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Constraint operator solution to quantum billiard problems
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We introduce an additional method to solve Sclinger’'s equation for a free particle in an infinite well of
arbitrary shapéthe Helmholtz equation with Dirichlet boundary conditipns problem of interest in the area
of quantum chaos. We expand the wave function in a basis of products of sine functions, then use the constraint
operator to contain the wave function to a region within the domain of the basis functions. In this manner, a
guantum billiard problem of arbitrary shape can be solved. Several methods exist to solve problems of this sort,
but as recent work reviewing these methods has shown, all have shortcomings. Our work represents a different
direction in the solution of these problems. Our method is different in that it provides a means of computing
an eigenbasis. It is also interesting from a physical standpoint in that it can represent the Hamiltonian of a
classically chaotic system in the basis of a classically regular sy$&1063-651X96)06607-X]

PACS numbeg(s): 02.70.Rw, 05.45tb, 03.65.Ge, 02.10.Sp

I. INTRODUCTION wave function using Green’s theorefh2—-17. Discretiza-
tion of the boundary integral results in a complex determi-

A billiard system consists of a particle bouncing around innant nonlinear in the wave vector magnitude, the zeros of
a rigid box of arbitrary shape. Billiard systems are useful inwhich correspond to solutions of the wave function equation.
the study of chaos, as the chaoticity of the system is detett is widely used, but has recently been shown to have prob-
mined by the shape of the box. Circles and squares give rig@ms when the box geometry is nonconex4].
to regular motion; in more complicated shapes, like stadia, The plane wave decomposition method assumes an ex-
both regular and chaotic motion is possible, depending ofansion in plane waves with the same wave vector magni-
the initial conditiong1,2]. tude, then tries to force the wave function to be zero along

Quantum billiard systems are widely used in the study ofthe boundary of the box by proper selection of the plane
quantum chaos. Quantum chaotic systems can be charact¥fave component$s,18,19. If it succeeds in making the
ized by statistics. The distribution of normalized energy levewave function approximately zero on the boundary, then it
spacings of a quantum system is one such characterizatiohas found an approximate eigenfunction¥of. The proce-
chaotic systems have Wigner distributions and regular sysdure iterates over wave vector magnitudes, recording the ei-
tems have Poisson distributiof—7]. The wave functions genvalues that it finds. It is widely used to find quantum
of quantum chaotic systems qualitatively resemble a randorhilliard wave functions, but cannot be relied upon for accu-
superposition of plane waves, though “scars” in the quan-rate spectra, as some eigenvalues can be stepped over in the
tum wave functions corresponding to classical periodic orbitdteration process. The wave functions it finds are not neces-
can appeaf8]. sarily orthogonal to very good accuracy, as showh2.

The decay of quantum billiard systems through small exit The conformal mapping diagonalization method elegantly
channels is of current interest. The chaoticity of the billiardsolves a billard problem by finding a conformal map from
system controls the decay of the system; regular billiard systhe shape of the box to the unit cirdl20—23. The problem
tems decay algebraically in time, while chaotic billiard sys-is solved by the mapping, but this method is limited to two
tems decay exponentially in tin{®]. Recent work{10,17]  dimensional problems with boxes for which a conformal
shows an even richer variety of behaviors. The quantum chanapping to the unit disk can be found.
otic billiard decay problem is yet unsolved; existing methods We present a method that solves the problem in a more
of solving quantum billiards are unsuited for it. “quantum mechanical” way. We find many eigenfunctions

Many methods exist for solving quantum billiard prob- simultaneously by diagonalizing a Hamiltonian matrix. This
lems. The most used are the boundary integral mefh@d  results in a(truncated complete set of eigenfunctions that
17], the plane wave decomposition metH8¢18,19, and the  are necessarily orthonorm@tithin the limitations of the di-
conformal mapping diagonalization methf2D—23. How-  agonalization algorithim unlike the methods mentioned
ever, recent work reviewing the boundary integral methodabove. The availability of a complete basis provides a
[24] and the plane wave decomposition mettiaf] demon-  straightforward approach to time-dependent problems like
strates that both have weaknesses. guantum chaotic decay. We also connect this method to

The boundary integral method solves billiard problem bysome existing methods.
deriving an integral equation for the normal derivative of the Random matrices that are band diagonal are of interest in

guantum chaof26]. Band diagonal Hamiltonians are “natu-
ral” in the sense that many systems have localized interac-
*Electronic address: mcgrew@nscl.msu.edu, tions and localized wave functions. Our method, introduced
bauer@nscl.msu.edu below, results in an approximately band diagonal Hamil-
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We will return to the matrixC later to discuss its properties
and its computation.
The solutions to the problem we are interested in are the

eigenvectors oW? that are in the range df. Intuitively, it
seems that we can solve our problem by finding the eigen-

vectors ofCV2C. This is almostcorrect. To be completely
correct, we will derive the solutions using a Green’s function
[27] then simplify the result using our knowledge of the
constraint operator.

