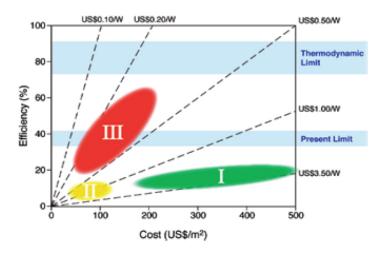
Dünnschicht-Solarzellen Organische Solarzellen Effizienzsteigerung Großprojekte

Solarzellen


Wolfgang Scheibenzuber, Christian Müller

Sommerakademie Salem 17.–31.08.2008 AG 3 – Zukunft der Energie

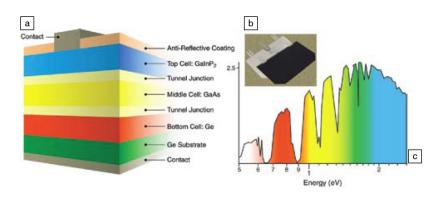
Gliederung

- Dünnschicht-Solarzellen
 - III/V-Solarzellen
 - II/VI-Solarzellen
 - CIGS-Solarzellen
- Organische Solarzellen
 - Aubau und Prinzip
 - Vorteile
 - Entwicklungsbedarf
- Effizienzsteigerung
- Großprojekte
 - Concentrator-Kraftwerke
 - Subventionierte Projekte

Generationen von Solarzellen

III/V-Solarzellen

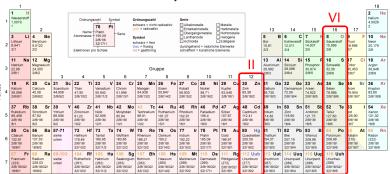
Periodensystem der Elemente


III/V-Solarzellen

- Hochleistungssolarzellen
- Meist auf GaAs-Basis, seltener InP
- Teuer, aber leistungsfähig (GaAs: 24.5% (Dünnschicht);
 InP: 21.9% (kristallin)) und zuverlässig ⇒
 - Verwendung in der Raumfahrt
 - Terrestrisch: Verwendung unter Konzentratoren (Effizienz: 40.7%)

III/V-Solarzellen

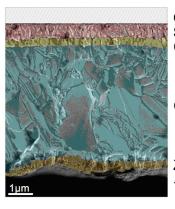
- Hochleistungssolarzellen
- Meist auf GaAs-Basis, seltener InP
- Teuer, aber leistungsfähig (GaAs: 24.5% (Dünnschicht);
 InP: 21.9% (kristallin)) und zuverlässig ⇒
 - Verwendung in der Raumfahrt
 - Terrestrisch: Verwendung unter Konzentratoren (Effizienz: 40.7%)
- Multijunction Zellen, mehrere Dünnschichten


Multijunction Zelle auf GaAs-Basis

a) Schematischer Aufbau. b)GalnP₂/GaAs/GalnAs-Zelle, Effizienz:
 31.3% (exp). c) Großflächige Nutzung des Spektrums durch Multijunction-Zellen.

II/VI-Halbleiter

Periodensystem der Elemente



II/VI-Solarzellen

Vor allem CdTe-Zellen

- Gut verfügbare Materialien
- Günstige Herstellung der Dünnschicht-Zellen, auch bei hohem Durchsatz in der Herstellung (CVD, PVD).
- Bandlücke nahe dem berechneten Optimum für das AM1.5-Spektrum ($E_g = 1.5 \, \mathrm{eV}$)
- Hoher Absorptionskoeffizient, hohe Effizienz (16.5%)
- Im Moment \$1.25/W_p

CdTe-Zelle - Aufbau

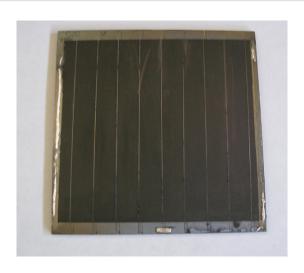
Glass SnO₂ CdS

CdTe

ZnTe:Cu Ti

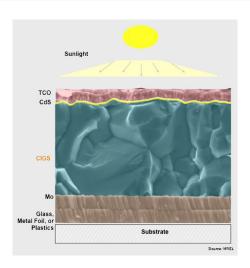
CdTe

Glass


 SnO_2 , Cd_2SnO_4 - 0.2-0.5 μm

CdS-600-2000 Å

CdTe 2-8 µm


C-Paste with Cu, or Metals

CdTe-Modul

- Kupfer Indium/Gallium Diselenid (CuIn_xGa_{1-x}Se₂)
- Mischung aus CIS (CuInSe₂) und CGS (CuGaSe₂) in beliebigen Verhältnissen (x = 0...1)
- Frei einstellbare Bandlücke von 1.0 eV (CIS, x = 1) bis 1.7 eV (CGS, x = 0)
- Dünnschicht-Fertigung (z.B. durch Co-Verdampfen von Cu, In, Ga im Vakuum und Abkühlen mit Se-Dampf)
- Effizienz 19.9% Weniger als kristallines Si, dafür bedeutend billiger

