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Abstract

Deflection of light was predicted by the General Theory of Relativity and
was confirmed observationally in 1919. This led to the idea of a gravitational
lens in which a massive object like a galaxy or clusters of galaxies come in
between the source and the observer and cause multiple imaging or magnifi-
cation, or both, of the source. In the first section we will give some historical
background about this phenomena. In the second section we will derive the
lens equation and describe some properties of the image. In the third section
we will describe different groups of gravitational lensing observations.
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1 History of Gravitational Lensing

The first written account of the deflection of light by gravity appeared in
the article “On The Deflection Of Light Ray From Its Straight Motion Due
To The Attraction Of A World Body Which It Passes Closely,” by Johann
Soldner in 1804. In his article Soldner predicted that a light ray passing close
to the solar limb would be deflected by an angle α̃ = 0.84 arcsec.

More than a century later,in 1919, Albert Einstein directly addressed
the influence of gravity on light. At this time Einstein’s General Theory of
Relativity was not fully developed. This is the reason why Einstein obtained
- unaware of the earlier result - the same value for the deflection angle as
Soldner had calculated with Newtonian physics. In this paper Einstein found
α̃ = 2GM¯/c2R¯ = 0.83 arcsec for the deflection angle of a light ray grazing
the sun (here M¯ and R¯ are the mass and radius of the sun, c and G are
the speed of light and the gravitational constant respectively).

Einstein emphasized his wish that astronomers investigate this equation.
In 1913 Einstein contacted the director of Mount Wilson observatory, George
Hale, and asked if it will be possible to measure the positions of stars near
the sun during the day in order to establish the angular deflection effect of
the sun.

The first observational attempt to test Einstein’s prediction for the de-
flection angle was in 1914. This attempt was never accomplished which was
fortunate for Einstein whose predicted value for the angular deflection was
actually wrong.

With the completion of the General Theory of Relativity in 1916, Einstein
was the first to derive the correct formula for the deflection angle α̃ of a light
passing at a distance r from an object with mass M as

α̃ =
4GM

c2

1

r2
(1)

The additional factor of two (compared to the “Newtonian” value) is
due to the spatial curvature which is missed if photons are just treated as
particles.

For the sun, Einstein obtained

α̃ =
4GM¯

c2

1

R2¯
= 1.74 arcsec (2)

This value was first confirmed to within 20% by Arthur Eddington and his
group during a solar total eclipse in 1919. Recently this value was confirmed
to within 0.02%.
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In 1924 Chwolson mentioned the idea of a “factious double star.” He
also mentioned the symmetric case of star exactly behind star, resulting in
a circular image. In 1936 Einstein also reported about the appearance of a
“luminous” circle of perfect alignment between the source and the lens, such
a configuration is called “Einstein Ring”. In 1937 Fritz Zwicky pointed out
that galaxies are more likely to be gravitationally lensed than a star and that
one can use the gravitational lens as natural telescope.

2 Basics of Gravitational Lensing

In this section we’ll study the “Thin Lens Approximation” in which we as-
sume that the lensing action is dominated by a single matter inhomogeneity
between the source and the observer and that this action takes place at a sin-
gle distance. This approximation is valid only if the relative velocities of the
source, image and observer are small compared to the velocity of light v ¿ c
and if the Newtonian potential is small |Φ| ¿ c2.These assumptions are jus-
tified in all astronomical cases of interest. The size of a galaxy or cluster of
galaxies is of the order of a few Mpc. This “lens thickness” is small compared
to the typical distance between the lens and the source or the lens and the
observer which is of order of a few Gpc. Here we assume that the underly-
ing spacetime is well described by a perturbed Friedmann-Robertson-Walker
metric :

ds2 =
(
1 +

2Φ

c2

)
c2dt2 − a2(t)

(
1− 2Φ

c2

)
dσ2 (3)

2.1 Lens Equation

The basic setup for a gravitational lens scenario is displayed in Figure (1).
The three ingredients in such a lensing situation are the source S, the lens
L and the observer O. In this scenario light rays emitted by the source are
deflected by the lens which will produce two images, S1 and S2.

Figure (2) shows the corresponding angles and angular diameter distances
DL, DS, DLS.

Assuming a spherical-symmetric lens, the underlying spacetime around
the lens is well described by the Schwarzchild metric :

ds2 =
(
1− 2m

r

)
c2dt2 − dr2

(
1− 2m

r

) − r2dθ2 − r2sin2θdφ2 (4)
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Figure (1): setup of a gravitational lens.

