L2Alpha Processor

Robert D. Martin
University of Illinois at Chicago
6 February 1999
L2Alpha Requirements

• Fast CPU
 – Event processing within 100 µs
• VME Interface
 – Communication with TCC
 – Upload of Events to L3 via VBD
 – VME interrupts enabled
• MBus Interface
 – High speed for input data
 – Low latency for Administrator--Worker communication
• Buffers
 – Input: at least 16 events
 – Output: at least 8 events
L2Alpha Design

- Joint CDF and D0 project
- Designed by Myron Campbell’s group at U of M
- Based on DEC PC164 motherboard
- Tundra UniverseII for VME
- 3 MBus FPGAs
• 500 MHz Alpha 21164 CPU
 – 4 pipelines: 2 int, 2 fp
 – 3 levels of cache
 • separate instruction and data L1 cache (Icache and Dcache)
 • unified 3-way set associative L2 cache (Scache)
 • Off-chip direct mapped L3 cache
• 4 MB L3 Cache (diff from PC164)
• 256-bit wide path from CPU to SIMM Memory
• memory mapping compromise between fast DMA and fast processor access
• 2 levels of firmware
 – SROM: hardware configuration
 – Flash ROM
 • programmable on the fly
 • OS/task specific configuration
• 64-bit PCI bus (33 MHz)
• 2 PCI expansion slots
• Support for floppy and IDE hard drives
• Real Time Clock with periodic interrupt capabilities
• 3 serial ports: COM1/2 and SROM
• UniverseII provides VME interface
• VME master or slave
 – 8 address windows each
 – Windows configurable over VME
• Mapping for all 7 VME interrupts
• 1 PCI interrupt
L2Alpha: MBus DMA

- MBus DMA address
 - mbus_ad<7:0> set DMA address
 - mbus_ad<31:8> must be zero
 - 256 possible DMA addresses

- DMA uses 2 PLDs
 - FPGA for DMA addr to PCI map
 - CPLD for xfer to main memory

- MBus transfer and PCI transfer decoupled by 1K deep FIFOs

- When FIFO not empty
 - translation made between MB address and PCI address
 - 64 bit PCI DMA transaction to main memory until FIFO empty
L2Alpha: MBus DMA

- Translation Buffers for each MBus Address
 - Starting PCI address in translation buffer configurable for each MBus broadcast address
 - Each 64 bit PCI transfer increments address in translation buffer

- Above features can be used to determine xfer length for error detection

- Open Collector line pulled while data in FIFO
MAGICFPGA does programmed I/O (PIO) transfers on MBus
2 PCI to MBus windows
 – 1 window must xfer 128 bits
 – 1 window can xfer < 128 bits
1 MBus to PCI window
128 bits are always transmitted to or received from MBus
Only path for non-DMA MBus communication between MBus devices
“Catch-all” FPGA

- Mbus control and status lines
 - MOD_DONE<21:7>
 - AP_FIFO_EMPTY
 - START_LOAD
 - etc

- Can pull PCI interrupt -- will be used for new event arrival

- 32 ECL scalar channels driven by TSI -- diff between CDF/D0
I/O Paths

• Ethernet
 – slow
 – only appropriate for d/l of executable in running system
 – can be used for remote debugging
• VME
 – output to L3
 – monitor output to TCC
 – run-time parameter d/l
• MBus
 – Input data
 – Output to L2Global
 – Interprocessor communication
 – Communication w/ MBT
Interrupts

• Sources
 – Real time clock
 • useful for monitoring/debugging
 • minimize (few Hz)
 – MBus (1 int)
 • originating on TSI-FPGA
 • Will use to signal when new event has been moved from DMA FIFOs to memory
 – VME
 • 7 VIRQ go to 1 PCI, mapping in Universe
 • Will be used for asynchronous SCL and TCC information
Software

• Software Developers Kit (SDK) from Digital
• “Debug Monitor” Firmware (DBM)
 – Allows board to run w/o an OS
 – Access to full physical memory
 – Dynamic mem alloc should be avoided
 – Executables can be d/l’ed over ethernet using BOOTP/TFTP
• Remote debugging over ethernet from Digital UNIX using ladebug.
• Can modify DBM to load trigger exe on startup
Downloading and Verification

• Program download over Ethernet.
 – < 4MB program over 0.5 MB/s link
 – < 10 sec per node
 – can run immediately after d/l
• Parameter d/l by TCC over VME
 – << 1 MB over 2 MB/s link
 – more info given by R. Moore
• Where possible, lookup tables should be calculated not downloaded
• Can run *in situ* test programs for software verification
Project Information

- Boards designed by Myron Campbell’s group at U of M
 - Stephen Miller
 - Zhihui Huang
- Prototype MBus DMA engine and Universe expansion cards built and tested prior to integrating those designs into L2Alpha
- Fab/Stuffing by ADCO and their sub-contractors
- D0 will build roughly 3x more L2Alphas than CDF
• 7 Prototypes delivered to UofM in December -- 5 go to D0 institutions

• In process of design verification
 – Most of PC164 functionality tested and verified (some corrections made)
 – Working w/ Tundra engineers to understand UniverseII problem
 – MBus FPGAs not tested yet
 – Ignoring obvious manufacturing problems until have working design
 – should be done by March workshop
After the Prototypes

- Some design mods need to be done
 - fixes to problems found with prototypes
 - additional functionality
 - add drivers to make some MBus lines R/W instead of Read Only
 - other possible mods seen as necessary once start operating boards
- “Best Guess” of 12 weeks for production fab/stuffing
• Design Verification
 – use first CDF or D0 version (both?) to verify production design
 – Work with UofM/CDF
• Board debugging
 – Will be done at UIC
 – HEP group + department EE
Longterm Support

- Have enough spares on hand (on shelf or in test crates) to only need to repair boards a couple times per year
- 3am replacement not 3am repair
- Given the resources, repair will be done by the UIC
Longterm Support Issues

• L2Alpha is based on a commercial computer
• Most component parts have life cycle of computer industry not HEP
• Need to purchase spare parts prior to being discontinued
 – non-EDO 72pin SIMMs may already be a problem!
 – May need to corner market of PCI to ISA bridge used on prototype/PC164
 – Will only get worse!