We need a Green’s functioB(x,X,) that satisfies the
equation

FIG. 1. The included and excluded regions shown for the de- R .. ..
symmetrized stadium. The total region is the entire rectangle. The (V24+N)G(X,Xg) = —4m8(X—Xp). (4)
ratio of included to total regiong here is 0.8570.

Included region

«+— Excluded region

Multiplying (1) by G(X,xo) and(4) by ¥(x), then subtract-
tonian. A connection between the two may prove revealinging the second result from the first gives

IIl. THE CONSTRAINT OPERATOR G(X,X0) V2W (X) = W (X) VZG(X,Xo) = 47W (X) 5()2_)20)(-5)
Schralinger’s equation for the quantum billiard is _ . . .
Integrating(5) over the included regioh we obtain an ex-
V2 (X) + AT (X) =0 (1) pression for the wave function
1 - IR - . -
where\ is an energy eigenvalue of the system in some con- 4—f dX[ G(X,Xo) V2W (X) — W (X) V2G(X,X0)]
venient units. The boundary condition, which characterizes T
the quantum billiard pr(_)blem, is th§{(§)=p on th_e bound- W(Xo) if Xpisin|
ary surfacesl of an arbitrarily shaped regidn the included = . (6)
region. 0 if Xq isinE.

We express the shape of | by starting with a larger region N
T where we can solvél), then “cutting away” the un- 10 enforce the boundary condition th#t=0 on §l we use

wanted parts off to makel. We do this by constraining the Green’s theorem to change the volume integral into a surface

wave function to be zero in the excluded regid= T/ 1.  integral, then apply the boundary condition, resulting in
Figure 1 shows the regiorisand E for the stadium billiard. 1

(Most of our examples are two_ d|men3|_onal, but the method \I’(§0)= _J' dA~[G(§,§0)§W(§)] 7)
can be applied to three dimensions or highkr practice, we 47)s

choose the regiom so that it has a boundary with surfaces of
constant coordinates in a coordinate system wHéfeis  for Xo in I. We then use Green’s first identity to return to a

separable. volume integral,
Define the constraint operatGrfor x in T, which multi- 1
plies functions on its right by the constraint function W(Xo) = rfd;[ﬁg(ijo).V*q;()z)JrG(;,)zo)V*zq,()z)]
iy
_ (1 ixisin ®)
c(X)= L 2 o -
0 ifxisinE. which is true forxg in I.

We choose the bas{s;(x)} of eigenfunctions oF 2 over
The constraint operator is the projector for functions over; 1, express(x >Zo) in this basis, we us&) to determine

the larger, simpler regiof that are zero oveE (it “con- ¢ expansion coefficients, utilizing the eigenfunction expan-
strains” functions to be zero i&.) Functions in the range of . > - . .
sion for §(Xx—Xg). This results in

C are zero inE. Functions in the null-space ¢fare zero in
the regionl. C?=C, so thatC is idempotent and has eigen- - -
values 0 and 1. Therefore, it is the projector of its range, and G(X,Xg) =47, M (9)
1—C is the projector of its null-space. We define the in- i Ni—A

cluded fractionu= f,dx/f+dX as the ratio of the included
volume to the total volume; we will use it below.

C is represented in the basjig;(x)} of functions overT . .
as the matrixC with elements ‘I’(X)=; P Pu(X). (10

The wave functior? has the expansion

Cij= f dXei (X)Cebj(X) = f dxgi(X)¢(X). (3  Now we puteverything together. By substitutif® and(10)
T E into (8), we get the eigenvalue equation
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2 hetX0)= 24 5 dilXo) | dXV i)- T () Loof g
+ () V2i(x)]. (1D SR E
This can be simplified by converting it to matrix form. To ;
effect this change, we first multiply both sides ky(xo), g 050 ]
and use the orthonormality of the basis functions over the E [ ]
regionT. Then &%ﬂ 025 -
. 1 E .
¢i=; fldxv¢i'v¢j_cij)\j m‘/fj 0.00 -
; C ]
_I 111 | | I -1 | 11 L) I | - | | - I—
1 00 02 04 06 08 1.0
:; [8i,ihi— S _Cij)\i])\i_)\ by (12 Fractional Eigenvalue number i/m
where FIG. 2. The spectrum of for the desymmetrized stadium, for
m=124 andm= 1004, where/m= x=0.8570.
Sﬂ:JEdXV‘f’i'Wi' (13 (CAC+CSC-\C)y=0,
Here we have used the fact that (CAC+CSC—N)y=0. (18

