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Abstract. Test particle methods have been applied very successfully to the
numerical simulation of heavy ion reactions at intermediate and high beam
energies. Here we will show that the same techniques can be used successfully
to simulate the dynamics of the collapse of type II supernovae precursors. We
will focus special attention on the effects of collective angular momentum on
the resulting supernova dynamics.
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1. Nuclear Dynamics

Wong [1] showed in 1982 that it is possible to approximate the quantum nuclear
many body problem solution on the mean field level (TDHF) via a semiclassical
approach based on test particles formulation. In this method, one follows the ini-
tially (completely or partially) occupied cells in the 6-dimensional phase space as
a function of time. At about the same time, Cugnon and collaborators [2, 3] im-
plemented ideas of intra-nuclear cascades, i.e. an approximation without a nuclear
mean field, in which two-body collisions exclusively determine the nuclear dynam-
ics. Bertsch and collaborators [4–7] and then several other groups around the World
[8–15] combined both ideas to produce a solution of the nuclear transport equation
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Fig. 1. Time evolution of a typical heavy ion collision at intermediate energy.
Shown here is the baryon density in the reaction plane for a 60 AMeV Au + Au
collision at an impact parameter of 5 fm. The 4 frames shown were taken at times
0, 25, 50, and 100 fm/c. [19].
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in the test particle approximation. In this approximation the solution of the above
integro-differential equation can be reduced to the simultaneous solution of N cou-
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pled first-order differential equations in time:
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i = 1, . . . , (At + Ap)N ,

where At and Ap are the target and projectile masses, respectively, and N is the
number of test particles per nucleon (usually taken > 100 to reduce artificially
generated numerical fluctuations).

The term C(~pi) represents the solution of the collision integral via an intranu-
clear cascade for the test particles. The test particle collisions respect the Pauli
exclusion principle due to the presence of the factors (1− f), which are numerically
implemented via a Monte Carlo rejection method. In our particular numerical re-
alization the values of f(~r, ~p, t) are stored in a six-dimensional lattice so that the
computation of the factors (1−f(~r, ~p, t)) only requires the call of 26 lattice elements
for a six-dimensional interpolation [18].

Fig. 1 shows a typical time evolution of a heavy ion collision that results from
this approach. We have grown confident that this simulation captures the essentials
of the nuclear dynamics, because BUU-type approaches have been incredibly suc-
cessful in reproducing all kinds of experimental observables, such as the emission
spectra of protons and neutrons, the coalescence of small fragments, the nuclear
collective flow, and production of secondary particles (photons, pions, kaons, ...),
and even Hanbury-Brown-Twiss type interferometry [16, 17].

2. Type II Supernovae

We currently distinguish two types of supernova events. In type I supernovae,
a white dwarf exceeds its Chadrasekhar Mass (∼ 1.4 M�) due to accretion and
collapses. We want to focus here on type II supernova events associated with
the violent death of stars at the end of their thermonuclear fuel cycle. These are
powered by the gravitational energy released during a star’s late stage iron core
collapse, caused by instabilities due to electron capture (p+ e− → n+νe) or photo-
disintegration (56Fe + γ → 14 4He + 4n, 4He + γ → 2p + 2n). The first process
dominates for precursor mass ranges between 10 and 20 solar masses ZAMS (=
zero age main sequence; mass of the star at the beginning of its evolution), and the
second for masses in the range between 20 and 40 solar masses ZAMS.

The numerical study of supernova explosions has been a mainstay of astro-
physics for the last few decades, relying in hydrodynamical codes that run on the
largest available computer systems. It has turned out that these hydro simulations
are of incredible complexity, due to the rapidly changing length scales during the
collapse phase, due to the changing viscosity as a function of time, due to the rela-
tively long evolution that one has to simulate (only a few milliseconds in real time,
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but a very large number of time steps in the computer), and due to the coupling
to the neutrino Boltzmann transport. In particular the modeling of the neutrinos
has proven to be difficult, and the outcome of the simulation (explosion or stalling
of the shock) has turned out to be very sensitive on the details of this part of the
calculation.

