interface bus_latch_in(Type) Name(Condition)
 with {data = {Pin List}};

Its usage is exactly like the bus_in interface sort except that
Condition specifies a signal that is used to clock the input latches in
the FPGA. The rising edge of this signal clocks the external signal
to the internal value. For example:

Targetting Hardware

117

int 1 get;
int 4 x;

interface bus_latch_in(int 4) InBus(get) with
{data = {“P1”, “P2”, “P3”, “P4”}};

get = 0;
get = 1; // Latch the external value
x = InBus.in; // Read the latched value

6.5.4 Clocked Reading from External Pins

The bus_clock_in interface sort is similar to the bus_in interface
sort but allows the input to be clocked continuously from the
Handel-C global clock. This may be required to synchronise the
signal to the Handel-C clock. Its general usage is:

interface bus_clock_in(Type) Name()
 with {data = {Pin List}};

Its usage is exactly like the bus_in interface sort. The rising edge
of the Handel-C clock clocks the external signal to the internal
value. For example:

interface bus_clock_in(int 4) InBus() with
 {data = {“P1”, “P2”, “P3”, “P4”}};

x = InBus.in; // Read latched value

6.5.5 Writing to External Pins

The bus_out interface sort allows Handel-C programs to write to
external pins. Its general usage is:

interface bus_out() Name(Expression)
 with {data = {Pin List}};

A specific example might be:

interface bus_out () OutBus(x+y) with {data =
 {“P1”, “P2”, “P3”, “P4”}};

This declares a bus connected to pins 1, 2, 3 and 4 where pin 1 is
the most significant bit and pin 4 is the least significant bit. The
value appearing on the external pins is the value of the expression
x+y at all times.

Handel-C Language Reference Manual

118

6.5.6 Bi-directional Data Transfer

The bus_ts interface sort allows Handel-C programs to perform bi-
directional off-chip communications via external pins. Its general
usage is:

interface bus_ts (Type) Name(Value,
 Condition) with {data = {Pin List}};

Here, Value and Condition are two expressions. Value refers to the
value to output on the pins and Condition refers to the condition for
driving the pins. When the second expression is non-zero (i.e.
true), the value of the first expression is driven on the pins. When
the value of the second expression is zero, the pins are tri-stated
and the value of the external bus can be read using the identifier
Name.in in much the same way that bus_in interfaces work.

A specific example might be:

int 1 enable;
int 4 x;

interface bus_ts(int 4) BiBus(x+1, enable==1)
 with {data = {“P1”, “P2”, “P3”, “P4”}};

enable = 0; // Tri-state the pins
x = BiBus.in; // Read the value
enable = 1; // Drive x+1 onto the pins

This example reads the value of the external bus into variable x and
then drives the value of x + 1 onto the external pins.

The type of BiBus.in is int 4 as specified in the type list after the
bus_ts keyword.

Take care when driving tri-state buses that the FPGA and
another device on the bus cannot drive simultaneously as
this may result in damage to one or both of them.

Targetting Hardware

119

6.5.7 Bi-directional Data Transfer with Latched Input

The bus_ts_latch_in interface sort allows Handel-C programs to
perform bi-directional off-chip communications via external pins with
inputs latched on a condition. Its general usage is:

interface bus_ts_latch_in (Type)
 Name(Value, Condition, Clock)
 with {data = {Pin List}};

Here, Value, Condition and Clock are all expressions. Value refers
to the value to output on the pins, Condition refers to the condition
for driving the pins and Clock refers to the signal to clock the input
from the pins. When the second expression is non-zero, the value
of the first expression is driven on the pins. When the value of the
second expression is zero, the pins are tri-stated and the value of
the external bus can be read using the identifier Name.in in much
the same way that bus_in interfaces work.

The rising edge of the value of the third expression latches the
external values through to the internal values on the chip. For
example:

int 1 get;
int 1 enable;
int 4 x;

interface bus_ts_latch_in(int 4) BiBus(
 x+1, enable==1, get)
 with {data = {“P1”, “P2”, “P3”, “P4”}};

enable = 0; // Tri-state external pins
get = 0;
get = 1; // Latch external value
x = BiBus.in; // Read latched value
enable = 1; // Drive x+1 onto external pins

This example samples the external bus and reads the latched value
into variable x and then drives the value of x + 1 onto the external
pins.

The type of BiBus.in is int 4 as specified in the type list after the
bus_ts_latch_in keyword.

Take care when driving tri-state buses that the FPGA and
another device on the bus cannot drive simultaneously as
this may result in damage to one or both of them.

Handel-C Language Reference Manual

120

6.5.8 Bi-directional Data Transfer with Clocked Input

The bus_ts_clock_in interface sort allows Handel-C programs to
perform bi-directional off-chip communications via external pins with
inputs clocked continuously with the Handel-C clock. Its general
usage is:

interface bus_ts_clock_in (Type)
 Name(Value, Condition)
 with {data = {Pin List}};

Here, Value and Condition are expressions. Value refers to the
value to output on the pins and Condition refers to the condition for
driving the pins. When the Condition is non-zero (i.e. true), the
value of Value is driven on the pins. When the value of Condition is
zero, the pins are tri-stated and the value of the external bus can be
read using the identifier Name.in in much the same way that
bus_in interfaces work.

The rising edge of the Handel-C clock latches the external values
through to the internal values on the chip. For example:

int 1 enable;
int 4 x;

interface bus_ts_clock_in (int 4) BiBus(
 x+1, enable==1)
 with {data = {“P1”, “P2”, “P3”, “P4”}};

enable = 0; // Tri-state external pins
x = BiBus.in; // Read latched value
enable = 1; // Drive x+1 onto external pins

This example reads the latched value into variable x and then
drives the value of x + 1 onto the external pins.

The type of BiBus.in is int 4 as specified in the type list after the
bus_ts_clock_in keyword.

Take care when driving tri-state buses that the FPGA and
another device on the bus cannot drive simultaneously as
this may result in damage to one or both of them.

Targetting Hardware

121

6.5.9 Buses and the Simulator

The Handel-C simulator is capable of limited simulation of buses.
The recommended process for debugging is to use the channel
method outlined earlier in this chapter. This is because the
simulation of buses cannot determine when input and output should
occur. Rather, the simulator asks for and presents information at
each clock cycle which can be tedious.

By using the #define and #ifdef...#endif constructs of the
preprocessor, it is possible to combine both the simulation and
hardware versions of your program into one. For example:

#define SIMULATE
#ifdef SIMULATE
 input ? value;
#else
 value = BusIn.in;
#endif

Refer to the Handel-C Preprocessor Reference Manual for details
of conditional compilation.

Simulation of buses may be important when debugging your
interface with the outside world. No extra work is required to allow
this - the simulator simply connects automatically to the buses
declared in your program. The simulator prompts for input when
required. The output from buses can be read out from amongst the
variable states at each clock.

To see how the simulator handles buses, try simulating the full
example given later in this chapter.

6.5.10 Timing Considerations of Buses

It is sometimes important to be aware of the timing of the external
interfaces. While Handel-C without hardware libraries does not
allow you to control exact timings, some care when writing code can
allow enough control to make such interfaces work.

The first consideration is for bus_in interfaces. This form of bus is
built with no latch between the external pin and the points inside the
FPGA where the data is used. Thus, if the value on the external pin
changes asynchronously with the Handel-C clock then routing
delays within the FPGA can cause the value to be read differently in
different parts of the circuit. For example:

Handel-C Language Reference Manual

122

interface bus_in(int 1) a() with
 {data = {“P1”}};

par
{
 x = a.in;
 y = a.in;
}

Even though a.in is assigned to both x and y on the same clock
cycle, if the delay from pin 1 to the latch implementing the x variable
is significantly different from that between pin 1 and the latch
implementing the y variable then x and y may end up with different
values. This can be seen by considering the timing of some
signals.

Here, the delay between pin 1 and the input of y is slightly longer
than the delay between pin 1 and the input to x. As a result, when
the rising edge of the clock latches the values of x and y, there is
one clock cycle when x and y have different values.

This effect can also occur in more obscure places. For example:

interface bus_in(int 1) a() with
 {data = {“P1”}};

while (a.in==1)
{
 x = x + 1;
}

In this example, although a.in is only apparently used once, the
implementation of a while loop requires the signal to be routed to
two different locations giving the same problem as before. The

Handel-C clock

Pin 1

Value of X

Input to X

Input to Y

Value of Y

Targetting Hardware

123

Handel-C compiler generates warnings for these programs but it is
advised that asynchronous signals are never used in this way. The
solution to this problem is to use either a bus_latch_in or
bus_clock_in interface sort.

There is also a timing issue with output buses that you should be
careful with when designing interface hardware. In this case, the
value output on pins cannot be guaranteed except at rising Handel-
C clock edges. In between clock edges, the value may be in the
process of changing. Since the routing delays through different
parts of the logic of the output expression are different, some pins
may change before others giving rise to intermediate values
appearing on the pins. This is particularly apparent in deep
combinatorial logic. For example:

int 8 x;
int 8 y;

interface bus_out() output(x * y) with {data =
 {“P1”, “P2”, “P3”, “P4”,
 “P5”, “P6”, “P7”, “P8”}};

Here, a multiplier contains deep logic so some of the 8 pins may
change before others leading to intermediate values. It is possible
to minimise this effect (although not eliminate it completely) by
adding a variable before the output. This effectively adds a latch to
the output. The above example then becomes:

int 8 x;
int 8 y;
int 8 z;

interface bus_out() output(z) with {data =
 {“P1”, “P2”, “P3”, “P4”,
 “P5”, “P6”, “P7”, “P8”}};

z = x * y;

Care must now be taken because the value of z must be updated
whenever the value output on the bus must change.