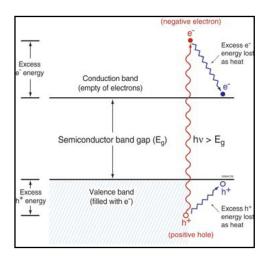
CIGS

Aufbau

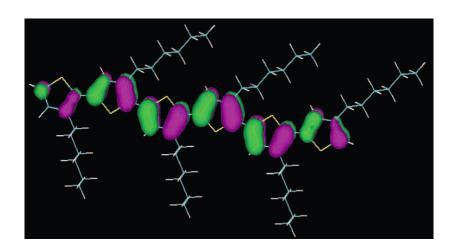
- Bestehend aus kleinen Molekülen, Polymeren oder Dendrimeren
- Donor-Schicht ("e⁻-reich"), meist konjugierte Polymere, z.B. Polythiophene
- Akzeptor-Schicht ("e⁻-arm"), meist Derivate von Buckminster-Fullerenen (C₆₀)
- Andere Funktionsweise als bei gewöhnlichen Si-Zellen

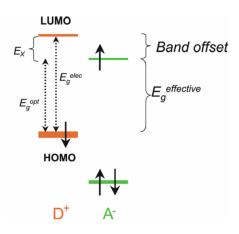

Materialien - Donor

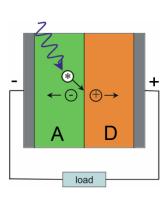
• Polymere mit hochkonjugierten π -Systemen


PPV: Poly-(*p*-phenylvinylen)

P3HT: Poly-(3-hexylthiophen)

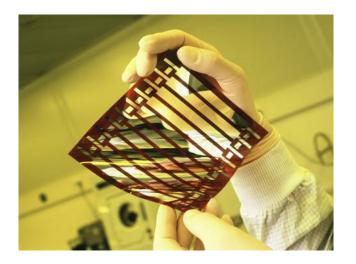

Materialien - Akzeptor


Funktionsweise Si-Zellen



HOMO von P3HT

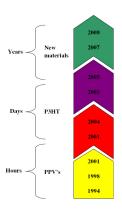
Funktionsweise OPV


Funktionsweise OPV

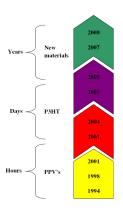
- hv → Exzitonen (Elektron-Loch-Paare, zusammengehalten von Coulomb-Kräften)
- Trennung der Ladung an der Grenzfläche Donor/Akzeptor möglich
- Nur geringe Schichtdicken möglich, da freie Weglänge der Exzitonen $\overline{\lambda_{\rm Exz}}=$ 10 $\mu{\rm m}$
- Ladungstransport durch Polymer entscheidend

Vorteile

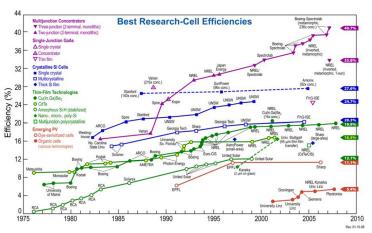
- Extrem günstige Herstellung, da
 - Einfache, etablierte Druckverfahren (z.B. Inkjet) bei Normalbedingungen
 - Billige Rohstoffe
- Hohe Absorptionskoeffizienten → dünne Schichten
- Kompatibel zu Kunststoffsubstraten
- Auch flexible Substrate bedruckbar


Flexible Substrate

Materialauswahl


- Äußerst große und flexible Auswahl an Materialien
- Viele Eigenschaften durch Synthese einfach zu verändern:
 - Molekulargewicht
 - Molekülorbital-Energien
 - Bandlücke
 - Makroskopische Eigenschaften

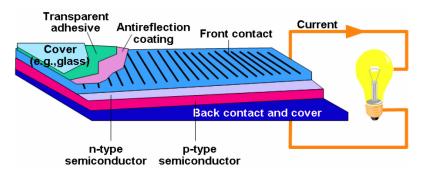
Lebensdauer


- Organische Substanzen empfindlich ggü. UV-Strahlung
- Derzeit relativ niedrige Lebensdauer
- Hauptsächlicher Grund: Änderungen in der Morphologie, Abnahme der Grenzflächenadhäsion, Interdiffusion der einzelnen Komponenten

Lebensdauer

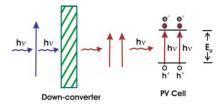
- Organische Substanzen empfindlich ggü. UV-Strahlung
- Derzeit relativ niedrige Lebensdauer
- Hauptsächlicher Grund: Änderungen in der Morphologie, Abnahme der Grenzflächenadhäsion, Interdiffusion der einzelnen Komponenten
- Lösungsansatz: Neue Materialien, Verkapselung, ...