3. Test Particle Approach for Supernova Dynamics

Can the test particle approach discussed in section 1 be utilized for the dynamics of
core collapse simulations of type II supernovae? The answer is yes. We can re-cast
the hydrodynamical time evolution equations for the iron core matter in terms of
test particle equations. The first question, however, is what a test particle is to
represent in physical space. It we utilize a total number of Ntp test particles in
our simulations, and we consider a typical iron core mass of order λM�, then the
mass of each test particle, mtp, is given by λM�/Ntp. Using 107 test particles,
for example, we obtain typical test particle masses of 1/10 of that of Earth. The
resulting test particle time evolution equations are:

d

dt
~pj = −~∇UEoS,e−(~rj) + ~FG,j(~r1, . . . , ~rNtp
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where ~FG,j denotes the force on particle j due to gravity and ~FEOS,j the force
due to the equation of state. Gravity is modeled using the Newtonian monopole
approximation:
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m2
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}

|~rj |3
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This approximation is obviously only appropriate as long as the deviations from
spherical symmetry are sufficiently small.

As a realistic EOS, ~FEOS,j , for core collapse conditions we used a combination
of the nuclear EOS by Lattimer & Swesty [20] and the Helmholtz EOS by Timmes
(which is an EOS for the electron/positron gas) [21]. The former is used for ρ ≥
1011g/cm3, the latter for ρ < 1011g/cm3 where the nuclear contribution to the
pressure is negligible.

The Term C(~pj) represents again the effects of the test-particle cascade, i.e.
two-body scattering events between test particles. During the initial phase of the
collapse the velocities scale with the radial distance, and the effects of this two-body
scattering term is small, however, in the late phases, and in particular during the
shock formation, it becomes dominant.
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The term Cν(~pj) represent the effects of the scattering of neutrinos off the bary-
onic test particles. The corresponding time evolution equations for the neutrinos
have a source term originating from two-particle collisions and form coupled equa-
tions with the above baryon time evolution equations. This part of the dynamics is
not implemented as of yet and will be work to be accomplished in the near future.
However, we anticipate that the formalism is in complete analogy to the imple-
mentation of coupled transport equations for baryons, resonances, and mesons in
relativistic heavy ion collisions [14].

4. First Results

In an initial implementation of our ideas, we have concentrated on investigating the
effects of total angular momentum, i.e. the rotation of the precursor star, on the
collapse dynamics [22, 23]. Stellar evolution calculations for a rotating progenitor
done by Heger [24] indicate that it is a very good approximation to assume that the
inner core (initially) rotates like a rigid body. Therefore we used a constant initial
angular velocity ω0.

Ntp = 106 test particles, the grid parameters Nr = 110, Ncos θ = 100, and a
background density ρmin = 1.3× 1011g/cm3 were applied in all runs of the series.
Fig. 2 shows the density profiles of three different runs with different values of the
initial angular velocity (70, 160, and 220 s−1, from left to right). This corresponds
to a ratio of rotational to gravitational energy of 1.3%, 6.8%, and 13%, respectively.
While the bounce times are relatively insensitive to this parameter, the maximum
central density reached is strongly dependent on it. We reach ρmax = 2.35ρ0 for the
low angular momentum run, and values of 0.56ρ0 and 0.21ρ0 for the high angular
momentum runs.

5. Conclusions

Test particle methods have been applied very successfully to the numerical simula-
tion of heavy ion reactions at intermediate and high beam energies. Here we have
shown that the same techniques can be used successfully to simulate the dynamics of
the collapse of type II supernovae precursors. While neutrino transport is not fully
implemented into our program, it seems clear that approaches based on test parti-
cle methods are excellent candidates to provide a fully 6-dimensional phase space
simulation of the supernovae collapse and subsequent explosion, incorporating in
particular the effects of collective angular momentum.
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Fig. 2. Mass density in a slice in the x-z-plane at (a) onset of simulation, (b)
after 2 ms, (c) 3 ms, (d) core bounce, (e) shortly after core bounce. All plots
have the same radius scale (∼120 km) indicated by the black line in the top left.
From left to right, the initial angular velocities used in the simulation runs were
70, 160, and 220 s−1.
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