Race conditions within the combinatorial logic can lead to glitches
on output pins between clock edges. When this happens, a pin
may glitch from 0 to 1 and back to zero or vice versa as signals
propogate through the combinatorial logic. Adding a latch at the
output in the manner described above removes these effects.

Handel-C Language Reference Manual

124

These considerations should also be taken into account when using
bi-directional tri-state buses since these are effectively a
combination of an input bus and an output bus.

6.5.11 Metastability

The output of a digital logic gate is a voltage level that normally
represents either ‘0’ or ‘1’. If the voltage is below the low threshold it
represents 0 and if it is above the high threshold it represents 1.
However if the voltage input to a register or latch is between these
thresholds on the clock edge, then the output of that register will be
indeterminate for a time before reverting to one of the normal
states. The state to which it reverts and the time at which it reverts
cannot be predicted. This is called metastability, and can occur
when data is clocked into a register during the time when the data is
changing between the two normal voltage levels representing 0 and
1. It is therefore an important consideration for Handel-C programs
that may clock in data at a point where the data is changing state.

The metastability characteristics of digital logic devices vary
enormously. For a discussion of Xilinx FPGAs see the Xilinx FPGA
data sheet (reference 2). This document puts the problem into
perspective. For example a XC4000E device clocking a 1MHz data
signal with a 10MHz clock is expected only once in a million years
to take longer than 3nS to recover from a metastable state to a
stable state. So when designing a system examine the metastable
characteristics of the devices under the conditions in which they will
be used to determine whether any precautions need be taken.

The ideal system is designed such that when data is clocked into a
register it is guaranteed to be stable. This can be achieved by using
intermediate buffer storage between the two systems that are
transferring data between each other. This storage could be a
single dual-port register, dual-port memory, FIFO, or shared
memory. Handshaking flags are used to indicate that data is ready,
and that data has been read.

However even in this situation sampling of the flags could cause
metastability. The solution is to clock the flag into the Handel-C
program more than once, so it is clocked into one register, and the
output of that register is then clocked into another register. On the
first clock the flag could be changing state so the output could be
metastable for a short time after the clock. However as long as the
clock period is long relative to the possible metastable period, the
second clock will clock stable data. Even more clocks further
reduce the possibility of metastable states entering the program,

Targetting Hardware

125

however the move from one clock to two clocks is the most
significant and should be adequate for most systems.

The example below has 4 clocks. The first is in the bus_clock_in
procedure, and the next 3 are in the assignments to the variables x,
y, and z.

int 4 x,y,z;

interface bus_clock_in(int 4) InBus() with
 {data = {“P1”, “P2”, “P3”, “P4”}};

par
{
 while(1)
 x = InBus.in;

 while(1)
 y = x;

 {

 z = y;
 }
}

Remember to keep the problem in perspective by examining the
details of the system to estimate the probability of metastability.
Design the system in the first place to minimize the problem by
decoupling the FPGA from external synchronous hardware by using
external buffer storage.

Handel-C Language Reference Manual

126

6.6 Object Specifications

Handel-C provides the ability to add ‘tags’ to certain objects
(variables, channels, buses, RAMs and ROMs) to control their
behaviour. These tags or specifications are listed after the
declaration of the object using the with keyword. This keyword
takes one or more of the following attributes.

Specification Possible Values Meaning
show 0, 1 Show variable during simulation
base 2, 8, 10, 16 Print variable in specified base
infile Any valid filename Redirect from file
outfile Any valid filename Redirect to file
warn 0, 1 Disable warnings for object
speed 0, 1, 2, 3 Set buffer speed
pull 0, 1 Add pull up or pull down resistor(s)
data Any valid pin list Set data pins

offchip 0, 1 Set RAM/ROM to be off chip
wegate -1, 0, 1 Asynchronous write enable signal
westart 0 to clock division -1 Asynchronous write enable signal
welength 1 to clock division Asynchronous write enable signal
addr Any valid pin list Set address pins
oe Any valid pin list Set output enable pin(s)
we Any valid pin list Set write enable pin(s)
cs Any valid pin list Set chip select pin(s)

The previous sections in this chapter have already shown briefly
how to use some of these specifications but this section details
these in more detail and covers the other specifications in the table
above.

Specifications can be added to objects as follows:

unsigned 4 w with {show=0};
int 5 x with {show=0, base=2};
chanout char y with {outfile=”output.dat”};
chanin int 8 z with {infile=”input.dat”};
interface clock_busin(int 4) InBus() with
 { pull = 1,
 data = {“P1”, “P2”, “P3”, “P4”} };

When declaring multiple objects, the specification must be given at
the end of the line and applies to all objects declared on that line.
For example:

Targetting Hardware

127

unsigned x, y with {show=0};

This attaches the show specification with a value of 0 to both x and
y variables.

Details of each of the specifications is given below.

6.6.1 The show Specification

The show specification may be given to variable, channel, output
bus and tri-state bus declarations. When set to 0, this specification
tells the Handel-C simulator not to list this object in its output. This
may be useful to avoid clutter in the output from the simulator or to
just list the results from the program rather than the full list of
variables at each clock step.

The default value of this specification is 1.

Reducing the number of items displayed in the output list
from the simulator produces a noticeable speed up in
simulation.

6.6.2 The base Specification

The base specification may be given to variable, output channel,
output bus and tri-state bus declarations. The value that this
specification is set to tells the Handel-C compiler which base to
display the value of the object in. Valid bases are 2, 8, 10 and 16
for binary, octal, decimal and hexadecimal respectively.

The default value of this specification is 10.

6.6.3 The infile and outfile Specifications

The infile specification may be given to chanin, bus_in,
bus_latch_in, bus_clock_in, bus_ts, bus_ts_latch_in and
bus_ts_clock_in declarations. The outfile specification may be
given to chanout, bus_out, bus_ts, bus_ts_latch_in and
bus_ts_clock_in declarations. The strings that these
specifications are set to will inform the simulator of the file that data
should be read from (infile) or the file that data should be written
to (outfile).

Handel-C Language Reference Manual

128

When applied to a variable, the state of that variable at each clock
cycle is placed in that file when simulation takes place. Note that
when applying the outfile specification, it should not be given to
multiple variables or channels. For example, the following
declarations are not allowed:

int x, y with {outfile=”out.dat”};
chanout a, b with {outfile=”out.dat”};

For details of connecting channels to files, see section 6.2.

By default, no input or output files are used.

6.6.4 The warn Specification

The warn specification may be given to a variable, RAM, ROM,
channel or bus. When set to zero, certain non-crucial warnings will
be disabled for that object. When set to one (the default value), all
warnings for that object will be enabled.

For example, when it is known that a safe parallel access is being
made to a variable then adding the warn=0 specification to the
variable declaration will disable the warning that the compiler would
normally generate.

6.6.5 The speed Specification

The speed specification may be given to an output or tri-state bus.
The value that this specification is set to controls the slew rate of
the output buffer for the pins on the bus. For Xilinx devices, 0 is
slow and 3 is fast and the default value is 3. For Altera devices, 0 is
slow and 1 is fast and the default value is 1.

Refer to the Xilinx or Altera FPGA data sheets for details of slew
rate control.

6.6.6 The pull Specification

The pull specification may be given to an input, output or tri-state
bus. When set to 1, a pull up resistor is added to each of the pins
of the bus. When set to 0, a pull down resistor is added to each of
the pins of the bus. When this specification is not given for a bus,
no pull up or pull down resistor is used.

Targetting Hardware

129

Refer to the Xilinx FPGA data sheet for details of pull up and pull
down resistors.

By default, no pull up or pull down resistors are attached to the pins.

Pull up and pull down resistors are not available on Altera
devices.

6.6.7 The offchip Specification

The offchip specification may be given to a RAM or ROM
declaration. When set to 1, the Handel-C compiler builds an
external memory interface for the RAM or ROM using the pins listed
in the addr, data, cs, we and oe specifications (see below). When
set to 0, the Handel-C compiler builds the RAM or ROM on the
FPGA and ignores any pins given with other specifications.

See section 6.4.3 for details of how to interface with external RAMs
and ROMs.

6.6.8 The wegate Specification

The wegate specification may be given to external or internal RAM
declarations to force the generation of an asynchronous RAM.

When set to 0, the write strobe will appear throughout the Handel-C
clock cycle. When set to -1, the write strobe will appear only in the
first half of the Handel-C clock cycle. When set to 1, the write
strobe will appear only in the second half of the Handel-C clock
cycle.

Refer to section 6.4 for further details of interfacing with
asynchronous RAM devices.

6.6.9 The westart and welength Specifications

The westart and welength specifications may be given to internal
or external RAM declarations. To use these specifications, you
must be using the external_divide or internal_divide clock
types with a division factor greater than 1.

The westart and welength specifications position the write enable
strobe within the Handel-C clock cycle.

Refer to section 6.4 for further details of interfacing with
asynchronous RAM devices.