ﬁd§V¢i-V¢j=de§V¢rV¢j—fEd§V¢rV¢j iI;?]re the idempotence & makes the eigenproblem Hermit-
The problem now looks “quantum mechanical,” as it has
been reduced to finding the eigenvalues of a Hermitian ma-
trix. We can express the problem as a perturbation of the
original HamiltonianA by using the complimentary projec-
The matrix C arises naturally in this derivation; the right- tor 1—C, which is a “small” matrix in some problems. We

:A|5|’]_fEd;V¢|V¢J (14)

hand side of6) reflects the fact tha¥ in the range of’. will not pursue this here, as we are not interested in pertur-
We now rearrange the equation into conventional matrixpative solutions.
form, Now we investigate the details involved in solvi(tg).
As C is a projector, it can be decomposed @s-PPT,
(CA+S—=N)y=0, (19  wherePTP=1,,,. P is anmxr matrix, wherer is the rank

. . . - . of C. Then the eigensystefi8) is equivalent to
whereA is the diagonal matrix containing the eigenvalues of gensyster1s) a

the basis functions ovél. Solving this eigensystem gives us (PTAP—PTSP-\)y’ =0, (19
a solution to(1) in the basis of eigenfunctions ov&r Notice
that the matrix in(15) is not Hermitian. wherey=PTy’ andy’ is anr dimensional vector; there are

We now use our knowledge @f to make the eigensystem r nontrivial solutions to(18).

Hermitian. The wave function expansi¢h0) was equated to  As the constraint matrix for a region that is the union of
the right-hand side of11), which is zero outside of. Our  two nonoverlapping regions must be the sum of the con-
wave function expansion actually represents a function thatraint matrices for the two regions frof8), we expect that

is equal toW in | and equal to zero irE. Therefore the the rank of a constraint matrix is proportional to the area in
solutions to(15) are zero inE and are in the range @&, that  the range of the constraint matrix. When the included region
is, C¥(X) =W (x) or Cy= . We can introduce this fact on is the total region the constraint matrix is the identity matrix,
the left-hand side of8) to make the eigensystem Hermitian. with rank m. Thus we expect that that the rankof C is

The resulting generalized eigensystem is given by the closest integer tam, which was confirmed
numerically.
(CA+AC-A+S=AC)y=0. (16) Before we solve(19), we need to find®; in other words,

we need to find an orthonormal basis for the rang€ ot his
matrix is only approximately a projector, due not to error in
1 _ _ its elements but to the fact that it is representihgn a
(C=2)OH+S=ACly=0, S truncated basis; therefore its range is not well defined. We
whereH;;=\;+\; and O represents the Hadamard or el- USe ther eigenvectors oC with the largest eigenvalues to
ementwise product defined bAQB);; =A;;Bj; . define the range of. This step is justified in Appendices B
Alternatively we can modify the eigenvalue equatids) and C. The spectrum & proves to be close to that expected

by insertingc beforelp and mu|t|p|y|ng byC from the left for |t, so that the Uncertainty in the range(bﬁs not Iarge. In
Fig. 2, we plot the eigenvalues @, in decreasing order, vs

C(CA+S—A1)Cy=0, the fractional eigenvalue number, which is merely the eigen-

or equivalently,
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value number divided by the number of basis functions two dimensional numerical integration of the matrix ele-
The spectrum is quite close to that of a projector with aments merits no more consideration as the line integral com-

fractional rank equal to the included fraction putation of the matrix elementgliscussed latgmwill be su-
w=[,dx/f1dx. perior. _ _ N
We can find the elements & with a similar approach.
IIl. NUMERICAL CALCULATION From (13),

OF MATRIX ELEMENTS

—h2 9gi by _ [ INT

Unless the boundaryl is along surfaces of constant co- Sj=h ; ((9_x, (9_x,) |Xk’_k2,| DB
ordinates we will need to use numerical integration to find

the elements o€ andS. This is because although the basis

functions are analytically calculable, the integral of a basis SZZ D'(D"T, (23

function over an arbitrary region is not. We can integrate
overE or |, asC and 1-C are trivially related. We have WhereD
integrated over + C as the region is smaller, necessitating
fewer grid points in the numerical integration. Thus we will

=h(d¢i/ax)|5,. All of the matricesD'(D')" are

positive semidefinite.

find C and S by approximating(3) as a sum over all grid
points in E of the Taylor expansion of the integrand.

