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We introduce an additional method to solve Schro¨dinger’s equation for a free particle in an infinite well of
arbitrary shape~the Helmholtz equation with Dirichlet boundary conditions!, a problem of interest in the area
of quantum chaos. We expand the wave function in a basis of products of sine functions, then use the constraint
operator to contain the wave function to a region within the domain of the basis functions. In this manner, a
quantum billiard problem of arbitrary shape can be solved. Several methods exist to solve problems of this sort,
but as recent work reviewing these methods has shown, all have shortcomings. Our work represents a different
direction in the solution of these problems. Our method is different in that it provides a means of computing
an eigenbasis. It is also interesting from a physical standpoint in that it can represent the Hamiltonian of a
classically chaotic system in the basis of a classically regular system.@S1063-651X~96!06607-X#

PACS number~s!: 02.70.Rw, 05.45.1b, 03.65.Ge, 02.10.Sp

I. INTRODUCTION

A billiard system consists of a particle bouncing around in
a rigid box of arbitrary shape. Billiard systems are useful in
the study of chaos, as the chaoticity of the system is deter-
mined by the shape of the box. Circles and squares give rise
to regular motion; in more complicated shapes, like stadia,
both regular and chaotic motion is possible, depending on
the initial conditions@1,2#.

Quantum billiard systems are widely used in the study of
quantum chaos. Quantum chaotic systems can be character-
ized by statistics. The distribution of normalized energy level
spacings of a quantum system is one such characterization;
chaotic systems have Wigner distributions and regular sys-
tems have Poisson distributions@3–7#. The wave functions
of quantum chaotic systems qualitatively resemble a random
superposition of plane waves, though ‘‘scars’’ in the quan-
tum wave functions corresponding to classical periodic orbits
can appear@8#.

The decay of quantum billiard systems through small exit
channels is of current interest. The chaoticity of the billiard
system controls the decay of the system; regular billiard sys-
tems decay algebraically in time, while chaotic billiard sys-
tems decay exponentially in time@9#. Recent work@10,11#
shows an even richer variety of behaviors. The quantum cha-
otic billiard decay problem is yet unsolved; existing methods
of solving quantum billiards are unsuited for it.

Many methods exist for solving quantum billiard prob-
lems. The most used are the boundary integral method@12–
17#, the plane wave decomposition method@8,18,19#, and the
conformal mapping diagonalization method@20–23#. How-
ever, recent work reviewing the boundary integral method
@24# and the plane wave decomposition method@25# demon-
strates that both have weaknesses.

The boundary integral method solves billiard problem by
deriving an integral equation for the normal derivative of the

wave function using Green’s theorem@12–17#. Discretiza-
tion of the boundary integral results in a complex determi-
nant nonlinear in the wave vector magnitude, the zeros of
which correspond to solutions of the wave function equation.
It is widely used, but has recently been shown to have prob-
lems when the box geometry is nonconvex@24#.

The plane wave decomposition method assumes an ex-
pansion in plane waves with the same wave vector magni-
tude, then tries to force the wave function to be zero along
the boundary of the box by proper selection of the plane
wave components@8,18,19#. If it succeeds in making the
wave function approximately zero on the boundary, then it
has found an approximate eigenfunction of¹W 2. The proce-
dure iterates over wave vector magnitudes, recording the ei-
genvalues that it finds. It is widely used to find quantum
billiard wave functions, but cannot be relied upon for accu-
rate spectra, as some eigenvalues can be stepped over in the
iteration process. The wave functions it finds are not neces-
sarily orthogonal to very good accuracy, as shown in@25#.

The conformal mapping diagonalization method elegantly
solves a billard problem by finding a conformal map from
the shape of the box to the unit circle@20–23#. The problem
is solved by the mapping, but this method is limited to two
dimensional problems with boxes for which a conformal
mapping to the unit disk can be found.

We present a method that solves the problem in a more
‘‘quantum mechanical’’ way. We find many eigenfunctions
simultaneously by diagonalizing a Hamiltonian matrix. This
results in a~truncated! complete set of eigenfunctions that
are necessarily orthonormal~within the limitations of the di-
agonalization algorithm!, unlike the methods mentioned
above. The availability of a complete basis provides a
straightforward approach to time-dependent problems like
quantum chaotic decay. We also connect this method to
some existing methods.