Handel-C Language Reference Manual

130

6.6.10 Specifying Pinouts

The addr, data, we, cs and oe specifications each take a list of
device pins and are used to define the connections between the
FPGA and external devices. The specifications apply to the
following objects:

Specification Input bus Output bus Tri-state bus RAM ROM
addr 4 4
data 4 4 4 4 4
we 4
cs 4 4
oe 4 4

Pin lists are always given in the order most significant to least
significant. Multiple write enable, chip select and output enable pins
can be given to allow external RAMs and ROMs to be constructed
from multiple devices. For example, when using two 4 bit wide
chips to make an 8 bit wide RAM, the following declaration could be
used:

ram unsigned 8 ExtRAM[256] with {offchip=1,
 addr={"P1", "P2", "P3", "P4",
 "P5", "P6", "P7", "P8"},
 data={"P9", "P10", "P11", "P12",
 "P13", "P14", "P15", "P16"},
 we={"P17", "P18"},
 cs={"P19", "P20"},
 oe={"P21", "P22"}};

Targetting Hardware

131

6.7 An Example Hardware Interface

An example, theoretical interface is now described to illustrate the
use of buses. The scenario is of an external device connected to
the FPGA which may be read from or written to. The device has a
number of signals connected to the FPGA. These are listed below:

Signal Name FPGA pin Description
D3..0 1, 2, 3, 4 Data Bus
Write 5 Write strobe
Read 6 Read strobe

WriteRdy 7 Able to write to device
ReadRdy 8 Able to read from device

A read from the device is performed by waiting for ReadRdy to
become active (high). The Read signal is then taken high for one
clock cycle and the data sampled on the falling edge of the strobe.
Thus, the read cycle looks like this:

A write to the device is performed by waiting for WriteRdy to
become active (high). The Write signal is then taken high for one
clock cycle while the data is driven to the device by the FPGA. The
device samples the data on the falling edge of the Write signal.
Thus, the write cycle looks like this:

Handel-C clock

ReadReady

D3..0

Read

Handel-C clock

WriteReady

D3..0

Write

Handel-C Language Reference Manual

132

The first stage of the code must declare the buses associated with
each of the external signals. The following code does this:

int 4 Data;
int 1 En = 0;
interface bus_ts_clock_in(int 4)
 dataB(Reg, En==1) with
 {data = {“P1”, “P2”, “P3”, “P4”}};

int 1 Write = 0;
interface bus_out() writeB(Write) with
 {data = {“P5”}};

int 1 Read = 0;
interface bus_out() readB(Read) with
 {data = {“P6”}};

interface bus_clock_in(int 1)
 WriteReady() with {data = {“P7”}};

interface bus_clock_in(int 1) ReadReady() with
 {data = {“P8”}};

Now we can change the values on the output buses by setting the
values of the Data, Write and Read variables. In addition, we can
drive the data bus with the contents of Data by setting En to 1.

Note that we have initialised the variables that drive buses to 0 so
these variables must be global. This may be important when
driving write strobes as we are here. Care should be taken during
configuration that the FPGA pins are disconnected in some way
from the external devices because the FPGA pins become tri-state
during this time.

The main program reads a word from the external device before
writing one word back.

Targetting Hardware

133

void main (void)
{
 int 4 Data;

 // Read word from external device
 while (ReadReady == 0);
 Read = 1; // Set the read strobe
 par
 {
 Data = dataB.in; // Read the bus
 Read = 0; // Clear the read strobe
 }

 // Write one word back to external device
 Reg = Data + 1;
 while (WriteReady == 0);
 par
 {
 En = 1; // Drive the bus
 Write = 1; // Set the write strobe
 }
 Write = 0; // Clear the write strobe
 En = 0; // Stop driving the bus
}

Note that during the write phase, the data bus is driven for one
clock cycle after the write strobe goes low to ensure that the data is
stable across the falling edge of the strobe.

Handel-C Language Reference Manual

134

7. Standard Macro Expressions

Handel-C Language Reference Manual

136

7.1 Introduction

The Handel-C compiler is provided with a standard header file
containing a collection of useful macro expressions. This header
file may be used by simply including it in your Handel-C program
with the following line:

#include <stdlib.h>

Note that this header file is not the same as the conventional C
stdlib.h header file but contains a standard collection of
definitions useful to the Handel-C programmer.

The following sections describe each macro in detail. Examine the
stdlib.h header file to see the source code for the macros which
also serve as additional examples of how to write macro
expressions.

Standard Macro Expressions

137

7.2 Constant Definitions

The stdlib.h header file contains the following constant
definitions:

Constant Name Definition
TRUE 1
FALSE 0

These definitions often lead to cleaner and more readable code.
For example:

int 8 x with { show=FALSE };

while (TRUE)
{

}

if (a==TRUE)
{

}

Handel-C Language Reference Manual

138

7.3 Bit Manipulation Macros

The stdlib.h header file contains a number of macro expressions
used to manipulate bits and bitfields listed below.

7.3.1 adjs

Usage: adjs(Expression, Width)

Parameters:
Expression Expression to adjust (must be

signed integer)
Width Width to adjust to

Returns:
Signed integer of width Width.

Description:
Adjusts width of signed expression up or down.
Sign extends MSBs of expression when
expanding width. Drops MSBs of expression
when reducing width.

Example:

int 4 x;
int 5 y;
int 6 z;

y = 15;
x = adjs(y, width(x)); // x = 7
y = -4;
z = adjs(y, width(z)); // z = -4

Standard Macro Expressions

139

7.3.2 adju

Usage: adju(Expression, Width)

Parameters:
Expression Expression to adjust (must be

unsigned integer)
Width Width to adjust to

Returns:
Unsigned integer of width Width.

Description:
Adjusts width of unsigned expression up or
down. Zero pads MSBs of expression when
expanding width. Drops MSBs of expression
when reducing width.

Example:

unsigned 4 x;
unsigned 5 y;
unsigned 6 z;

y = 14;
x = adju(y, width(x)); // x = 14
z = adju(y, width(z)); // z = 14

Handel-C Language Reference Manual

140

7.3.3 copy

Usage: copy(Expression, Count)

Parameters:
Expression Expression to copy
Count Number of times to copy

Returns:
Expression duplicated Count times.
Returned expression is of same type as
Expression.
Returned width is Count * width(Expression).

Description:
Duplicates a bit field multiple times.

Example:

unsigned 32 x;
unsigned 4 y;

y = 0xA;
x = copy(y, 8); // x = 0xAAAAAAAA

Standard Macro Expressions

141

7.3.4 lmo

Usage: lmo(Expression)

Parameters:
Expression Expression to calculate left most

one of.

Returns:
Bit position of left most one in Expression or
width(Expression) if Expression is zero.
Return value is log2(width(Expression))+1 bits
wide.

Description:
Finds the position of the most significant 1 bit in
an expression.

Example:

int 4 x;
int 3 y;

x = 3;
y = lmo(x); // y = 1
x = 0;
y = lmo(x); // y = 4;

Handel-C Language Reference Manual

142

7.3.5 lmz

Usage: lmz(Expression)

Parameters:
Expression Expression to calculate left most

zero of.

Returns:
Bit position of left most zero in Expression or
width(Expression) if Expression is all ones.
Return value is log2(width(Expression))+1 bits
wide.

Description:
Finds the position of the most significant 0 bit in
an expression.

Example:

int 4 x;
int 3 y;

x = 3;
y = lmz(x); // y = 2
x = 15;
y = lmz(x); // y = 4;

Standard Macro Expressions

143

7.3.6 population

Usage: population(Expression)

Parameters:
Expression Expression to calculate

population of.

Returns:
Value of same type as Expression.

Description:
Counts the number of 1 bits (population) in
Expression.

Example:

int 4 x;
int 3 y;

x = 0b1011;
y = population(x); // y = 3

Handel-C Language Reference Manual

144

7.3.7 rmo

Usage: rmo(Expression)

Parameters:
Expression Expression to calculate right

most one of.

Returns:
Bit position of right most one in Expression or
width(Expression) if Expression is zero.
Return value is log2(width(Expression))+1 bits
wide.

Description:
Finds the position of the least significant 1 bit in
an expression.

Example:

int 4 x;
int 3 y;

x = 3;
y = rmo(x); // y = 0
x = 0;
y = rmo(x); // y = 4;

Standard Macro Expressions

145

7.3.8 rmz

Usage: rmz(Expression)

Parameters:
Expression Expression to calculate right

most zero of.

Returns:
Bit position of right most zero in Expression or
width(Expression) if Expression is all ones.
Return value is log2(width(Expression))+1 bits
wide.

Description:
Finds the position of the least significant 0 bit in
an expression.

Example:

int 4 x;
int 3 y;

x = 3;
y = rmz(x); // y = 2
x = 15;
y = rmz(x); // y = 4;

Handel-C Language Reference Manual

146

7.3.9 top

Usage: top(Expression , Width)

Parameters:
Expression Expression to extract bits from.
Width Number of bits to extract.

Returns:
Value of same type as Expression.

Description:
Extracts the most significant Width bits from an
expression.

Example:

int 32 x;
int 8 y;

x = 0x12345678;
y = top(x, width(y)); // y = 0x12

Standard Macro Expressions

147

7.4 Arithmetic Macros

The stdlib.h header file contains a number of macro expressions
for mathematical calculations listed below.

7.4.1 abs

Usage: abs(Expression)

Parameters:
Expression Signed expression to get

absolute value of.

Returns:
Signed value of same width as Expression.

Description:
Obtains the absolute value of an expression.

Example:

int 8 x;
int 8 y;

x = 34;
y = -18;
x = abs(x); // x = 34
y = abs(y); // y = 18

Handel-C Language Reference Manual

148

7.4.2 addsat

Usage: addsat(Expression1, Expression2)

Parameters:
Expression1 Unsigned operand 1.
Expression2 Unsigned operand 2. Must be of

same width as Expression1.

Returns:
Unsigned value of same width as Expression1
and Expression2.

Description:
Returns sum of Expression1 and Expression2.
Addition is saturated and result will not be
greater than maximum value representable in
the width of the result.

Example:

unsigned 8 x;
unsigned 8 y;
unsigned 8 z;

x = 34;
y = 18;
z = addsat(x, y); // z = 52
x = 34;
y = 240;
z = addsat(x, y); // z = 255

Standard Macro Expressions

149

7.4.3 decode

Usage: decode(Expression)

Parameters:
Expression Unsigned operand.

Returns:
Unsigned value of width 2width(Expression)

Description:
Returns 2Expression.

Example:

unsigned 4 x;
unsigned 16 y;

x = 8;
y = decode(x); // y = 0b100000000

Handel-C Language Reference Manual

150

7.4.4 div

Usage: div(Expression1, Expression2)

Parameters:
Expression1 Unsigned operand 1.
Expression2 Unsigned operand 2. Must be of

the same width as Expression1.