To facilitate simple notation we will assume thats two
dimensional with components; ,x,. Consider a cell sur-

rounding a grid poinbzg,id with dimensionsh; andh,. The
integral of ¢;(x) ¢;(x) over the cell is

hy h,

[ 2,00 7, a0 004,00 5,
)
IR 30|
2 gt (20)

As we are using a regularly spaced grid, the integrals are

over intervals centered around zero and odd powers, of
andx, integrate to zero an(20) becomes

h1h2¢i(>z)¢j()z)|>2 (21

grid’
neglecting terms of orden’h,+h;h3. Summing over all
grid points,

n

=2 ¢

bi(X) j(x)h5h, (22)

wherex,,k=1,2,....n is a grid in the regiorE. h¥ and
hs are the dimensions of the cell surrounding #ta grid

point. If we define themXxn matrix F;; = ¢, (x )(h h2)2,

then Ce=FF'. Notice thatFFT is mamfestly positive
semidefinite, as expected. The matrieesnd P should not
be confused; even thougb=FF'=PPT, P#F. That the
matrices cannot be equal is obviously trueFais mXxn and
P is mxr, andn>>m=r.

For a function\If(i) represented by a vectap to be in
the null-space of F' the vector must satisfy

m

3

1 m -
Fri =0, (hlhz)zj;1 $i(x) =0, (24

fork=1, ... n. Demanding¥ to be in the range df is thus
equivalent to demanding th&t()?k)=0 at then grid points

ik used in the numerical integration. Onlyof the equations
(24) are linearly independent, giving rankto the matrix
C.

IV. COMPUTATIONAL ALGORITHM

Here we present a straightforward algorithm that solves
(18); it uses a subroutine to find all of the eigenvalues and
their associated eigenvectors. The only complication in this
procedure is that finding all the elements ofraix m matrix
that are equal to the product of three matrit@sisCSQC) is
an orderm? process, which should be avoided. As the ma-
trices will be large, the eigensystem solving routine should
be one that uses only one array, such as Householder tridi-
agonalization followed by QR iteration. An uncomplicated
algorithm that follows this advice and uses three storage ar-
rays is as follows.

(@ In the first storage array we have the following.

(1) Compute the elements & using numerical integra-
tion.

(2) Compute the eigenvalues and eigenvector€ of

(3) Truncate the spectrum of to find P such that
C=PP"andP'P=1.

(b) In the second storage array we have the following.

(1) Compute the elements & using numerical integra-
tion.
(2) Compute the eigenvalues and eigenvectorS.of

We observed that in some situations using grids with an (3) Truncate the spectrum o6 to find D such that
odd number of grid points per side gave significantly betterlS=DD".

results than grids with an even number of grid points per

(c) ComputePTD and write it into the third storage array.

side. We attribute this to the greater number of coincidental (d) ComputePTAP (which is orderm®) and write the
zeroes of the basis functions and grid points in the latter casggsult in the second storage array.

which degrades computation of the matrix elements. The (€) Compute P'D)(P'D)" and add the result t® AP
number of coincidental zeroes and grid points can be lessn the second array.

ened by using grids that begin bf2, not 0. Our grids are

(f) Compute the eigenvalues 8 AP+ PTSP which re-

evenly spaced, except at the boundary, where we put a poisides in the second array.
on the boundary and give it the appropriate weighting. The The algorithm solves thremX m eigensystems and three
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FIG. 3. The convergence of the rms fractional error in the en- FIG. 4. The fractional eigenvalue error as a function of the
ergy eigenvalues as a function of the number of basis function§ractional eigenvalue number for the unit disk with= 124 (boxes
used for the disk problem. Here the number of grid points and theand m=316 (pluses.

number of basis functions are equal. . o . .
consistent distributiorfFig. 5) The volume fractional error

. _ is roughly exponential in fractional eigenvalue number for
times computes the products wfx m matrices. low eigenvalue numbers

We observed that the rms energy eigenvalue error con-
verges to a finite value whem is increased butn is held
V. COMPARISON TO AN ANALYTIC CASE fixed (Fig. 6). This is expected, as the matrix elements con-

To evaluate the accuracy of our method, we found theverge to their correct values with increasingnd there will

eigenfunctions oW 2 over a unit disk; we used a unit square always be a finite error whem is finite. .

for T and a unit disk forl. As the disk is “separable,” the We observed that the rms energy eigenvalue error con-
eigenfunctions are known to be the product of sine functioné’ertg?S tooz4e][o ?ﬁqifo'k;he gxponent ofn was approxi-
and Bessel's functions. The eigenvalues are the zeroes of t aT?]y_ .I' otr_ € fltsh( 9. )t int ¢ thod t
integer order Bessel functions. We found the first 300 eigen- € appiication of the constraint operator method 1o one

n-. . . )
values by finding the zeroes of the Bessel functions with aglmensmnal P“’b'e”?S IS s_uperfluous. For comparisons sgke,
Newton-Raphson method for comparison we solved the one dimensional problem with a sine function