Random matrices that are band diagonal are of interest in
quantum chaos@26#. Band diagonal Hamiltonians are ‘‘natu-
ral’’ in the sense that many systems have localized interac-
tions and localized wave functions. Our method, introduced
below, results in an approximately band diagonal Hamil-
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tonian. A connection between the two may prove revealing.

II. THE CONSTRAINT OPERATOR

Schrödinger’s equation for the quantum billiard is

¹W 2C~xW !1lC~xW !50, ~1!

wherel is an energy eigenvalue of the system in some con-
venient units. The boundary condition, which characterizes
the quantum billiard problem, is thatC(xW )50 on the bound-
ary surfacedI of an arbitrarily shaped regionI, the included
region.

We express the shape of I by starting with a larger region
T where we can solve~1!, then ‘‘cutting away’’ the un-
wanted parts ofT to makeI. We do this by constraining the
wave function to be zero in the excluded regionE5 T/ I .
Figure 1 shows the regionsI andE for the stadium billiard.
~Most of our examples are two dimensional, but the method
can be applied to three dimensions or higher.! In practice, we
choose the regionT so that it has a boundary with surfaces of
constant coordinates in a coordinate system where¹W 2 is
separable.

Define the constraint operatorC for xW in T, which multi-
plies functions on its right by the constraint function

c~xW !5H 1 if xW is in I

0 if xW is inE.
~2!

The constraint operator is the projector for functions over
the larger, simpler regionT that are zero overE ~it ‘‘con-
strains’’ functions to be zero inE.! Functions in the range of
C are zero inE. Functions in the null-space ofC are zero in
the regionI. C25C, so thatC is idempotent and has eigen-
values 0 and 1. Therefore, it is the projector of its range, and
12C is the projector of its null-space. We define the in-
cluded fractionm5* IdxW /*TdxW as the ratio of the included
volume to the total volume; we will use it below.
C is represented in the basis$f i(xW )% of functions overT

as the matrixC with elements

Ci j5E
T
dxWf i~xW !Cf j~xW !5E

E
dxWf i~xW !f j~xW !. ~3!

We will return to the matrixC later to discuss its properties
and its computation.

The solutions to the problem we are interested in are the
eigenvectors of¹W 2 that are in the range ofC. Intuitively, it
seems that we can solve our problem by finding the eigen-
vectors ofC¹W 2C. This is almostcorrect. To be completely
correct, we will derive the solutions using a Green’s function
@27# then simplify the result using our knowledge of the
constraint operator.

We need a Green’s functionG(xW ,xW0) that satisfies the
equation

~¹W 21l!G~xW ,xW0!524pd~xW2xW0!. ~4!

Multiplying ~1! by G(xW ,xW0) and~4! by C(xW ), then subtract-
ing the second result from the first gives

G~xW ,xW0!¹W
2C~xW !2C~xW !¹W 2G~xW ,xW0!54pC~xW !d~xW2xW0!.

~5!

Integrating~5! over the included regionI we obtain an ex-
pression for the wave function

1

4pEI dxW @G~xW ,xW0!¹W
2C~xW !2C~xW !¹W 2G~xW ,xW0!#

5H C~xW0! if xW0 is in I

0 if xW0 is inE.
~6!

To enforce the boundary condition thatC50 on dI we use
Green’s theorem to change the volume integral into a surface
integral, then apply the boundary condition, resulting in

C~xW0!5
1

4pESdA•@G~xW ,xW0!¹W C~xW !# ~7!

for xW0 in I. We then use Green’s first identity to return to a
volume integral,

C~xW0!5
1

4pEI dxW @¹W G~xW ,xW0!•¹W C~xW !1G~xW ,xW0!¹W
2C~xW !#

~8!

which is true forxW0 in I.
We choose the basis$f i(xW )% of eigenfunctions of¹W

2 over
T. To expressG(xW ,xW0) in this basis, we use~4! to determine
the expansion coefficients, utilizing the eigenfunction expan-
sion for d(xW2xW0). This results in

G~xW ,xW0!54p(
i

f i~xW !f i~xW0!

l i2l
. ~9!

The wave functionC has the expansion

C~xW !5(
k

ckfk~xW !. ~10!

Now we put everything together. By substituting~9! and~10!
into ~8!, we get the eigenvalue equation

FIG. 1. The included and excluded regions shown for the de-
symmetrized stadium. The total region is the entire rectangle. The
ratio of included to total regionsm here is 0.8570.
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(
k

ckfk~xW0!5(
j ,k

c j

lk2l
fk~xW0!E

I
dxW @¹W fk~xW !•¹W f j~xW !