Returns:
Unsigned value of same width as Expression1
and Expression2.

Description:
Returns integer value of
Expression1/Expression2.

Example:

unsigned 8 x;
unsigned 8 y;
unsigned 8 z;

x = 56;
y = 6;
x = div(x, y); // z = 9

Warning! Division requires a large amount of hardware
and should be avoided unless absolutely necessary. See
chapter 3 for details of an alternative division routine.

Standard Macro Expressions

151

7.4.5 exp2

Usage: exp2(Constant)

Parameters:
Constant Operand.

Returns:
Constant of width width(Constant)+1.

Description:
Used to calculate 2Constant. Similar to decode
but may be used with constants of undefined
width.

Example:

unsigned 4 x;
unsigned (exp2(width(x))) y; // y of width 16

Handel-C Language Reference Manual

152

7.4.6 incwrap

Usage: incwrap(Expression1, Expression2)

Parameters:
Expression1 Operand 1.
Expression2 Operand 2. Must be of same

width as Expression1.

Returns:
Value of same type and width as Expression1
and Expression2.

Description:
Used to increment a value with wrap around at
a second value. Returns Expression1+1 or 0 if
Expression1+1 is equal to Expression2.

Example:

unsigned 8 x;

x = 74;
x = incwrap(x, 76); // x = 75
x = incwrap(x, 76); // x = 0
x = incwrap(x, 76); // x = 1

Standard Macro Expressions

153

7.4.7 log2ceil

Usage: log2ceil(Constant)

Parameters:
Constant Operand.

Returns:
Constant value of ceiling(log2(Constant)).

Description:
Used to calculate log2 of a number and rounds
the result up. Useful to determine the width of a
variable needed to contain a particular value.

Example:

unsigned (log2ceil(5768)) x; // x 13 bits wide
unsigned 8 y;

y = log2ceil(8); // y = 3
y = log2ceil(7); // y = 3

Handel-C Language Reference Manual

154

7.4.8 log2floor

Usage: log2floor(Constant)

Parameters:
Constant Operand.

Returns:
Constant value of floor(log2(Constant)).

Description:
Used to calculate log2 of a number and rounds
the result down.

Example:

unsigned 8 y;

y = log2floor(8); // y = 3
y = log2floor(7); // y = 2

Standard Macro Expressions

155

7.4.9 mod

Usage: mod(Expression1, Expression2)

Parameters:
Expression1 Unsigned operand 1.
Expression2 Unsigned operand 2. Must be of

the same width as Expression1.

Returns:
Unsigned value of same width as Expression1
and Expression2.

Description:
Returns remainder of Expression1 divided by
Expression2.

Example:

unsigned 8 x;
unsigned 8 y;
unsigned 8 z;

x = 56;
y = 6;
x = mod(x, y); // z = 2

Warning! Modulo arithmetic requires a large amount of
hardware and should be avoided unless absolutely
necessary.

Handel-C Language Reference Manual

156

7.4.10 sign

Usage: sign(Expression)

Parameters:
Expression Signed operand.

Returns:
Unsigned integer 1 bit wide.

Description:
Used to obtain the sign of an expression.
Returns zero if Expression is positive or one if
Expression is negative.

Example:

int 8 y;
unsigned 1 z;

y = 53;
z = sign(y); // z = 0
y = -53;
z = sign(y); // z = 1

Standard Macro Expressions

157

7.4.11 subsat

Usage: subsat(Expression1, Expression2)

Parameters:
Expression1 Unsigned operand 1.
Expression2 Unsigned operand 2. Must be of

same width as Expression1.

Returns:
Unsigned value of same width as Expression1
and Expression2.

Description:
Returns difference between Expression1 and
Expression2. Subtraction is saturated and
result will not be less than 0.

Example:

unsigned 8 x;
unsigned 8 y;
unsigned 8 z;

x = 34;
y = 18;
z = subsat(x, y); // z = 16
x = 34;
y = 240;
z = subsat(x, y); // z = 0

Handel-C Language Reference Manual

158

8. Porting C to Handel-C

Handel-C Language Reference Manual

160

8.1 Introduction

This chapter illustrates the general process of porting an existing
conventional C routine to Handel-C. The general issues are
discussed first and then illustrated with the particular example of an
edge detection routine. This example illustrates the whole
conversion process from conventional C program to optimised
Handel-C program and also shows how to map conventional C onto
real hardware.

There is also a section detailing the differences between
conventional C and Handel-C.

Porting C to Handel-C

161

8.2 General Porting Issues

In general, there are a number of stages to porting and mapping a
conventional C program to hardware. These are:

1. Decide on how the software system maps onto the target
hardware platform. For example, external RAM connected to
the FPGA can be used to hold buffers used in the conventional
C program. This mapping may also include partitioning the
algorithm between multiple FPGAs and, hence, splitting the
conventional C into multiple Handel-C programs.

2. Port conventional C to Handel-C and use the simulator to check
correctness. Remember that there may be optimisations that
can be made to the algorithm given that a Handel-C program is
parallel. For example, you can sort numbers more efficiently in
parallel by using a sorting network. This form of coarse grain
parallelism can provide massive performance gains so time
should be spent on this step.

3. Modify code to take advantage of extra operators available in
Handel-C. For example concatenation and bit selection can be
used where conventional C may use shifts and masks. Simulate
again to ensure program is still correct.

4. Add fine grain parallelism such as making parallel assignments
or executing individual instructions in parallel to fine tune
performance. Again, simulate to ensure that the program still
functions correctly.

5. Add the hardware interfaces necessary for the target
architecture and map the simulator channel communications
onto these interfaces. If possible, simulate to ensure mapping
has been performed correctly.

6. Use the FPGA place and route tools to generate the FPGA
image(s).

These steps are obviously guidelines only - some of the stages may
not be relevant to your design or you may require extra stages if
your design does not fit this example flow. This list provides a
starting point and guidelines for how to approach the process of
porting your code that is now illustrated with a full example.

Handel-C Language Reference Manual

162

8.3 Comparison Between Conventional C and Handel-C

This section details the types, operators, and statements available
in conventional C and Handel-C. These tables should be used to
get an idea of which parts of your conventional C program need to
be altered.

8.3.1 Types, Type Operators and Objects

In Both In Conventional C Only In Handel-C Only
int double chan

unsigned float ram
char enum rom
long register chanin
short static chanout

extern undefined
struct interface
volatile
void
const
union

8.3.2 Statements

In Both In Conventional C Only In Handel-C Only
{;} continue par

switch return delay
do ... while goto ?

while typedef !
if ... else prialt
for (;;)
break

Porting C to Handel-C

163

8.3.3 Expressions

In Both In Conventional C Only In Handel-C Only
- -> select(...)
+ . width(...)

* (multiplication) * (pointer indirection) @
<< & (address of) \\
>> sizeof <-
> / (for variables) [:]
< % (for variables)
>= /=
<= %=
==
!=

& (bitwise and)
^
|
? :
[]
!
&&
||
~

Note that % and / are provided in Handel-C for compile time
constants only.

The following constructs are available as expressions in
conventional C and as statements in Handel-C. This means that in
Handel-C, they must appear as stand alone statements and not in
the middle of more complex expressions. See section 2.5 for
further details on expressions and side effects.

In Both (with restrictions)
=
+=
-=
*=
<<=
>>=
&=
|=
^=
++
--

Handel-C Language Reference Manual

164

8.4 Porting Example - An Edge Detector

The example used in this section to illustrate the porting process is
that of a simple edge detector. Each of the stages outlined in the
previous section is illustrated with complete code listings.

8.4.1 The Original Program

The original conventional C program is given below.

#include <stdio.h>
#include <stdlib.h>

#define WIDTH 256
#define HEIGHT 256
#define THRESHOLD 16

void edge_detect(unsigned char *Source, unsigned char *Dest)
{
 int x, y;

 for (y=1; y<HEIGHT; y++)
 for (x=1; x<WIDTH; x++)
 {
 if (abs(Source[x + y*WIDTH] -

Source[x-1 + y*WIDTH])>THRESHOLD ||
 abs(Source[x + y*WIDTH]-

Source[x + (y-1)*WIDTH])>THRESHOLD)
 Dest[x + y*WIDTH]=0xFF;
 else
 Dest[x + y*WIDTH]=0;
 }
}

main()
{
 unsigned char *Source = malloc(WIDTH*HEIGHT);
 unsigned char *Dest = malloc(WIDTH*HEIGHT);
 FILE *FilePtr;

 FilePtr = fopen("Source.raw", "rb");
 fread(Source, sizeof(unsigned char), WIDTH*HEIGHT, FilePtr);
 fclose(FilePtr);

 edge_detect(Source, Dest);

 FilePtr = fopen("Dest.raw", "wb");
 fwrite(Dest, sizeof(unsigned char), WIDTH*HEIGHT, FilePtr);
 fclose(FilePtr);

 return 0;
}

Porting C to Handel-C

165

The file reads data from a raw data file into a buffer. The macro
procedure edge_detect then performs a simple edge detection and
stores the results in a second buffer which is stored in a second file.

The edge detection is performed by simply subtracting the pixel
values for adjacent horizontal and vertical pixels, taking the
absolute values and thresholding the result. The source and
destination images are both 8 bit per pixel greyscale images.

The C source file and a compiled version are provided on the
Handel-C compiler disk along with an example image. You should
run the program now to see the results of the program. This is
done by:

1. Converting the example BMP file to raw data with the bmp2raw
utility. See the Handel-C Compiler Reference Manual for details
of this utility but you can convert the example image by typing:

bmp2raw -b source.bmp source.raw 8bppdest.rgb

2. Executing the conventional C edge detector by typing:

edge_c

3. Converting the output from the edge detector back to a BMP file
using the raw2bmp utility. See the Handel-C Compiler Reference
Manual for details of this utility but you can convert the example
image by typing:

raw2bmp -b 256 dest.raw dest_c.bmp 8bppsrc.rgb

You can use the standard Windows 95 and NT paint utility to
display the source and destination BMP files to compare results.