Even though the circle and the square are both separablgisl's'w;he rhms_ frla(étlc;nal _elrg]]_envalue tt)elrrorh decrease_d as
their symmetries are quite different. Nevertheless the con™ - YWhen the included regiohis separable, the constraint

straint operator solution works. With 868 basis functions, w operator method can be decomposed into two one dimen-

obtained rms fractional eigenvalue error of 2.0%38 2 for sional problemgsee Appendix C, EQ#C7) and(C8)]. Thus
the first 300 eigenvalueig. 3 we expect that the rms fractional eigenvalue error in the two

. . &2
The errors of the eigenvalues depend on the eigenvalu%ImenSIonal case can, at best, decreasenat® The ob-

number in a consistent way. To show this, we introduce the
fractional eigenvalue number, which is the eigenvalue num-
beri divided by the number of basis functions This en-
ables us to put data for solutions with differentvalues on

the same plot. Figure 4 shows the fractional error as a func-
tion of the fractional eigenvalue number. The dependence is
nearly exponential for the higher eigenvalues, while the
lower eigenvalues have fractional errors bounded by a con-
stant.
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O=wv=1, with only values near O being acceptable. The av- FIG. 5. The volume fractional error as a function of the frac-
erage volume fractional error for the first 300 eigenvaluesional eigenvalue number for the unit disk witi= 124 (boxes and
was 7.11% 10" 3. The volume fractional error also has a m=316 (pluses.
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L B IR RARAS b L) it ing for eigenvalues. The net result would be a complete set
o of eigenfunctions with accurate eigenvalues.

To check the method in a nonintegrable case, we also
solved the desymmetrized stadium problem, where the in-
cluded region is as shown in Fig. 1. No analytical solution is
possible, so we compared our eigenvalues to those produced
by the plane wave decomposition method for the same prob-
lem. With 378 basis functions, we obtained a rms fractional
energy eigenvalue deviation of 0.002 for the first 100 eigen-
values of the two methods. The first four wave functions are
plotted in Fig. 7, which shows the wave functions over the
total region. We checked the distribution of normalized ei-

- © o - genvalue spacings in both of our test cases. The disk spac-
Y= AERE AP A BN UV Poov e P ings closely follow a Poisson distribution, and the stadium
200 300 500 700 1000 spacings closely follow a Wigner distribution, as expected
n (Fig. 8. We regard this as evidence that the constraint op-
erator solution preserves the essential details of a system.

FIG. 6. The convergence of the rms fractional error in the en-
ergy eigenvalues as a function of the number of grid points used in
the numerical integration for the disk problem, using 400 basis
functions. We are currently pursuing the approach of expanding the

) ) constraint function(2) in the eigenfunctions of2. The ma-
served exponent af in the convergence of the eigenvalue 1y elements ofC and S are completely determined by the
error of the unit disk is consistent with this. elements of this expansion. Fewer numerical integrations are

required, and Green’s theorem can be used to express the
VI]. COMPARISON WITH THE PLANE WAVE constraint function elements as integrals over the boundary
DECOMPOSITION METHOD surfacesl. We expect better results from this approach as the

. i problem of coincidental zeroes and grid points that can arise
The plane wave decomposition method devised by Helleyith the area integration will not be present when surface
[18] uses a basis of plane waves to express the wave fungyegrals are used.

tions, then demands that the wave functions be zero on some Tp;is approach connects the constraint operator with the

points evenly spaced around the boundary surface. Thgeory of Fourier expansions. Some of the propertie€of
eigenfunctions are found by an iterative process: an eigefmentioned above can be proven using this approach. The
value is assumed, the linear equations that set the wave fungznq diagonality o€ andS is manifested, as a truncation of

tions equal to zero at the points are solved, then the error ighe constraint function expansion to functions results in
the boundary condition is evaluated. The process is repeatgfatrices with bandwidth 2 m.

until the error in the boundary condition vanishes; the wave The constraint operator method will work with arbitrary

function is then an eigenfunction 8% that satisfies the nec- bases: a basis other than one that diagona}?z?emay result
essary boundary conditions. _ _ in a higher computational load but greater accuracy. In par-
_ Because of its iterative nature, it cannot be relied upon tQicyjar,"we speculate that wavelets might do a better job of
find every eigenvalug25], even though the error in the in- 1onresenting the constraint operator than the Fourier basis
dividual eigenvalues can be made arbitrarily small by vary-qgeg.

ing the step size. The plane wave decomposition method \e are planning to try our method on several quantum
finds eigenfunctions, but each eigenfunction is found in &jjliard problems that offer resistance to the standard meth-
different basis, as the wave vector magnitude is not the SaMgys, namely, the problems of scattering centers in a quantum

for each eigenvector. This renders impracticable the task Qfe|| triangular domains, and the problem of quantum chaotic
manipulating the set of eigenvectors. ecay.