1fk~xW !¹W 2f j~xW !#. ~11!

This can be simplified by converting it to matrix form. To
effect this change, we first multiply both sides byf i(xW0),
and use the orthonormality of the basis functions over the
regionT. Then

c i5(
j

F E
I
dxW¹W f i•¹W f j2Ci jl j G 1

l i2l
c j

5(
j

@d i , jl i2Si j2Ci jl j #
1

l i2l
c j , ~12!

where

Si j5E
E
dxW¹f i•¹f j . ~13!

Here we have used the fact that

E
I
dxW¹f i•¹f j5E

T
dxW¹f i•¹f j2E

E
dxW¹f i•¹f j

5l id i , j2E
E
dxW¹f i•¹f j . ~14!

The matrixC arises naturally in this derivation; the right-
hand side of~6! reflects the fact thatC in the range ofC.

We now rearrange the equation into conventional matrix
form,

~CL1S2l!c50, ~15!

whereL is the diagonal matrix containing the eigenvalues of
the basis functions overT. Solving this eigensystem gives us
a solution to~1! in the basis of eigenfunctions overT. Notice
that the matrix in~15! is not Hermitian.

We now use our knowledge ofC to make the eigensystem
Hermitian. The wave function expansion~10! was equated to
the right-hand side of~11!, which is zero outside ofI. Our
wave function expansion actually represents a function that
is equal toC in I and equal to zero inE. Therefore the
solutions to~15! are zero inE and are in the range ofC, that
is, CC(xW )5C(xW ) or Cc5c. We can introduce this fact on
the left-hand side of~8! to make the eigensystem Hermitian.
The resulting generalized eigensystem is

~CL1LC2L1S2lC!c50. ~16!

or equivalently,

@~C2 1
2 !sH1S2lC#c50, ~17!

whereHi j5l i1l j and s represents the Hadamard or el-
ementwise product defined by (AsB) i j5Ai jBi j .

Alternatively we can modify the eigenvalue equation~15!
by insertingC beforec and multiplying byC from the left

C~CL1S2l1!Cc50,

~CLC1CSC2lC!c50,

~CLC1CSC2l!c50. ~18!

Here the idempotence ofC makes the eigenproblem Hermit-
ian.

The problem now looks ‘‘quantum mechanical,’’ as it has
been reduced to finding the eigenvalues of a Hermitian ma-
trix. We can express the problem as a perturbation of the
original HamiltonianL by using the complimentary projec-
tor 12C, which is a ‘‘small’’ matrix in some problems. We
will not pursue this here, as we are not interested in pertur-
bative solutions.

Now we investigate the details involved in solving~18!.
As C is a projector, it can be decomposed asC5PPT,
wherePTP51r3r . P is anm3r matrix, wherer is the rank
of C. Then the eigensystem~18! is equivalent to

~PTLP2PTSP2l!c850, ~19!

wherec5PTc8 andc8 is anr dimensional vector; there are
r nontrivial solutions to~18!.

As the constraint matrix for a region that is the union of
two nonoverlapping regions must be the sum of the con-
straint matrices for the two regions from~3!, we expect that
the rank of a constraint matrix is proportional to the area in
the range of the constraint matrix. When the included region
is the total region the constraint matrix is the identity matrix,
with rankm. Thus we expect that that the rankr of C is
given by the closest integer tomm, which was confirmed
numerically.

Before we solve~19!, we need to findP; in other words,
we need to find an orthonormal basis for the range ofC. This
matrix is only approximately a projector, due not to error in
its elements but to the fact that it is representingC in a
truncated basis; therefore its range is not well defined. We
use ther eigenvectors ofC with the largest eigenvalues to
define the range ofC. This step is justified in Appendices B
and C. The spectrum ofC proves to be close to that expected
for it, so that the uncertainty in the range ofC is not large. In
Fig. 2, we plot the eigenvalues ofC, in decreasing order, vs
the fractional eigenvalue number, which is merely the eigen-

FIG. 2. The spectrum ofC for the desymmetrized stadium, for
m5124 andm51004, wherer /m5m50.8570.
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value number divided by the number of basis functionsm.
The spectrum is quite close to that of a projector with a
fractional rank equal to the included fraction
m5* IdxW /*TdxW .