Handel-C Language Reference Manual

166

8.4.2 The Target Architecture

This example targets a simple architecture outlined below.

The FPGA has two banks of external synchronous SRAM and an
interface to a host microprocessor connected directly to its pins.
The SRAM conforms to the standard Handel-C model outlined in
chapter 6 and the host interface has the same timings as the
example interface given in section 6.6.

The video capture and display module fills RAM bank 0 with the
original image at address 0 and displays the results of the edge
detection from RAM bank 1 starting at address 0. Thus, the FPGA
must read from one RAM bank and write to the second RAM bank.

The host is used to send the frame synchronisation to the video
display module.

8.4.3 Mapping to the Target Architecture

The mapping for this example is fairly obvious. The two buffers for
the source and destination image map onto the banks of RAM and
the edge detection processing in the edge_detect macro
procedure maps onto the FPGA.

The hardware implementation will require extra lines to read a
threshold once at the start of processing and synchronise with the
capture and display. The synchronisation takes the form of one
word sent from the host to indicate that a new frame is ready for
processing and one word sent to the host when the processing is
complete.

FPGA

RAM Bank 0

HOST

VIDEO
CAPTURE/
DISPLAY

RAM Bank 1

Porting C to Handel-C

167

8.4.4 First Attempt Handel-C Program

The first step is to port the conventional C to Handel-C with as few
changes as possible to ensure that the resulting program works
correctly. The file handling sections of the original program must be
modified to read data from a file and write data back to a file using
the Handel-C simulator as described in chapter 6. The resulting
program is given below.

The following points should be noted about the port:

1. The Source and Dest buffers have been replaced with two
RAMs.

2. An abs() macro expression has been used to replace the
standard C function.

3. The x and y variables have been given widths equal to the
number of address lines required for the RAMs to simplify the
index of the RAM. Without this, each variable would have to be
padded with zeros in its MSBs to avoid a width conflict when
accessing the RAM.

4. Temporary variables have been used for the three pixels read
from RAM to avoid the restriction on only one access per RAM
per clock cycle. Without these variables, the condition for the if
statement would require multiple accesses to the Source RAM.

5. The pixel values must be extended by one bit to ensure the
subtract does not underflow.

6. The Input and Output channels are declared to read from and
write to files. Refer to chapter 6 for details of the format of these
files.

To execute the Handel-C code:

1. Convert the example BMP file to text data with the bmp2raw
utility by typing:

bmp2raw source.bmp source.dat 8bppdest.rgb

2. Simulate the Handel-C edge detector by typing:

handelc -s edge_v1.c -ss 1000

3. Convert the output from the edge detector back to a BMP file
using the raw2bmp utility by typing:

raw2bmp 256 dest.dat dest_v1.bmp 8bppsrc.rgb

Handel-C Language Reference Manual

168

#define LOG2_WIDTH 8
#define WIDTH 256
#define LOG2_HEIGHT 8
#define HEIGHT 256
#define THRESHOLD 16

ram unsigned char Source[WIDTH*HEIGHT];
ram unsigned char Dest[WIDTH*HEIGHT];

macro expr abs(a) = (a<0 ? -a : a);

macro proc edge_detect()
{
 unsigned (LOG2_WIDTH+LOG2_HEIGHT) x;
 unsigned (LOG2_WIDTH+LOG2_HEIGHT) y;
 int 9 Pixel1, Pixel2, Pixel3;

 for (y=1; y<HEIGHT; y++)
 {
 for (x=1; x<WIDTH; x++)
 {
 Pixel1=(int)(0 @ Source[x + y*WIDTH]);
 Pixel2=(int)(0 @ Source[x-1 + y*WIDTH]);
 Pixel3=(int)(0 @ Source[x + (y-1)*WIDTH]);
 if (abs(Pixel1 - Pixel2) > THRESHOLD ||
 abs(Pixel1 - Pixel3) > THRESHOLD)
 {
 Dest[x + y*WIDTH]=0xFF;
 }
 else
 {
 Dest[x + y*WIDTH]=0;
 }
 }
 }
}

void main(void)
{
 chanin unsigned Input with {infile = “Source.dat”};
 chanout unsigned Output with {outfile = “Dest.dat”};

 unsigned (LOG2_WIDTH+LOG2_HEIGHT) i;
 unsigned (LOG2_WIDTH+LOG2_HEIGHT) j;

 for (i=0; i<HEIGHT; i++)
 for (j=0; j<WIDTH; j++)
 Input ? Source[j + i*WIDTH];

 edge_detect();

 for (i=0; i<HEIGHT; i++)
 for (j=0; j<WIDTH; j++)
 Output ! Dest[j + i*WIDTH];
}

Porting C to Handel-C

169

8.4.5 First Optimisations of the Handel-C Program

The next development stage is to change some of the operators
familiar in C to operators more suitable for Handel-C.

In the above example, every time the Source or Dest RAM is
accessed, a multiplication is made by the constant WIDTH. The
Handel-C optimiser simplifies this to a shift left by 8 bits but we
could easily do this by hand to reflect the hardware more accurately
and reduce compilation times. We can also introduce new macros
to access the RAMs given x and y co-ordinates:

macro expr ReadRAM(a, b) =
 ((unsigned 1)0) @
 Source[(0@a) + ((0@b) << 8)];
macro proc WriteRAM(a, b, c)
 Dest[(0@a) + ((0@b)<<8)] = c;

Notice how the macros pad both the result and the co-ordinate
expressions with zeros. This allows us to reduce the width of the x
and y counters to 8 bits each and reduces clutter in the rest of the
program. This width reduction does mean that the loop conditions
must be altered because x and y are no longer wide enough to hold
the constant 256. Instead, we test against zero since the counters
will wrap round to zero after 255.

The modified edge_detect macro procedure is:

macro proc edge_detect()
{
 unsigned LOG2_WIDTH x;
 unsigned LOG2_HEIGHT y;
 int 9 Pixel1, Pixel2, Pixel3;

 for (y=1; y!=0; y++)
 {
 for (x=1; x!=0; x++)
 {
 Pixel1=(int)ReadRAM(x, y);
 Pixel2=(int)ReadRAM(x-1, y);
 Pixel3=(int)ReadRAM(x, y-1);
 if (abs(Pixel1 - Pixel2) > THRESHOLD ||
 abs(Pixel1 - Pixel3) > THRESHOLD)
 WriteRAM(x, y, 0xFF);
 else
 WriteRAM(x, y, 0);
 }
 }
}

Handel-C Language Reference Manual

170

To execute this version of the Handel-C code:

1. Simulate the Handel-C edge detector by typing:

handelc -s edge_v2.c -ss 1000

2. Convert the output from the edge detector back to a BMP file
using the raw2bmp utility by typing:

raw2bmp 256 dest.dat dest_v2.bmp 8bppsrc.rgb

8.4.6 Adding Fine Grain Parallelism

There are two areas in this program that can be modified to improve
performance. The first is to replace for loops with while loops and
the second solves the problem of multiple accesses to external
RAM in single clock cycles.

As described in chapter 2, the for loop expands into a while loop
inside the compiler in the following way:

for (Init; Test; Inc)
 Body;

becomes:

{
 Init;
 while (Test)
 {
 Body;
 Inc;
 }
}

This is normally not efficient for hardware implementation because
the Inc statement is executed sequentially after the loop body when
in most cases it could be executed in parallel. The solution is to
expand the for loops by hand and use the par statement to
execute the increment in parallel with one of the statements in the
loop body.

The second optimisation concerns the three statements required to
read the three pixels from external RAM. Without the restriction on
multiple accesses to RAMs the loop body of the edge detector
could be executed in a single cycle whereas our current program

Porting C to Handel-C

171

requires four cycles, three of which access the RAM. What is
needed is a modification to eliminate these RAM accesses.

By understanding that it is not possible to access the external RAM
more than once in one clock cycle, we realise that the only way to
improve this program is to access multiple RAMs in parallel. It
should also be clear that the current program accesses most
locations in the external RAM 3 times. For example, when x is 34
and y is 56 the three pixels read are at co-ordinates (34,55) ,
(33,56) and (34,56). The first of these is also read when x is 34 and
y is 55 and when x is 35 and y is 55 whereas the second is also
read when x is 33 and y is 56 and when x is 33 and y is 57. If we
can devise a scheme whereby pixels are stored in two extra RAMs
when they are read from the main external RAM for the first time
then we could simply access these additional RAMs to get pixel
values in the main loop.

The first step is to store the previous line of the image in an internal
RAM on the FPGA. This allows the pixel above the current location
to be read at the same time as the external RAM is accessed. The
second step is to store the pixel to the left of the current location in
a register. The loop body then looks something like this:

Pixel1 = ReadRAM(x, y);
Pixel2 = PixelLeft;
Pixel3 = LineAbove[x];

LineAbove[x] = Pixel1;
PixelLeft = Pixel1;

At first glance, it looks like we’ve made things worse by increasing
the number of clock cycles but we can now add parallelism to make
it look like this:

par
{
 Pixel1 = ReadRAM(x, y);
 Pixel2 = PixelLeft;
 Pixel3 = LineAbove[x];
}

par
{
 LineAbove[x] = Pixel1;
 PixelLeft = Pixel1;
}

Handel-C Language Reference Manual

172

Note the LineAbove RAM must be initialised at the start of the
image to contain the first line of the image and the PixelLeft
variable must be initialised at the start of each line with the left hand
pixel on that line.