Figure (2): Corresponding angles and angular diameters

In this case the deflection angle is given as
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α̃ =
4GM(ξ)

c2

1

ξ2
(5)

where M(ξ) is the mass inside a radius ξ.
From figure 2 we see that the following relations hold :

θDS = βDS + α̃DLS (6)

α(θ) =
(

DLS

DS

)
α̃(θ) (7)

β = θ − α(θ) (8)

(this is true for all astrophysical relevant situations in which θ, β, α̃ ¿ 1)
where equation (8) is the lens equation.

2.2 Einstein Radius

Plugging equation (5) into equation (7) and noticing that ξ = θDL, we get
for the lens equation :

β(θ) = θ − DLS

DLDS

4GM

c2θ
(9)

For the special case in which the source lies exactly behind the lens β = 0
and we have :

θE =

√
4GM

c2

DLS

DLDS

(10)

where θ is the angular radius of the ring-like image, which we call Einstein
Ring. For a massive galaxy with a mass M = 1012M¯ at a redshift of
ZL = 0.5 and a source at redshift ZS = 2.0 the Einstein radius is

θE ≈ 1.8

√
M

1012M¯
arcsec (11)

2.3 Image positions and magnifications

In the case of a single point lens, the lens equation can be reformulated to :

β = θ − θ2
E

θ
(12)

Solving for θ we get

θ± =
1

2

(
β ±

√
β2 + 4θ2

E

)
(13)
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Equation (13) says that for an isolated point source one always gets two
images of a background source with the corresponding angular positions θ+

and θ−.
The magnification µ of an image is defined as the ratio between the solid

angles of the image and the source

µ =
θ

β

dθ

dβ
(14)

By using the lens equation, we find :

µ± =


1−

[
θE

θ±

]4


−1

=
u2 + 2

2u
√

u2 + 4
± 1

2
(15)

where u = β/θE

The sum of the absolute values of the two image magnifications is the
measurable total magnification µ

µ = |µ+|+ |µ−| = u2 + 2

2u
√

u2 + 4
(16)

Note that this value is always larger than one. (This does not violate energy
conservation, since this is the magnification relative to an “empty” universe
and not relative to a “smoothed out” universe.) The difference between the
two image magnifications is unity:

µ+ − µ− = 1 (17)

2.4 Non-Singular isothermal sphere

Here we assume singular isothermal sphere with a three-dimensional density
distribution

ρ =
σ2

v

2πG

1

r2
(18)

where σv is the one-dimensional velocity dispersion. By projecting the matter
in a plane, one obtains the circularly-symmetric surface mass distribution

Σ(ξ) =
σv

2G

1

ξ
(19)

The mass inside a sphere of radius ξ is given by

M(ξ) =
∫ ξ

0
Σ(ξ′)2πξ′ dξ′ (20)
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Plugging this into equation (5) one obtains :

α̃(ξ) = 4π
σ2

v

c2
(21)

From the above equation we see that the deflection angle for an isotheral
sphere is constant(i.e. independent of ξ)

This can be simplified to :

α̃ = 1.15
(

σv

200kms−1

)2

arcsec (22)

2.5 Lens mapping

For a non-symmetric mass distribution, all angles become vector-valued and
the lens equation reads

~β = ~θ − ~α(~θ) (23)

In the vicinity of an arbitrary point, equation (23) can be described by its
Jacobian matrix A:

A =
∂~β

∂~θ
=


δij − ∂αi(~θ)

∂θj


 =


δij − ∂2ψ(~θ)

∂θi∂θj


 (24)

Where we used the fact that the deflection angle can be expressed as the
gradient of a two-dimensional scalar potential ψ :

~∇θψ = ~α (25)

and

ψ(~θ) =
DLS

DLDS

2

c2

∫
Φ(~r)dz (26)

and Φ(~r) in the Newtonian potential of the lens.
The magnification is the inverse of the determinant of the Jacobian

µ =
1

detA
(27)

Let’s define

ψij =
∂2ψ

∂θi∂θj

(28)

The Laplacian of the effective potential ψ is twice the convergence :

ψ11 + ψ22 = 2κ = trψij (29)

7



With the definitions of the components of the external shear γ

γ1(~θ) =
1

2
(ψ11 − ψ22) = γ(~θ) cos[2ϕ(~θ)] (30)

and
γ2(~θ) = ψ12 = ψ21 = γ(~θ) sin[2ϕ(~θ)] (31)

Where the angle ϕ reflects the direction of the shear-inducing tidal force
relative to the coordinate system.