III. NUMERICAL CALCULATION
OF MATRIX ELEMENTS

Unless the boundarydI is along surfaces of constant co-
ordinates we will need to use numerical integration to find
the elements ofC andS. This is because although the basis
functions are analytically calculable, the integral of a basis
function over an arbitrary region is not. We can integrate
over E or I, asC and 12C are trivially related. We have
integrated over 12C as the region is smaller, necessitating
fewer grid points in the numerical integration. Thus we will
find C andS by approximating~3! as a sum over all grid
points in E of the Taylor expansion of the integrand.

To facilitate simple notation we will assume thatxW is two
dimensional with componentsx1 ,x2 . Consider a cell sur-
rounding a grid pointxWgrid with dimensionsh1 andh2 . The
integral off i(xW )f j (xW ) over the cell is

E
2
h1
2

h1
2 dx1E

2
h2
2

h2
2 dx2Ff i~xW !f j~xW !UxWgrid

1 (
k51,2

]f i~xW !f j~xW !

]xk
UxWgridxk1•••G . ~20!

As we are using a regularly spaced grid, the integrals are
over intervals centered around zero and odd powers ofx1
andx2 integrate to zero and~20! becomes

h1h2f i~xW !f j~xW !uxWgrid, ~21!

neglecting terms of orderh1
3h21h1h2

3 . Summing over all
grid points,

Ci j5 (
k51,

n

f i~xW k!f j~xW k!h1
kh2

k , ~22!

where xW k ,k51,2, . . . ,n is a grid in the regionE. h1
k and

h2
k are the dimensions of the cell surrounding thekth grid

point. If we define them3n matrix Fi j5f i(xW j )(h1
kh2

k) 12,
then CE5FFT. Notice that FFT is manifestly positive
semidefinite, as expected. The matricesF andP should not
be confused; even thoughC5FFT.PPT, PÞF. That the
matrices cannot be equal is obviously true, asF ism3n and
P is m3r , andn..m>r .

We observed that in some situations using grids with an
odd number of grid points per side gave significantly better
results than grids with an even number of grid points per
side. We attribute this to the greater number of coincidental
zeroes of the basis functions and grid points in the latter case,
which degrades computation of the matrix elements. The
number of coincidental zeroes and grid points can be less-
ened by using grids that begin ath/2, not 0. Our grids are
evenly spaced, except at the boundary, where we put a point
on the boundary and give it the appropriate weighting. The

two dimensional numerical integration of the matrix ele-
ments merits no more consideration as the line integral com-
putation of the matrix elements~discussed later! will be su-
perior.

We can find the elements ofS with a similar approach.
From ~13!,

Si j5h2(
k,l

S ]f i

]xl

]f j

]xl
D uxWk,5(

k,l
Dik
l ~Dl !k j

T ,

S5(
l
Dl~Dl !T, ~23!

whereDik
l 5h(]f i /]xl)uxWk. All of the matricesDl(Dl)T are

positive semidefinite.
For a functionC(xW ) represented by a vectorc to be in

the null-space ofFFT the vector must satisfy

(
j51,

m

Fk j
T cj50, ~h1h2!

1
2(
j51,

m

f j~xW k!cj50, ~24!

for k51, . . . ,n. DemandingC to be in the range ofC is thus
equivalent to demanding thatC(xW k)50 at then grid points
xW k used in the numerical integration. Onlyr of the equations
~24! are linearly independent, giving rankr to the matrix
C.

IV. COMPUTATIONAL ALGORITHM

Here we present a straightforward algorithm that solves
~18!; it uses a subroutine to find all of the eigenvalues and
their associated eigenvectors. The only complication in this
procedure is that finding all the elements of anm3m matrix
that are equal to the product of three matrices~as isCSC) is
an orderm4 process, which should be avoided. As the ma-
trices will be large, the eigensystem solving routine should
be one that uses only one array, such as Householder tridi-
agonalization followed by QR iteration. An uncomplicated
algorithm that follows this advice and uses three storage ar-
rays is as follows.

~a! In the first storage array we have the following.
~1! Compute the elements ofC using numerical integra-

tion.
~2! Compute the eigenvalues and eigenvectors ofC.
~3! Truncate the spectrum ofC to find P such that

C5PPT andPTP51.
~b! In the second storage array we have the following.
~1! Compute the elements ofS using numerical integra-

tion.
~2! Compute the eigenvalues and eigenvectors ofS.
~3! Truncate the spectrum ofS to find D such that

S5DDT.
~c! ComputePTD and write it into the third storage array.
~d! ComputePTLP ~which is orderm3) and write the

result in the second storage array.
~e! Compute (PTD)(PTD)T and add the result toPTLP

in the second array.
~f! Compute the eigenvalues ofPTLP1PTSPwhich re-

sides in the second array.
The algorithm solves threem3m eigensystems and three
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times computes the products ofm3m matrices.