Since the second of these par statements and the if statement are
not dependant on each other they can be executed in parallel.
Putting all these modifications together gives an edge_detect
procedure shown below.

Notice that the increment of y has been moved from the end of the
loop to the start and the start and end values have been adjusted
accordingly. This allows the increment to be executed without
additional clock cycles which would have been required if it were
placed at the end of the loop.

To execute this version of the Handel-C code:

1. Simulate the Handel-C edge detector by typing:

handelc -s edge_v3.c -ss 1000

2. Convert the output from the edge detector back to a BMP file
using the raw2bmp utility by typing:

raw2bmp 256 dest.dat dest_v3.bmp 8bppsrc.rgb

Porting C to Handel-C

173

macro proc edge_detect()
{
 unsigned LOG2_WIDTH x;
 unsigned LOG2_HEIGHT y;
 int 9 Pixel1, Pixel2, Pixel3, PixelLeft;
 ram LineAbove[];

 x = 1;
 while (x!=0)
 {
 par
 {
 LineAbove[x] = ReadRAM(x, (unsigned LOG2_HEIGHT)0);
 x++;
 }
 }

 y = 0;
 while (y!=255)
 {
 par
 {
 x = 1;
 PixelLeft = (int)ReadRAM((unsigned LOG2_WIDTH)0, y+1);
 y++;
 }

 while (x != 0)
 {
 par
 {
 Pixel1 = (int)ReadRAM(x, y);
 Pixel2 = PixelLeft;
 Pixel3 = (int)LineAbove[x];
 }

 par
 {
 LineAbove[x] = (unsigned)Pixel1;
 PixelLeft = Pixel1;

 if (abs(Pixel1 - Pixel2) > THRESHOLD ||
 abs(Pixel1 - Pixel3) > THRESHOLD)
 WriteRAM(x, y, 0xFF);
 else
 WriteRAM(x, y, 0);

 x++;
 }
 }
 }
}

Handel-C Language Reference Manual

174

8.4.7 Further Fine Grain Parallelism

We have now reduced the core loop body from five clock cycles
(including the loop increment) to 2 clock cycles. Can we do any
better? The answer is yes because we should be able to access
the two hardware banks of RAM in parallel. Thus, the two parallel
statements in the loop body could be executed simultaneously if we
could organise the data flow correctly.

Now that we have realised that the two external RAM accesses can
be made in parallel, we must modify the program again because the
LineAbove internal RAM is accessed in both clock cycles. As it
stands, parallelisation of the two statements is not permitted
because it would involve two accesses to the same internal RAM in
a single clock cycle. The solution is to increase the number of
RAMs as before. The current line must be copied into one internal
RAM while the previous line is read from a second internal RAM.
The two internal RAM banks can then be swapped for the next line.

By also removing the Pixel1, Pixel2 and Pixel3 intermediate
variables, the two statements in the loop body can be rolled into
one. We use the LSB of the y coordinate to determine which line
buffer to read from and which line buffer to write to. The external
RAM read is done using a shared expression (RAMPixel) since we
need the value from the RAM in multiple places but only want to
perform the actual read once.

The new version of the edge detector is shown below. The core
loop is now only one clock cycle long and is executed 255 times per
line. One extra clock cycle is required per line for the initialisation of
variables and 255 lines are processed. In addition, 255 cycles are
required to initialise the on-chip RAM and one extra clock cycle per
frame is required for variable initialisation. This gives a grand total
of 65536 clock cycles per frame or an average of exactly one pixel
per clock cycle. Since there is no way of getting the image into or
the results out from the FPGA any faster than this we conclude that
we have reached the fastest possible solution to our problem.

Porting C to Handel-C

175

macro proc edge_detect()
{
 unsigned LOG2_WIDTH x;
 unsigned LOG2_HEIGHT y;
 int 9 PixelLeft;
 ram unsigned char LineAbove0[], LineAbove1[];

 par
 {
 x = 1;
 y = 0;
 }
 while (x!=0)
 {
 par
 {
 LineAbove0[x] = ReadRAM(x, (unsigned LOG2_HEIGHT)0)<-8;
 x++;
 }
 }
 while (y!=255)
 {
 par
 {
 x = 1;
 PixelLeft = (int)ReadRAM((unsigned LOG2_WIDTH)0, y+1);
 y++;
 }
 while (x != 0)
 {
 par
 {
 shared expr RAMPixel = (int)ReadRAM(x, y);
 shared expr PixelAbove = (int)(y[0]==0 ?

0@LineAbove0[x] :
 0@LineAbove1[x]);
 macro expr abs(a) = (a<0 ? -a : a);

 if (y[0]==1)
 LineAbove0[x] = (unsigned)(RAMPixel<-8);
 else
 LineAbove1[x] = (unsigned)(RAMPixel<-8);

 PixelLeft = RAMPixel;

 if (abs(RAMPixel - PixelLeft) > THRESHOLD ||
 abs(RAMPixel - PixelAbove) > THRESHOLD)
 WriteRAM(x, y, 0xFF);
 else
 WriteRAM(x, y, 0);

 x++;
 }
 }
 }
}

Handel-C Language Reference Manual

176

To execute this version of the Handel-C code:

1. Simulate the Handel-C edge detector by typing:

handelc -s edge_v4.c -ss 1000

2. Convert the output from the edge detector back to a BMP file
using the raw2bmp utility by typing:

raw2bmp 256 dest.dat dest_v4.bmp 8bppsrc.rgb

8.4.8 Adding the Hardware Interfaces

All that remains now that the program has been simulated correctly
is to add the necessary hardware interfaces. As outlined above, the
interface with the host requires the same signals and timings as the
example set out in chapter 6. We now take the code from that
example and produce two macro procedures - one to read a word
from the host and one to write a word to the host. The suitably
modified code looks like this:

// Read word from host
macro proc ReadWord(Reg)
{
 while (ReadReady == 0);
 Read = 1; // Set the read strobe
 par
 {
 Reg = dataB.in; // Read the bus
 Read = 0; // Clear the read strobe
 }
}

// Write one word back to host
macro proc WriteWord(Expr)
{
 par
 {
 while (WriteReady == 0);
 dataBOut = Expr;
 }
 par
 {
 En = 1; // Drive the bus
 Write = 1; // Set the write strobe
 }
 Write = 0; // Clear the write strobe
 En = 0; // Stop driving the bus
}

Porting C to Handel-C

177

We also need to define the pins for the external RAMs as detailed
in chapter 6 and remove the RAM declarations we added to
simulate the RAMs.

The main program also needs to be modified to include the code to
synchronise the frame grabber with the edge detector.

The code excluding the edge detection and host interface macros is
given below. Note that the pin definitions given are examples only
and do not reflect the actual pins available on any particular device.
In particular, even though the part is listed as a Xilinx 4010E, the
pins given do not correspond to real I/O pins for that device.

Handel-C Language Reference Manual

178

#define LOG2_WIDTH 8
#define WIDTH 256
#define LOG2_HEIGHT 8
#define HEIGHT 256

set family = Xilinx4000E;
set clock = external “P63”;
set part = “4010EPC84-3”;

unsigned 8 Threshold;

// External RAM definitions/declarations
ram unsigned 8 Source[65536] with {

offchip = 1,
data = {“P1”, “P2”, “P3”, “P4”,

“P5”, “P6”, “P7”, “P8”},
addr = {“P9”, “P10”, “P11”, “P12”,

“P13”, “P14”, “P15”, “P16”,
“P17”, “P18”, “P19”, “P20”,
“P21”, “P22”, “P23”, “P24”},

we = {“P25”}, oe = {“P26”}, cs = {“P27”}};
ram unsigned 8 Dest[65536] with {

offchip = 1,
data = {“P28”, “P29”, “P30”, “P31”,

 “P32”, “P33”, “P34”, “P35”},
addr = {“P36”, “P37”, “P38”, “P39”,

“P40”, “P41”, “P41”, “P43”,
“P44”, “P45”, “P46”, “P47”,
“P48”, “P49”, “P50”, “P51”},

we = {“P52”}, oe = {“P53”}, cs = {“54”}};

macro expr ReadRAM(a, b) =
 ((unsigned 1)0) @ Source[(0@a) + ((0@b) << 8)];
macro proc WriteRAM(a, b, c) Dest[(0@a) + ((0@b)<<8)] = c;

// Host bus definitions/declarations
unsigned 8 dataBOut;

int 1 En = 0;
interface bus_ts_clock_in(int 4) dataB(dataBOut, En==1) with
 {data = {“P55”, “P56”, “P57”, “P58”}};

int 1 Write = 0;
interface bus_out() writeB(Write) with
 {data = {“P59”}};

int 1 Read = 0;
interface bus_out() readB(Read) with
 {data = {“P60”}};

interface bus_clock_in(int 1) WriteReady() with
 {data = {“P61”}};

interface bus_clock_in(int 1) ReadReady() with
 {data = {“P62”}};

Porting C to Handel-C

179

Insert edge_detect, ReadWord and WriteWord macro definitions here

void main(void)
{
 ReadWord(Threshold);

 while(1)
 {
 unsigned Dummy;

 ReadWord(Dummy);
 edge_detect();
 WriteWord(Dummy);
 }
}

Handel-C Language Reference Manual

180

8.5 Summary

The aim of this chapter has been to show the development of a real
Handel-C program from conventional C to a full program targeted at
hardware. Is has also shown the performance benefits of the
Handel-C approach by demonstrating a real time application
executing with a great deal of parallelism.

Porting C to Handel-C

181

Handel-C Language Reference Manual

182

9. Complete Language Syntax

Handel-C Language Reference Manual

184

9.1 Introduction

In this chapter, the complete Handel-C language syntax will be
given in BNF-like notation.