d
The constraint operator method has limited eigenvalue ac-
curacy, but it finds dtruncatedl complete set of eigenfunc-
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VIl. OTHER IDEAS AND FUTURE WORK

tions. The chore of knowing ath? matrix elements prevents APPENDIX A: OTHER OPERATORS, BASES,

the eigenvalue accuracy from being improved by using a AND BOUNDARY CONDITIONS

largem. This is the price that is paid for finding a complete . . .
bagis P P 9 P Although we used a basis such thatwas diagonal, this

The relative merits of the plane wave decompositionis not necessary. It may be possible to get better results by

method and the constraint operator method suggest that th 'gg t(;]ther ll:)ases; for exargple, ngtetzlets are motreih local-
methods could be used in conjunction. The plane wave dg¢#°¢ than plané waves and may betler represent Ihe con-

composition method can be used to improve the eigenvaluétramt operator. Below we derive the correct eigensystem in

accuracy of the constraint operator method, using the eigerﬁa— general basis. For complete generality, we assume that

values found by the latter as starting points. This would althere is a quantum mechanical potential ter(x).
leviate the plane wave decomposition method’s problem of Now we need a Green’s functioB(x,Xo) that satisfies
stepping over eigenvalues, and reduce the time spent seardhe equation
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First wavefunction of quarter stadium Second wavefunction of quarter stadium

Third wavefunction of quarter stadium Fourth wavefunction of quarter stadium

FIG. 7. \If(i) for the first four eigenfunctions over the desymmetrized stadium. Something like the Gibbs phenomenon can be seen, with
the maximum error occurring near, but not on, the boundaty

. S . - o i
[V24+V(X)+N]G(X,X0) = —4mS(X—Xp). (A1) Vi= deX¢i(X)V(X)¢j(X)_ (A3)
This leaveg5) through(7) unchanged. As our basis does not

diagonalizeV?, this changes our expression f8(X,X) to _ o
The expansion fol is still

G(i,x*o>=4w; ([T=V=A1"Y#1(X) ¢;(Xo). (A2)

_ | V() =2 diehi(X), (A4)
The matricesl andV are given by k
Tij=- Ldi@(i)ﬁ(l’j(@, but here the functions are not eigenfunctionsVéf Substi-
tuting the expansions int(8),
:I L | T T 17T | T T 1T TTTT T T 17T TTT I:
0.8~ 7] 2 X0 = 2 Yi([T=V=M Do)
06 7 deA-[ngd)j]. (A5)
L i S
o4l - - . . .
i 1 To convert this into matrix form, we multiply both sides by
- 1 qSi()ZO) and then use the orthogonality of the eigenfunctions,
02l - giving
1111 | ] I 1t | ] I I | | I$I ]

00 05 1.0 15 20 25 30 v %‘([T VIR DA (T=V=A=NL §=0,

s (AB)

FIG. 8. The distributions of normalized energy spacings for the R )
desymmetrized disk problenteigenvalues 100-200and the WwhereA;;=[<dA-[¢;V;]. A can be expressed in terms of
Wigner distribution. C as
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=deA~[¢i€¢;]=fldv[cﬁﬁzqﬁﬁwi-wj] THI'UVITVUT] =2 2 T/ UV (VU
Ld”{d’wz‘f’l fld"wi'wi} =§ 3 [VUDWTe (BY
Ek Cik(—=Ti) +(5);jA=(1-C)T—-S (A7) Define themxm matrix M by M;;=(VU");;, and note that

it is orthostochastigthat is, >jM;;=2;M;;=1.) Define the

; ; I vectory b I';i. Then we want to maX|m|ze the sum
and the final form of the eigenvalue equation is YOy vi=Lii

r

[C(T-V+S)C—\]$=0. (A8) Z (My);. (BS5)

In the case of Neumann boundary conditions,
n-V¥(x)=0 on the boundary surface, aiid) is replaced As M is orthostochastidVl y majorizesy; the sum of ther
by largest elements dfl y is less than or equal to the sum of the
r largest elements of, with equality holding folM =1. We
R 1 L minimize the norm by takingM =1, which means that
W(Xq) = 4——f dA- [P (X)VG(X,Xg) ], (A9) U=V. ThusC andC’ are diagonal in the same basis, and
T s replacingF with P is equivalent to replacin@ with C’.

changing(A6) to
APPENDIX C: MATRIX STRUCTURE

AND EIGENVALUE ERROR

— — —_ -1 . T . p— —_ =
’/l‘_%: ([T=V=A]" DA (T=V+HA=A1) =0 In practice, the eigenvalue spectrum @fis observed to
(A10) closely follow the function