V. COMPARISON TO AN ANALYTIC CASE

To evaluate the accuracy of our method, we found the
eigenfunctions of¹W 2 over a unit disk; we used a unit square
for T and a unit disk forI. As the disk is ‘‘separable,’’ the
eigenfunctions are known to be the product of sine functions
and Bessel’s functions. The eigenvalues are the zeroes of the
integer order Bessel functions. We found the first 300 eigen-
values by finding the zeroes of the Bessel functions with a
Newton-Raphson method for comparison.

Even though the circle and the square are both separable,
their symmetries are quite different. Nevertheless the con-
straint operator solution works. With 868 basis functions, we
obtained rms fractional eigenvalue error of 2.013831023 for
the first 300 eigenvalues~Fig. 3!.

The errors of the eigenvalues depend on the eigenvalue
number in a consistent way. To show this, we introduce the
fractional eigenvalue number, which is the eigenvalue num-
ber i divided by the number of basis functionsm. This en-
ables us to put data for solutions with differentm values on
the same plot. Figure 4 shows the fractional error as a func-
tion of the fractional eigenvalue number. The dependence is
nearly exponential for the higher eigenvalues, while the
lower eigenvalues have fractional errors bounded by a con-
stant.

We assume thatC50 in E; we can easily find out how
bad this assumption is. Define the volume fractional errorn
to be the integral

n5E
E
dxW uCu2. ~25!

0<n<1, with only values near 0 being acceptable. The av-
erage volume fractional error for the first 300 eigenvalues
was 7.11331023. The volume fractional error also has a

consistent distribution~Fig. 5.! The volume fractional error
is roughly exponential in fractional eigenvalue number for
low eigenvalue numbers.

We observed that the rms energy eigenvalue error con-
verges to a finite value whenn is increased butm is held
fixed ~Fig. 6!. This is expected, as the matrix elements con-
verge to their correct values with increasingn and there will
always be a finite error whenm is finite.

We observed that the rms energy eigenvalue error con-
verges to zero asm→`. The exponent ofm was approxi-
mately20.4 for the disk~Fig. 3!.

The application of the constraint operator method to one
dimensional problems is superfluous. For comparisons sake,
we solved the one dimensional problem with a sine function
basis. The rms fractional eigenvalue error decreased as
m21. When the included regionI is separable, the constraint
operator method can be decomposed into two one dimen-
sional problems@see Appendix C, Eqs.~C7! and~C8!#. Thus
we expect that the rms fractional eigenvalue error in the two
dimensional case can, at best, decrease asm21/2. The ob-

FIG. 3. The convergence of the rms fractional error in the en-
ergy eigenvalues as a function of the number of basis functions
used for the disk problem. Here the number of grid points and the
number of basis functions are equal.

FIG. 4. The fractional eigenvalue error as a function of the
fractional eigenvalue number for the unit disk withm5124 ~boxes!
andm5316 ~pluses!.

FIG. 5. The volume fractional error as a function of the frac-
tional eigenvalue number for the unit disk withm5124~boxes! and
m5316 ~pluses!.
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served exponent ofm in the convergence of the eigenvalue
error of the unit disk is consistent with this.

VI. COMPARISON WITH THE PLANE WAVE
DECOMPOSITION METHOD

The plane wave decomposition method devised by Heller
@18# uses a basis of plane waves to express the wave func-
tions, then demands that the wave functions be zero on some
points evenly spaced around the boundary surface. The
eigenfunctions are found by an iterative process: an eigen-
value is assumed, the linear equations that set the wave func-
tions equal to zero at the points are solved, then the error in
the boundary condition is evaluated. The process is repeated
until the error in the boundary condition vanishes; the wave
function is then an eigenfunction of¹W 2 that satisfies the nec-
essary boundary conditions.

Because of its iterative nature, it cannot be relied upon to
find every eigenvalue@25#, even though the error in the in-
dividual eigenvalues can be made arbitrarily small by vary-
ing the step size. The plane wave decomposition method
finds eigenfunctions, but each eigenfunction is found in a
different basis, as the wave vector magnitude is not the same
for each eigenvector. This renders impracticable the task of
manipulating the set of eigenvectors.