The Jacobian matrix can be written as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ + γ1

)
= (1−κ)

(
1 0
0 1

)
−γ

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)

(32)
The magnification can now be expressed as a function of the local con-

vergence κ and local shear γ :

µ = (detA)−1 =
1

(1− κ)2 − γ2
(33)

We notice that locations for which det A = 0 have infinite magnification.
These locations are called critical curves. For a spherically symmetric
mass distribution the critical curves are circles. For a point lens, the caustic
degenerates into a point. For elliptical lenses or spherically symmetric lenses
plus external shear, the caustics can consist of cusps and folds.

2.6 Time delay

Using equation (25), the lens equation becomes :

~∇θψ = (~θ − ~β) (34)

or
~∇θ

(
1

2
(~θ − ~β)2 − ψ

)
= 0 (35)

The term in the brackets appears in the physical time delay function for
gravitationally lensed images:

τ(~θ, ~β) = τgeom + τgrav =
1 + ZL

c

DLDS

DLS

(
1

2
(~θ − ~β)2 − ψ(θ)

)
(36)

The time delay τ is a function of the image geometry (~θ, ~β), the distances
DL, DS, DLS and the gravitational potential ψ. Here the geometrical time
delay reflects the extra path length compared to the direct line between the
observer and the source. The gravitational time delay is the retardation due
to the gravitational potential of the lensing mass.
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3 Lensing Phenomena

In this section we describe some of the gravitational lens observations.

3.1 Einstein rings

In section (2.2) we showed that for the special case in which the source lies
exactly behind the lens, a ring-like image will be produced, we also showed
that the angular radius of such image is given by equation (10). There are
two conditions to be satisfied in order to be able to observe such image; first,
the mass distribution of the lens needs to be axially symmetric, as seen form
the observer; and second, the source must lie exactly on top of the resulting
degenerate point-like caustic.

The first observed “Einstein ring” was in 1988. The extended radio
source MG1131+0456 was observed with high resolution radio observations,
it turned out to be a ring with a diameter of about 1.75 arcsec. The source
was at redshift ZS = 1.13, whereas the lens was a galaxy at ZL = 0.85.
Figure (3) shows a remarkable image of Einstein ring 1938+666 by the in-
frared HST, we can see the perfect circular ring with two bright parts plus
the bright central galaxy.

Figure (3): Einstein ring 1938+666, the diameter of the ring is about 0.95 arcseconds .
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By now about half a dozen cases have been found that qualify as Einstein
rings. Their diameters vary between 0.33 to 2 arcseconds. All of them are
found in the radio regime, some have optical or infrared counterparts as well.
Broken Einstein rings have also been observed. In these “broken” rings at
least one interruption is observed along the ring circle. The sources of most
Einstein rings have both an extended and a compact component. The latter
is always seen as a double image, separated by roughly the diameter of the
Einstein ring. In some cases monitoring of the radio flux showed that the
compact source is variable. This gives the opportunity to measure the time
delay and the Hubble constant Ho in these systems.

3.2 Giant luminous arcs

This phenomena was first discovered in 1986 by Lynds and Petrosian: mag-
nified, distorted and strongly elongated images of background galaxies which
happened to lie behind foreground clusters of galaxies.

Clusters of galaxies at Z ≈ 0.2 with masses of order 1014M¯ are very
effective lenses. Their Einstein radii are of the order of 20 arcseconds. No
complete Einstein ring has been found around clusters due to the facts that
most clusters are not really spherical mass distributions and since the align-
ment between the lens and source are not perfect.

Giant arcs can be exploited in two ways, as is typical for many lensing phe-
nomena. Firstly they provide us with strongly magnified galaxies at (very)
high redshifts. These galaxies are faint to be detected or analyzed in their
unlensed state. But with the aid of gravitational lenses we can study these
galaxies in their early evolutionary ages, possibly as infant or proto-galaxies,
relatively shortly after the Big Bang. The other practical application of the
arcs is to take them as tools to study the potential and mass distribution of
the lensing galaxy cluster. In the simplest model of a spherically symmetric
mass distribution for the cluster, giant arcs form very close to the critical
curve, which marks the Einstein ring. So with the redshifts of the cluster
and the arc, it is easy to determine a rough estimate of the lensing mass by
just determining the radius of curvature and interpreting it as the Einstein
radius of the lens system.