)
ex T

wherei’=i/m is the “fractional eigenvalue number” and
APPENDIX B: APPROXIMATING A PROJECTOR pu=rim (F_ig. 2. T_his function_ closely app_rox_imates the unit
step function, which is the eigenvalue distribution expected
In (19) we choose the eigenfunctions o with the ei-  for a projector. Whena=1, y is the Fermi function; for
genvalues closest to unity to span the rang€ofThis is a 0<a<1, y is greater than the Fermi function, and when
sensible thing to do, but we would like a firmer justification o>1, v is less than the Fermi function; all cases are pos-
for this step. Here we show that this step is equivalent tasible. In(Fig. 2) we see thaty(u) is approximately the same
replacingC with the “closest” rankr projectorC’, namely,  for m=124 andm=1004, as expected, though the slope of
the one that minimizes the Euclidean matrix norm y ati’ = is larger for largem. The “temperature”T can
be found using the slopéy/di’ of (C1) ati’'=pu

-

The final form of the eigenvalue equation is then 1)

+1

y(i)=

[C(T-V—S)C—A]$=0. (A11)

[C=Cl>. (B1)
—a27*t = y(u)logy[ y(u)]
To show this, we writeC and C’ in terms of their unitary T= dy = dy - (C2
decompositions: — 2 —
di di’
u “
c=uU'ru, c'=Vv'r'y, (B2)

We observed thal is inversely proportional ton.
An essential fact about this method is that the matrices are

h he di I iX;; ins the ei I f
where the diagonal matri; contains the eigenvalues o approximately band diagonal in the basis of the eigenfunc-

C, andl'{;=1 if i<r and is zero otherwisd.,T"’, andU are

known to us; to solve the problem we want to find a unitarytions of V2 arranged with their eigenvalues in increasing
matrix V that minimizes order. More precisely, they are well approximated by a ma-

trix with all elements zero whefli —j||>b, whereb is the
bandwidth. This is important, as we need to represent infinite

T —aviT vyt
IC—Clz=Ir-=uviTvul| matrices with finite ones, and would like to understand ex-

= T(r-uVvT'VU (T -UuVT'VU")] actly what we can safely neglect.
) ) C can be expressed as the sum of a band diagonal matrix
= T{[?+(I'")?-2Ir'uv'rvu, (B3)  C, with bandwidthb and a residualsC=C—C,. The

Weiland-Hoffman theoremi28] can now be used to bound
which is equivalent to maximizing the rms eigenvalue error @,
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R R BN A Whenever the wave function is separable, the mati@esd S must be

T T TTTT
0.050 " separable as well, reducing the two dimensional problem to two one dimen-

sional problems. Whe(1) can be solved by separation of variables, then the
vector ¢ will be decomposable into the Kroneker produgt é® 7. As

0.020 there are separable eigenvectgrs ¢é® 7, there are separable unitary ma-
trices that diagonaliz€ andS. ThereforeC can be written as the Kroneker
0.010 product C=C*®CY and S can be written as the Kroneker sum
= ' S=S®1+1® 9. As we choose the total regiohto correspond to a sepa-
et rable case, we can always wrifeas the Kroneker sum of two matrices:
0.005 T=T*®1+1®TY. Considering all of these separabilities, the matrixlif)
becomes
0.002
(C*CY(T'®1+19TV+S'®1+199-A®1)C*eCY
0001 |\ ol bl —[CHT*+ S~ AN CX|® CY+ C*a[CY(TY+ S
1 5 10 50 100 500

b -\, (C7)

FIG. 9. The rms valué of the bth off-diagonal elements o ) <
as a function ob, for the disk(upper curvé and stadiumlower ~ Where we have writteh =\*® 1+ 1®\Y and made repeated

curve),, demonstrating the band diagonal natureCof use of the mixed product identity. The solutions are given by
the Kroneker product of the one dimensional solutigremd
7, where

1/2
=m~Y35C], (o%) [CHT*+S*=N\YCX]€=0, [CYTY+S—\Y)CY]n=0.
' (C8

1 m
{EE [M(C)=N(Co) P2
i=1,

Interestingly,m~ /3| 5C||, can be computed due to the idem-

potence ofC There is a well-recognized correspondence between non-

chaoticity and separability; this correspondence extends to
the matricelC andS.