The constraint operator method has limited eigenvalue ac-
curacy, but it finds a~truncated! complete set of eigenfunc-
tions. The chore of knowing allm2 matrix elements prevents
the eigenvalue accuracy from being improved by using a
largem. This is the price that is paid for finding a complete
basis.

The relative merits of the plane wave decomposition
method and the constraint operator method suggest that the
methods could be used in conjunction. The plane wave de-
composition method can be used to improve the eigenvalue
accuracy of the constraint operator method, using the eigen-
values found by the latter as starting points. This would al-
leviate the plane wave decomposition method’s problem of
stepping over eigenvalues, and reduce the time spent search-

ing for eigenvalues. The net result would be a complete set
of eigenfunctions with accurate eigenvalues.

To check the method in a nonintegrable case, we also
solved the desymmetrized stadium problem, where the in-
cluded region is as shown in Fig. 1. No analytical solution is
possible, so we compared our eigenvalues to those produced
by the plane wave decomposition method for the same prob-
lem. With 378 basis functions, we obtained a rms fractional
energy eigenvalue deviation of 0.002 for the first 100 eigen-
values of the two methods. The first four wave functions are
plotted in Fig. 7, which shows the wave functions over the
total region. We checked the distribution of normalized ei-
genvalue spacings in both of our test cases. The disk spac-
ings closely follow a Poisson distribution, and the stadium
spacings closely follow a Wigner distribution, as expected
~Fig. 8!. We regard this as evidence that the constraint op-
erator solution preserves the essential details of a system.

VII. OTHER IDEAS AND FUTURE WORK

We are currently pursuing the approach of expanding the
constraint function~2! in the eigenfunctions of¹W 2. The ma-
trix elements ofC andS are completely determined by the
elements of this expansion. Fewer numerical integrations are
required, and Green’s theorem can be used to express the
constraint function elements as integrals over the boundary
surfacedI. We expect better results from this approach as the
problem of coincidental zeroes and grid points that can arise
with the area integration will not be present when surface
integrals are used.

This approach connects the constraint operator with the
theory of Fourier expansions. Some of the properties ofC
mentioned above can be proven using this approach. The
band diagonality ofC andS is manifested, as a truncation of
the constraint function expansion tom functions results in
matrices with bandwidth 2 m.

The constraint operator method will work with arbitrary
bases; a basis other than one that diagonalizes¹W 2 may result
in a higher computational load but greater accuracy. In par-
ticular, we speculate that wavelets might do a better job of
representing the constraint operator than the Fourier basis
does.

We are planning to try our method on several quantum
billiard problems that offer resistance to the standard meth-
ods, namely, the problems of scattering centers in a quantum
well,triangular domains, and the problem of quantum chaotic
decay.

APPENDIX A: OTHER OPERATORS, BASES,
AND BOUNDARY CONDITIONS

Although we used a basis such thatL was diagonal, this
is not necessary. It may be possible to get better results by
using other bases; for example, wavelets are more ‘‘local-
ized’’ than plane waves and may better represent the con-
straint operator. Below we derive the correct eigensystem in
a general basis. For complete generality, we assume that
there is a quantum mechanical potential termV(xW ).

Now we need a Green’s functionG(xW ,xW0) that satisfies
the equation

FIG. 6. The convergence of the rms fractional error in the en-
ergy eigenvalues as a function of the number of grid points used in
the numerical integration for the disk problem, using 400 basis
functions.
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@¹W 21V~x!1l#G~xW ,xW0!524pd~xW2xW0!. ~A1!

This leaves~5! through~7! unchanged. As our basis does not
diagonalize¹W 2, this changes our expression forG(xW ,xW0) to

G~xW ,xW0!54p(
i j

~@T2V2l#21! i jf i~xW !f j~xW0!. ~A2!

The matricesT andV are given by

Ti j52E
T
dxWf i~xW !¹W 2f j~xW !,

Vi j5E
T
dxWf i~xW !V~x!f j~xW !. ~A3!

The expansion forC is still

C~xW !5(
k

ckfk~xW !, ~A4!

but here the functions are not eigenfunctions of¹W 2. Substi-
tuting the expansions into~8!,

(
k

ckfk~xW0!5(
j ,k,l

c j~@T2V2l#21! lkfk~xW0!

3E
S
dA•@f l¹f j #. ~A5!