Complete Language Syntax

185

9.2 Keywords

The identifiers below are reserved as keywords and cannot be used
for any other purposes.

int unsigned undefined
while do ram
rom interface delay
for main switch
case if chan
chanin chanout with
else default break
par void char
short long set
intwidth clock external
internal external_divide internal_divide
macro shared expr
proc family part
bus_in bus_out bus_ts
bus_clock_in bus_latch_in bus_ts_clock_in
bus_ts_latch_in width select
prialt

The following character sequences are also reserved.

+ /* */ // =
; { } []
() ! ? :
- == ++ -- <<
>> <- \\ @ *
!= < > <= >=
&& || & | ^
~ += -= *= <<=
>>= &= |= ^= .

Handel-C Language Reference Manual

186

9.3 Complete Language Syntax

The complete language syntax is given in this section. The
conventions used in this language reference are:

• Terminal symbols are set in typewriter font like this.
• Non-terminal symbols are set in italic font like this.
• Square brackets [...] denote optional components.
• Braces {...} denotes zero, one or more repetitions of the

enclosed components.
• Braces with a trailing plus sign {...}+ denote one or several

repetitions of the enclosed components.
• Parentheses (...) denote grouping.

9.3.1 Identifiers

Identifiers are sequences of letters, digits and _, starting with a
letter. All characters in an identifier are meaningful and all
identifiers are case sensitive.

identifier ::= letter {letter | 0...9 | _ }
letter ::= A...Z | a...z

9.3.2 Integer Literals

integer_literal ::= [-]{1...9}+{0...9}
| [-](0x | 0X){0...9 | A...F | a...f}+

| [-](0){0...7}
| [-](0b | 0B){0...1}+

9.3.3 Strings

string ::= “{character}”

Here, character is any printable character or any of the following
escape codes:

Complete Language Syntax

187

Escape Code ASCII Value Meaning
\a 7 Bell (alert)
\b 8 Backspace
\f 12 Formfeed
\t 9 Horizontal tab
\n 10 Newline
\v 11 Vertical tab
\r 13 Carriage return
\” - Double quote mark
\0 0 String terminator
\\ - Backslash
\’ - Single quote mark

9.3.4 Types

type ::= basic_type [width] | c_type

basic_type ::= int | unsigned [int]

width ::= undefined
| integer_literal
| (constant_expression)

c_type ::= char
| unsigned char
| short
| unsigned short
| long
| unsigned long

Handel-C Language Reference Manual

188

9.3.5 Hardware Control

hw_control ::= set clock = (internal_clock |
external_clock);

| set part = string;
| set family = family_identifier;

 | set intwidth = const_expression;

internal_clock ::= internal string
| internal_divide string integer_literal

external_clock ::= external pin_string
| external_divide string integer_literal

family_identifier ::= Xilinx3000
| Xilinx4000
| Xilinx4000A
| Xilinx4000D
| Xilinx4000H
| Xilinx4000E
| Xilinx4000EX
| Xilinx4000L
| Xilinx4000XL
| Xilinx4000XV
| Altera6K
| Altera8K
| Altera10K

Complete Language Syntax

189

9.3.6 Declarations

global_declaration ::= type identifier = const_expression;
| type identifier {[[const_expression]]}+ =

array_initialiser;
| declaration

array_initialiser ::= array_init
| {array_initialiser {, array_initialiser }}

array_init ::= {const_expression {, const_expression}}

declaration ::= var_declare
| hw_control
| array_declare
| chan_declare
| interface_declare
| ram_rom_declare
| macro_expr_declare
| shared_expr_declare
| macro_proc_declare

9.3.7 Variable Declarations

var_declare ::= type {identifier} [{ , identifier}+] [var_spec];

array_declare ::= type {identifier {[const_expression]} + }
 [{,identifier {[const_expression]}+}+]

 [array_spec];

var_spec ::= with { v_spec { , v_spec} }
v_spec ::= {show_spec | base_spec | file_spec | warn_spec }

array_spec ::= with { a_spec { , a_spec} }
a_spec ::= {show_spec | base_spec | warn_spec }

Handel-C Language Reference Manual

190

9.3.8 Channel Declarations

chan_declare ::= chan type {identifier}+;
| chanin type identifier [chanin_spec];
| chanout type identifier [chanout_spec];

chanin_spec_file ::= with { infile_spec }

chanout_spec_file ::= with { cout_spec { , cout_spec } }

cout_spec ::= show_spec | outfile_spec
 | base_spec | warn_spec

Complete Language Syntax

191

9.3.9 Interface Declarations

interface_declare ::= interface (busin_declare
| lbusin_declare
| cbusin_declare
| busout_declare
| busts_declare
| lbusts_declare
| cbusts_declare);

busin_declare ::= bus_in(type) identifier() with
inbus_spec

lbusin_declare ::= bus_latch_in(type)
identifier(expression) with inbus_spec

cbusin_declare ::= bus_clock_in(type) identifier() with
inbus_spec

inbus_spec ::= { data_spec {, in_spec } }
in_spec ::= {speed_spec | infile_spec | pull_spec}

busout_declare ::= bus_out() identifier(expression) with
outbus_spec

outbus_spec ::= { data_spec {, out_spec } }
out_spec ::= {speed_spec | show_spec | warn_spec |

 base_spec | outfile_spec | pull_spec}

busts_declare ::= bus_ts(type) identifier(expression,
expression) with tsbus_spec

lbusts_declare ::= bus_ts_latch_in(type)
identifier(expression, expression, expression)

with tsbus_spec
cbusts_declare ::= bus_ts_clock_in(type)

 identifier(expression, expression) with
tsbus_spec

tsbus_spec ::= { data_spec { , ts_spec} }
ts_spec ::= speed_spec | show_spec |

 base_spec | infile_spec |
 outfile_spec | pull_spec | warn_spec

pin_list ::= {{pin_string} {,pin_string}}

pin_string ::= “P{1...9}+{0..9}”

Handel-C Language Reference Manual

192

9.3.10 RAM and ROM Declarations

ram_rom_declare ::= internal_ram_declare
| external_ram_declare
| rom_declare

internal_ram_declare ::= ram type ram_ident
[= ram_rom_init];

| mult_ram_declare;
external_ram_declare ::= ram type ram_ident with

 ram_spec;
mult_ram_declare ::= ram type (ram_ident {,ram_ident})

rom_declare ::= rom type ram_ident = ram_rom_init
[with rom_spec];

ram_ident ::= ident[[const_expression]]

ram_rom_init ::= {const_expression {, const_expression}+}

Complete Language Syntax

193

9.3.11 Object Specifications

show_spec ::= show = (1 | 0)

base_spec ::= base = (2 | 4 | 8 | 16)

warn_spec ::= warn = (1 | 0)

speed_spec ::= speed = (0 | 1 | 2 | 3)

data_spec ::= data = pin_list

pull_spec ::= pull = (1 | 0)

infile_spec ::= infile = string

outfile_spec ::= outfile = string

ram_spec ::= { offchip = (1 | 0),
[wegate = (1 | 0),
| (westart = const_expression,
welength = const_expression,)]
data = pin_list,
addr = pin_list,
we = pin_list,
oe = pin_list,
cs = pin_list }

rom_spec ::= { offchip = (1 | 0),
data = pin_list,
addr = pin_list,
we = pin_list,
oe = pin_list,
cs = pin_list }

9.3.12 Macro Expression Declarations

macro_expr_declare ::=
macro expr identifier[({identifier}{,identifier})] =

expression;

Handel-C Language Reference Manual

194

9.3.13 Shared Expression Declarations

shared_expr_declare ::=
shared expr identifier[({identifier}{,identifier})] =

expression;

9.3.14 Macro Procedure Declarations

macro_proc_declare ::=
macro proc identifier[({identifier})] statement

9.3.15 Expressions

expression ::= (expression)
| integer_literal
| variable
| macro_expression_ident [({expression})]
| shared_expression_ident [({expression})]
| rom_ram_entry
| bus_field
| const_expression
| expression ? expression : expression
| select(const_expression , expression,

 expression)
| prefix_op expression
| width(expression)
| expression postfix_op
| expression binary_op expression
| expression bin_const_op const_expression

prefix_op ::= - | ! | ~ | (type)

postfix_op ::= [const_expression]
| [const_expression : const_expression]

binary_op ::= @ | + | - | * | == | != | < | >
 | <= | >= | && | || | & | | | ^

bin_const_op ::= << | >> | <- | \\

Complete Language Syntax

195

const_const_op ::= / | %

variable ::= var_identifier
| array_identifier {[const_expression]}+

rom_ram_entry ::= rom_ram_identifier[expression]

bus_field ::= busin_ts_ident.in

const_expression ::= (const_expression)
| integer_literal
| width(expression)
| select(const_expression , const_expression ,

const_expression)
| prefix_op const_expression
| const_expression postfix_op
| const_expression binary_op const_expression
| const_expression constconst_op const_expression
| const_expression bin_const_op

 const_expression

Here, macro_expr_ident is an identifier of a macro expression,
shared_expr_ident is an identifier of a shared expression,
var_identifier is an identifier of a variable, array_identifier is an
identifier of an array, rom_ram_identifier is an identifier of a ROM or
RAM and busin_ts_ident is an identifier of an input bus or tri-state
bus.