Gravitational lensing is one of three methods used for the determination
of masses of galaxy clusters. The first method is the mass determinations
by X-ray analysis; and the second one is by using the virial theorem and the
velocity distribution of the galaxies. Although there are still some discrep-
ancies between the three methods, it appears that in relaxed galaxy clusters
the agreement between these different mass determinations is very good.

An interesting result from the analysis of giant arcs in galaxy clusters is
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that Clusters of galaxies are dominated by dark matter. The typical “mass-
to-light ratios” for clusters obtained from strong lensing analysis are M/L ≥
100M¯/L¯.

Distribution of dark matter follows roughly the distribution of the light
in the galaxies, in particular in the central part of the cluster. The fact that
we see such arcs shows that the central surface mass density in clusters must
be high. The radii of curvature of many giant arcs is comparable to their
distance to the cluster centers; this shows that core radii of clusters - the
radii at which the mass profile of the cluster flattens towards the center -
must be of order of this distance or smaller.

Figures (4) and (5) show two of the most spectacular cluster lenses pro-
ducing arcs: Clusters Abell 2218 and CL0024+1654. Close inspection of
the HST image of Abell 2218 reveals that the giant arcs are resolved (Figure
(4)), structure can be seen in the individual components and used for detailed
mass models of the lensing cluster. In addition to the giant arcs, more than
100 smaller “arclets” can be identified in Abell 2218. They are farther away
from the lens center and hence are not magnified and curved as much as the
few giant arcs. These arclets are all slightly distorted images of background
galaxies. With the cluster mass model it is possible to predict the redshift
distribution of these galaxies. This has been successfully done in this system
with the identification of an arc as a star-forming region, opening up a whole
new branch for the application of cluster lenses.

Figure (4): Galaxy Cluster Abell 2218 with Giant Luminous Arcs
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Figure (5): Galaxy Cluster CL0024 + 1654 with multiple images of a blue background galaxy

Another impressive exposure is the galaxy cluster CL0024+1654 (redshift
Z = 0.39). Figure (5) shows very nicely the reddish images of cluster galaxies,
the brightest of them concentrated around the center, and the bluish arcs.

3.3 Multiply-imaged quasars

In 1979, gravitational lensing became an observational science when the dou-
ble quasar Q0957+561 was discovered. This was the first example of a lensed
object. It was not entirely clear at the beginning, though, whether the two
quasar images really were an illusion provided by curved spacetime or rather
physical twins. But intensive observations soon confirmed the almost identi-
cal spectra. The intervening “lensing” galaxy was found, and the “support-
ing” cluster was identified as well. Later very similar lightcurves of the two
images confirmed this system beyond any doubt as a bona fide gravitational
lens.
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Figure (6): Hubble Space Telescope image of the double quasar Q0957+561

By now about two dozen multiply-imaged quasar systems have been
found, plus another ten good candidates. This is not really an exceedingly
large number, considering a 20 year effort to find lensed quasars. The reasons
for this “modest” success rate are:

1. Quasars are rare and not easy to find (by now roughly 104 are known).
2. The fraction of quasars that are lensed is small (less than one percent).
3. It is not trivial at all to identify the lensed (i.e. multiply-imaged)

quasars among the known ones.
The quasar Q0957+561 was originally found in a radio survey; subse-

quently an optical counterpart was identified as well. After the confirmation
of its lens nature, this quasar attracted quite some attention. Q0957+561 has
been looked at in all available wavebands, from X-rays to radio frequencies.
More than 100 scientific papers have appeared on Q0957+561, many more
than on any other gravitational lens system.

In the optical light, Q0957+561 appears as two point images (figure (6)).
The spectra of the two quasars reveal both redshifts to be Z = 1.41 . Between
the two images, not quite on the connecting line, the lensing galaxy (with
redshift Z = 0.36) appears as a fuzzy patch. This galaxy is part of a cluster
of galaxies at about the same redshift. This is the reason for the relatively
large separation for a galaxy-type lens. In this lens system, the mass in the
galaxy cluster helps to increase the deflection angles to this large separation.
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