To convert this into matrix form, we multiply both sides by
f i(xW0) and then use the orthogonality of the eigenfunctions,
giving

c i52(
j ,l

~@T2V2l#21! l i Al j
Tc j~T2V2A2l1!c50,

~A6!

whereAi j5*SdA•@f j¹W f i #. A can be expressed in terms of
C as

FIG. 7. C(xW ) for the first four eigenfunctions over the desymmetrized stadium. Something like the Gibbs phenomenon can be seen, with
the maximum error occurring near, but not on, the boundaryd I .

FIG. 8. The distributions of normalized energy spacings for the
desymmetrized disk problem~eigenvalues 100–200! and the
Wigner distribution.
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Ai j5E
S
dA•@f i¹W f j #5E

I
dv@f i¹W

2f j1¹W f i•¹W f j #

5E
T
dvFf iC¹W 2f j1E

I
dv¹W f i•¹W f j G

5(
k
Cik~2Tk j!1~S! i j A5~12C!T2S ~A7!

and the final form of the eigenvalue equation is

@C~T2V1S!C2l#f50. ~A8!

In the case of Neumann boundary conditions,
nW •¹W C(xW )50 on the boundary surface, and~7! is replaced
by

C~xW0!5
1

4p
2E

S
dA•@C~xW !¹W G~xW ,xW0!#, ~A9!

changing~A6! to

c i5(
j ,l

~@T2V2l#21! l i Al j
Tc j~T2V1A2l1!c50.

~A10!

The final form of the eigenvalue equation is then

@C~T2V2S!C2l#f50. ~A11!

APPENDIX B: APPROXIMATING A PROJECTOR

In ~19! we choose ther eigenfunctions ofC with the ei-
genvalues closest to unity to span the range ofC. This is a
sensible thing to do, but we would like a firmer justification
for this step. Here we show that this step is equivalent to
replacingC with the ‘‘closest’’ rankr projectorC8, namely,
the one that minimizes the Euclidean matrix norm

iC2C8i2 . ~B1!

To show this, we writeC andC8 in terms of their unitary
decompositions:

C5U†GU, C85V†G8V, ~B2!

where the diagonal matrixG i i contains the eigenvalues of
C, andG i i8 51 if i<r and is zero otherwise.G,G8, andU are
known to us; to solve the problem we want to find a unitary
matrix V that minimizes

iC2C8i2
25iG2UV†G8VU†i

5 Tr@~G2UV†G8VU†!~G2UV†G8VU†!#

5 Tr@G21~G8!222G8UV†GVU†#, ~B3!

which is equivalent to maximizing

Tr@G8UV†GVU†#5 (
i51,

m

(
k51,

m

G i i8 ~UV†! ikGkk~VU
†!ki

5 (
i51,

r

(
k51,

m

u~VU†! iku2Gkk . ~B4!

Define them3m matrixM by Mi j5(VU†) i j , and note that
it is orthostochastic~that is,( iM i j5( jM i j51.) Define the
vectorg by g i5G i i . Then we want to maximize the sum

(
i51,

r

~Mg! i . ~B5!

As M is orthostochastic,Mg majorizesg; the sum of ther
largest elements ofMg is less than or equal to the sum of the
r largest elements ofg, with equality holding forM51. We
minimize the norm by takingM51, which means that
U5V. ThusC andC8 are diagonal in the same basis, and
replacingF with P is equivalent to replacingC with C8.

APPENDIX C: MATRIX STRUCTURE
AND EIGENVALUE ERROR

In practice, the eigenvalue spectrum ofC is observed to
closely follow the function

g~ i !5FexpS i 82m

T D11G2a

, ~C1!

where i 85 i /m is the ‘‘fractional eigenvalue number’’ and
m5r /m ~Fig. 2!. This function closely approximates the unit
step function, which is the eigenvalue distribution expected
for a projector. Whena51, g is the Fermi function; for
0,a,1, g is greater than the Fermi function, and when
a.1, g is less than the Fermi function; all cases are pos-
sible. In~Fig. 2! we see thatg(m) is approximately the same
for m5124 andm51004, as expected, though the slope of
g at i 85m is larger for largerm. The ‘‘temperature’’T can
be found using the slopedg/di8 of ~C1! at i 85m

T5
2a22a21

dg

di8
U

m

5
2g~m!log2@g~m!#

2
dg

di8
U

m

. ~C2!