Handel-C Language Reference Manual

196

9.3.16 Statements

statement ::= {{declaration} {statement}+}
| par {{declaration} statement {statement}+}
| macro_proc_ident({expression})
| assignment
| channel_comms
| if_statement
| while_statement
| do_while_statement
| for_statement
| switch_statement
| prialt_statement
| break;
| delay;

assignment ::= variable unary_assign;
| (variable | ram_entry) = expression;
| variable binary_assign expression;

ram_entry ::= ram_identifier[expression]

unary_assign ::= ++ | --

binary_assign ::= += | -= | *= | <<= | >>= | &= | |= | ^=

channel_comms ::= channel_ident ? variable;
| channel_ident ! expression;

if_statement ::= if (expression) statement [else statement]

while_statement ::= while (expression) statement

do_while_statement ::= do statement while (expression);

for_statement ::= for (statement ; expression ;
statement) statement

switch_statement ::= switch (expression) {
{{switch_case}+ statement [break;] }}

switch_case ::= case const_expression {,const_expression}:
| default :

Complete Language Syntax

197

prialt_statement ::= prialt {{prialt_case}+}

prialt_case ::=
case channel_ident ? variable : statement break;
| case channel_ident ! expression : statement

 break;
| default : statement break;

Here, ram_identifier is an identifier of a RAM.

9.3.17 Program

The overall syntax for the program is:

program ::= {global_declaration}

void main(void) {
{declaration}
{statement}+

}

Handel-C Language Reference Manual

198

Index

-................................ 37, 47, 163, 185, 194
--..............25, 29, 33, 46, 85, 163, 185, 196
!.................. 25, 31, 40, 46, 47, 70, 85, 162,

163, 185, 194, 196, 197
!=.............................. 39, 47, 163, 185, 194
#define........................ 14, 68, 69, 71, 121
#include.. 14
%..44, 47, 163, 195
%=.. 163
&................................ 41, 47, 163, 185, 194
&&.............................. 40, 47, 163, 185, 194
&=.........................25, 46, 85, 163, 185, 196
*................................ 37, 47, 163, 185, 194
*=.........................25, 46, 85, 163, 185, 196
/..44, 47, 163, 195
/*...*/...14, 185
/=.. 163
//...14, 185
:...........................42, 47, 70, 163, 185, 194
?........................25, 31, 42, 46, 47, 85, 162,

163, 185, 194, 196, 197
@................35, 36, 38, 43, 47, 163, 185, 194
[]......................19, 20, 21, 35, 36, 47, 163,

185, 189, 192, 194, 196
^................................ 41, 47, 163, 185, 194
^=.........................25, 46, 85, 163, 185, 196
|................................ 41, 47, 163, 185, 194
||.............................. 40, 47, 163, 185, 194
|=.........................25, 46, 85, 163, 185, 196
~................................ 41, 47, 163, 185, 194
+................................ 37, 47, 163, 185, 194
++..............25, 29, 33, 46, 85, 163, 185, 196
+=.........................25, 46, 85, 163, 185, 196
<................................ 39, 47, 163, 185, 194
<-................... 35, 36, 37, 47, 163, 185, 194
<<.............................. 35, 47, 163, 185, 194
<<=.......................25, 46, 85, 163, 185, 196
<=.............................. 39, 47, 163, 185, 194
-=.........................25, 46, 85, 163, 185, 196
==.............................. 39, 47, 163, 185, 194
>................................ 39, 47, 163, 185, 194
>=.............................. 39, 47, 163, 185, 194
>>.............................. 35, 47, 163, 185, 194
>>=.......................25, 46, 85, 163, 185, 196

abs.. 147
addition ...37, 47
addr..................................... 126, 130, 193
addsat.. 148
adjs.. 138
adju.. 139

and 40, 41, 46, 47
argc ... 13
argv ... 13
arrays 19, 20, 21, 22, 34, 37, 47, 60
assignment............................ 18, 24, 46, 87

base..................................... 126, 127, 193
binary... 15
bit selection35, 47
bitwise and 41, 46, 47
bitwise exclusive or 41, 46, 47
bitwise not ...41, 47
bitwise or..................................... 41, 46, 47
block............................ 7, 13, 23, 76, 82, 85
break........... 29, 30, 46, 162, 185, 196, 197
bus_clock_in.................... 115, 117, 123,

 125, 185, 191
bus_in.......................... 115, 121, 185, 191
bus_latch_in.......115, 116, 123, 185, 191
bus_out........................ 115, 117, 185, 191
bus_ts.......................... 115, 118, 185, 191
bus_ts_clock_in........ 115, 120, 185, 191
bus_ts_latch_in........ 115, 119, 185, 191

case.......................... 29, 30, 185, 196, 197
casting 16, 42, 43, 47
chan............. 19, 45, 53, 101, 162, 185, 190
chanin..................... 45, 51, 53, 55, 58, 60,

101, 162, 185, 190
channel 6, 19, 20, 25, 30, 45, 46, 50,

53, 58, 60, 81, 83, 85, 101
chanout................... 45, 51, 53, 55, 58, 60,

101, 162, 185, 190
char.......................... 17, 45, 162, 185, 187
clock rate 33, 80, 91, 95, 106
combinatorial loops32, 85
comments .. 14
compiling............................... 52, 56, 59, 63
concatenate................................. 35, 36, 47
conditional........................26, 42, 46, 47, 70
constants ..15, 102
continue.. 162
copy.. 140
cs... 126, 130, 193

data..................................... 126, 130, 193
declarations.. 15
decode.. 149
default.................... 29, 30, 185, 196, 197
delay........32, 46, 81, 85, 86, 162, 185, 196
design flow ...9
div.. 150
division....................... 37, 44, 47, 50, 55, 57

double.. 162
do...while... 27, 46, 54, 85, 162, 185, 196
do...while loops..................................27, 46
drop ..35, 47

efficiency..................................... 15, 33, 91
else.....................26, 46, 85, 162, 185, 196
enum.. 162
envp... 13
equal...39, 47
exclusive or 41, 46, 47
exp2.. 151
expression....... 12, 24, 29, 33, 35, 37, 47, 69
extern.. 162
external............................. 105, 185, 188
external_divide.............. 105, 107, 129,

185, 188

family.. 104
Fibonacci ... 61
float.. 162
for................. 28, 29, 46, 85, 162, 185, 196
for loops ..28, 46

global variables....................................... 18
goto.. 162
greater than.......................................39, 47
greater than or equal..........................39, 47

hexadecimal ... 15

if.........................26, 46, 85, 162, 185, 196
incwrap.. 152
infile.......................... 102, 126, 127, 193
initialisation... 18
int..................................45, 162, 185, 187
interface............115, 116, 117, 119, 120,

 122, 125, 162, 185, 191
internal............................. 105, 185, 188
internal_divide.............. 105, 107, 129,

 185, 188

latency ... 94
less than ...39, 47
less than or equal...............................39, 47
lmo.. 141
lmz.. 142
log2ceil.. 153
log2floor.. 154
logical and...40, 47
logical not..40, 47
logical or..40, 47
long.......................... 17, 45, 162, 185, 187

macro expr................ 69, 71, 74, 185, 193
macro proc........................... 76, 185, 194
macros.............................14, 68, 69, 71, 76
main............13, 18, 51, 53, 55, 58, 185, 197
metastability ... 124
mod.. 155
modulo arithmetic44, 47
multi-dimensional arrays.....................19, 20
multiplication................... 37, 47, 73, 95, 123

not .. 40, 41, 47
not equal ...39, 47

octal... 15
oe... 126, 130, 193
offchip........................ 109, 126, 129, 193
or.. 40, 41, 46, 47
outfile........................ 102, 126, 127, 193
overflow ..15, 38

par............................ 46, 85, 162, 185, 196
parallel 5, 13, 23, 46, 58, 87
pipelining.. 94
pointers.. 19
population.. 143
precedence .. 39
pre-processor 14, 64, 68, 71, 76, 121
prialt.................30, 46, 85, 162, 185, 197
pull..................................... 126, 128, 193

queue..58, 87

ram........................21, 34, 37, 45, 107, 109,
162, 185, 192

RAM21, 32, 34, 37, 45, 46, 64,
107, 110

recursive macros68, 71
register.. 162
resource conflicts...........................8, 32, 87
return.. 162
rmo.. 144
rmz.. 145
rom.....................21, 45, 107, 162, 185, 192
ROM 21, 34, 37, 45, 46, 61, 64, 107

scope...7
select......... 47, 70, 71, 163, 185, 194, 195
sequential......................................5, 23, 29
set clock........................... 105, 185, 188
set family......................... 104, 185, 188
set intwidth..................18, 45, 185, 188
set part............................. 104, 185, 188
shared expr....................74, 75, 185, 194
shared macros....................... 68, 73, 74, 75

shift left 35, 46, 47
shift right 35, 46, 47
short........................ 17, 45, 162, 185, 187
show..................................... 126, 127, 193
side effects.................................. 29, 33, 46
sign.. 156
simulator45, 50, 51, 52, 53, 54, 56,

57, 59, 60, 63, 100, 101,
103, 115, 121

sizeof.. 163
specifications.. 126
speed................................... 126, 128, 193
statements 5, 12, 13, 23, 29, 30, 33, 46
static.. 162
struct.. 162
subsat.. 157
subtraction...37, 47
switch........... 29, 46, 65, 85, 162, 185, 196
switch statements 29
synchronisation...6

take ..35, 47
throughput.. 94
time sliced.. 6, 23
top.. 146
tri-state bus 115, 118, 119, 120
typedef.. 162

undefined............... 16, 17, 18, 20, 25, 45,
 71, 162, 185, 187

union.. 162
unsigned............................. 162, 185, 187
unsigned char.............................45, 187
unsigned int...................................... 45
unsigned long.............................45, 187
unsigned short...........................45, 187

variable ...16, 87
void...162, 185
volatile.. 162

warn..................................... 126, 128, 193
we... 126, 130, 193
wegate........... 108, 109, 111, 126, 129, 193
welength....... 107, 109, 111, 126, 129, 193
westart......... 107, 109, 111, 126, 129, 193
while............. 27, 28, 46, 85, 162, 185, 196
while loops ..27, 46
width..................15, 16, 17, 24, 25, 35, 36,

37, 38, 39, 41, 43, 45, 47,
 70, 71, 163, 185, 187, 195

with............... 126, 185, 189, 190, 191, 192