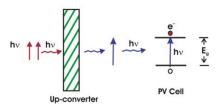
Effizienz



Entwicklungen der Effizienz von Solarzellen verschiedener Systeme (1976–2008)

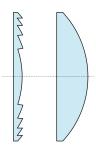
Techniken zur Effizienzsteigerung


- Antireflexbeschichtungen auf der oberen Abdeckung
- Reflektoren als untere Elektrode
- Up-/Down-Conversion
- Light-Trapping
- Tandem-Zellen / Multijunction-Zellen

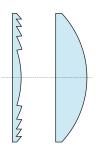

Einfache Beschichtungen

Antireflexionsschicht und Reflektor als Backcontact

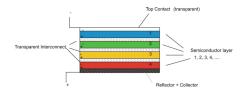
Up-/Down-Conversion



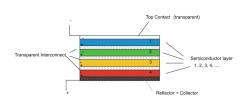
Light-Trapping

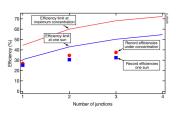

- Verbesserte Reflektorschichten (kein Metall, sondern z.B. photonische Kristalle)
- Verbesserung der TCOs (Transparent Conducting Oxides)
- Eingebaute Beugungsgitter (bei sehr dünnen aktiven Schichten)
- Konzentratoren

Konzentratoren


- Konzentratoren (z.B. Fresnelsche Stufenlinsen) für teure Solarzellen
- HCPV: Heliostat Concentrating Photovoltaics

Konzentratoren

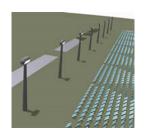



- Konzentratoren (z.B. Fresnelsche Stufenlinsen) für teure Solarzellen
- HCPV: Heliostat Concentrating Photovoltaics
- Weniger Verbrauch an Halbleitermaterialien
- Begrenzt durch Kosten für Optik und Kühlung

Tandem-Zellen / Multijunction-Zellen

Tandem-Zellen / Multijunction-Zellen

- Großflächige Dish-Systeme
- Kleine, hocheffiziente
 PV-Zelle im Fokus
 (0.23 m²; zum Vgl.: 350 m²
 bei einfachen PV-Modulen)
- Kühlung erforderlich



- Großflächige Dish-Systeme
- Kleine, hocheffiziente
 PV-Zelle im Fokus
 (0.23 m²; zum Vgl.: 350 m²
 bei einfachen PV-Modulen)
- Kühlung erforderlich
- 720 kW-Anlage in Hermannsburg, Yuendumu, Lajamanu (Australien, 2005)
- 220 kW-Anlage in Umuwa (Australien, 2003)

Heliostaten-Systeme

- Geplante Solar Power Station in Victoria (Australien)
- Heliostaten folgen dem Sonnenstand, PV-Zellen in zentralen Türmen
- 154 MW Leistung (voraussichtlich 2013)
- \$420 MW

Die 3GW-Initiative

- California Solar Initiative
- 3.3 Mrd. \$-Programm
- Finanzieller Anreiz durch den Staat

Die 3GW-Initiative

- California Solar Initiative
- 3.3 Mrd. \$-Programm
- Finanzieller Anreiz durch den Staat
- Ziel: 3GW Kapazität bis 2017

Elektrifizierung ländlicher Gegenden

- Mehrere Projekte z.B. in Tansania, Kenia
- Besonders von Bedeutung in Gegenden ohne zentrale Stromversorgung und schwer zugänglichen Gebieten

Elektrifizierung ländlicher Gegenden

- Mehrere Projekte z.B. in Tansania, Kenia
- Besonders von Bedeutung in Gegenden ohne zentrale Stromversorgung und schwer zugänglichen Gebieten
- Meist zentrale Anlagen zum Betrieb von Gefrierschränken, Laden von Akkus etc.

Elektrifizierung ländlicher Gegenden

- Mehrere Projekte z.B. in Tansania, Kenia
- Besonders von Bedeutung in Gegenden ohne zentrale Stromversorgung und schwer zugänglichen Gebieten
- Meist zentrale Anlagen zum Betrieb von Gefrierschränken, Laden von Akkus etc.
- Anlagen müssen gewartet werden

U. o. D. Institute of Energy Conversion, http://www.udel.edu/iec/CdTe.html.

U. of Durham, http://www.dur.ac.uk/ dph0www5/solar.html.

MRS Bull. 2008, 33, 355-373.

S. E. Shaheen, D. S. Ginley, G. E. Jabbour, MRS Bull. 2005, 30, 10-19.

M. J. rgensen, K. Norrman, F. C. Krebs, *Solar Energy Materials & Solar Cells* **2008**, *92*(7), 686–714.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, *Prog. Photovolt: Res. Appl.* **2008**, *16*, 435–440.

R. Noufi, K. Zweibel, High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and challenges, *Techn. Ber.*, NREL.

S. Kurtz, Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry, *Techn. Ber. NREL/TP-520-43208*, NREL, **2008**.

P. Denholm, R. Margolis, in Solar 2006, Denver, Colorado, NREL.

A. SolarSystems, http://www.solarsystems.com.au.

http://en.wikipedia.org (12.08.2008).