We observed thatT is inversely proportional tom.
An essential fact about this method is that the matrices are

approximately band diagonal in the basis of the eigenfunc-
tions of ¹W 2 arranged with their eigenvalues in increasing
order. More precisely, they are well approximated by a ma-
trix with all elements zero wheni i2 j i.b, whereb is the
bandwidth. This is important, as we need to represent infinite
matrices with finite ones, and would like to understand ex-
actly what we can safely neglect.

C can be expressed as the sum of a band diagonal matrix
Cb with bandwidth b and a residualdC5C2Cb . The
Weiland-Hoffman theorem@28# can now be used to bound
the rms eigenvalue error ofCb
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F 1m(
i51,

m

@l i~C!2l i~Cb!#
2G1/2<m21/2idCi2 . ~C3!

Interestingly,m21/2idCi2 can be computed due to the idem-
potence ofC

Cii5(
j
Ci j
25 (

i i2 j i<b
Ci j
21 (

i i2 j i.b
Ci j
2 idCi2

2

5(
i

FCii2 (
i i2 j i<b

Ci j
2 G . ~C4!

Here we have neglected the fact thatm is finite, but this
analysis works for largem.

It is easy to computem21/2idCi2 , and easy to update it if
m is increased. A program can use this to determine the
minimum value ofm that has a certain maximum allowed
rms error in the spectrum ofC.

To investigate the rate of convergence ofm21/2idCi to
zero asb increases, we need a measure of the size of the
kth off-diagonal. To account for the fact that different off-
diagonals have different numbers of elements, we definejk
to be the rms value of the elements of thekth off-diagonal

jk5F( u i2 j u5kCi j
2

Nk
G1/2, ~C5!

whereNk is the number of elements in thekth off-diagonal.
For largem, the bound on the rms eigenvalue error ofCb is

1

m
idCi2

252(
k5b,

`

jk
2 . ~C6!

We observed thatjb;b21 ~Fig. 9!, implying that the bound
on the rms eigenvalue error ofCb is proportional tob

21/2.

Whenever the wave function is separable, the matricesC andSmust be
separable as well, reducing the two dimensional problem to two one dimen-
sional problems. When~1! can be solved by separation of variables, then the
vector c will be decomposable into the Kroneker productc5j ^ h. As
there are separable eigenvectorsc5j ^ h, there are separable unitary ma-
trices that diagonalizeC andS. ThereforeC can be written as the Kroneker
product C5Cx

^Cy and S can be written as the Kroneker sum
S5Sx^111^Sy. As we choose the total regionT to correspond to a sepa-
rable case, we can always writeT as the Kroneker sum of two matrices:
T5Tx^111^Ty. Considering all of these separabilities, the matrix in~18!
becomes

~Cx
^Cy~Tx^111^Ty1Sx^111^Sy2l ^1!Cx

^Cy

5@Cx~Tx1Sx2lx!Cx# ^Cy1Cx
^ @Cy~Ty1Sy

2ly!Cy#, ~C7!

where we have writtenl5lx
^111^ ly and made repeated

use of the mixed product identity. The solutions are given by
the Kroneker product of the one dimensional solutionsj and
h, where

@Cx~Tx1Sx2lx!Cx#j50, @Cy~Ty1Sy2ly!Cy#h50.
~C8!

There is a well-recognized correspondence between non-
chaoticity and separability; this correspondence extends to
the matricesC andS.

APPENDIX D: CONNECTION WITH THE FINITE
DIFFERENCE METHOD

The constraint operator solution can be connected to the
finite difference method. Consider the change of basis given
by Fc*5c. From ~10!, the function

C~xW !5 (
i51,

m

f i~xW ! (
j51,

n

Fi jc j* ,

5 (
j51,

n

c j(
i51,

m

f i~xW !f i~xW !~h1h2!
1/2,

5 (
j51,

n

c jd j
m~xW2xW j !, ~D1!

whered j
m(xW2xW j ) is the unit normalizedd function expanded

in a sizem basis.
This corresponds to changing to a basis ofn d functions,

which is qualitatively similar to the finite difference method
with ann3n array.n must be considerably larger thanm in
order for the numerical integration of the matrix elements to
be accurate, and we have not neglected terms in representing
¹W 2, demonstrating the relative merit of the constraint opera-
tor method.

FIG. 9. The rms valuej of the bth off-diagonal elements ofC
as a function ofb, for the disk~upper curve! and stadium~lower
curve!, demonstrating the band diagonal nature ofC.
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