Ci=2 Ci= % Ci+ % cillscl3
i li=jll<b [i—jll>b

Ci— C2|.
ii ||i*%§b ij

Here we have neglected the fact thatis finite, but this

(C4 APPENDIX D: CONNECTION WITH THE FINITE
DIFFERENCE METHOD

>

The constraint operator solution can be connected to the
analysis works for largen. finite difference method. Consider the change of basis given

._ :
Itis easy to computen~ ¥4 5C||,, and easy to update it if by F4” = 4. From(10), the function

m is increased. A program can use this to determine the

minimum value ofm that has a certain maximum allowed m n

rms error in the spectrum @. V(X)= D ¢i(X) D Fogp*
To investigate the rate of convergencerof¥?|5C|| to = s i

zero asb increases, we need a measure of the size of the n m

kth off-diagonal. To account for the fact that different off- _ v v 1/2

. ) ! = - i(X)i(x)(h{h ,
diagonals have different numbers of elements, we define 2’1, l!jjizl, #i(x)4i(x)(hshz)
to be the rms value of the elements of #té off-diagonal

12 :J,ZL i 5,!11()2—%,'), (D1)

2
Zi-j|=kCjj c5)

Ny

k

whereN, is the number of elements in theh off-diagonal. Wheres'(x—x;) is the unit normalized function expanded

For largem, the bound on the rms eigenvalue erroigfis N @ Sizem basis. _ _ _
This corresponds to changing to a basisaf functions,

w which is qualitatively similar to the finite difference method
£||5C||§: 2> £. (C6) with annXxn array.n must be cqnsiderably Iarger thamin
m K=b, order for the numerical integration of the matrix elements to
be accurate, and we have not neglected terms in representing

We observed thag,~b~* (Fig. 9), implying that the bound V2, demonstrating the relative merit of the constraint opera-
on the rms eigenvalue error @, is proportional tob ™2, tor method.



5818 D. A. McGREW AND W. BAUER 54

[1] Ya. G. Sinai, Russ. Math. Survegs, 137 (1970. [14] G. De Mey, Int. J. Numer. Methods En@0, 59 (1976.

[2] L. A. Bunimovich, Commun. Math. Phy$5, 295(1979. [15] Y. Niwa, S. Kobayashi, and M. Kitahardevelopments in

[3] M. V. Berry and M. Tabor, Proc. R. Soc. London Ser.356 Boundary Element Methods (Appl. Sci. Publications, Lon-
(2977). don, 1980, pp. 143-176.

[4] S. W. McDonald and A. N. Kaufman, Phys. Rev. Let?, [16] R. J. Riddell, J. Comp. Phy81, 21 (1979; 31, 42 (1979.
[17] G. R. C. Tai and R. P. Shaw J. Acoust. Soc. Ah&, 796

1189(1979.
[5] G. Casati, F. Valz-Gris, and I. Guarneri, Lett. Nuovo Cimento (1974.
28, 279(1980. [18] E. Heller, Phys. Rev. Let63, 1515(1984.
[6] M. V. Berry, Ann. Phys(N.Y.) 131, 163(198)). [19] E. Heller, Chaos and Quantum Systeniroceedings of the

[7] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. Les Houches Summer School, edited by M.-J. Giannoni, A.
52, 1(1984. Voros, and J. Zinn-JustitElsevier, Amsterdam, 1991

[8] E. Heller, P. O'Connor and J. Gehlen, Phys. S0, 354 [20] M. Robnik J. Phys. Al7, 1049(1984.
(1989. [21] M. V. Berry and M. Robnik, J. Phys. A9, 649 (1986.
[9] W. Bauer and G. Bertsch, Phys. Rev. Léth., 2213(1990. [22] T. Prosen and M. Robnik, J. Phys. 26, 2371(1993.
[10] H. Alt, H. -D. Gré&, H. L. Harney, R. Hofferbert, H. Lengeler, [23] T. Prosen and M. Robnik, J. Phys.2¥, 8059(1994).
A Richter, P. Schardt, and H. A. Weidenhaun, Phys. Rev. [24] B. Li and M. Robnik, J. Phys. &7, 5509.

Lett. 74, 62 (1995. [25] B. Li and M. Robnik(unpublishegl

[11] H. Alt, H. -D. Grd, H. L. Harney, R. Hofferbert, H. Rehfeld, [26] G. Casati, |. Guarneri, F. M. Izrailev, L. Molinari, K. Zycz-
A Richter, and P. Schardt, Phys. Rev(td be published kowski, Phys. Rev. Lettr2, 2697(1994).

[12] M. V. Berry and M. Wilkinson, Proc. R. Soc. London Ser. A [27] P. M. Morse and H. Feshbacklethods of Theoretical Physics
392 15(1984). (McGraw-Hill, New York, 1953.

[13] P. K. Banerjeélhe Boundary Element Methods in Engineering [28] R. H. Horn, and C. R. JohnsoMatrix Analysis(Cambridge
(McGraw-Hill, New York, 1994. University Press, Cambridge, England, 1285



