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Recent measurements of thep+p− invariant-mass distribution at RHIC show a shifted peak for ther meson
in 100A GeV in peripheral Au+Au and even inp+p collisions. A recent theoretical study based on a picture of
in-medium production rates of pions showed that a large shift could result from a combination of the Boltz-
mann factor and the collisional broadening of ther. Here we argue that the two-pion density of states is the
appropriate quantity if one assumes a sudden breakup of the system. Methods for calculating the density of
states which include Bose effects are derived. The resulting invariant-mass distributions are significantly
enhanced at lower masses and ther peak is shifted downward by,35 MeV.
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I. INTRODUCTION

One of the most compelling motivations for studying
heavy-ion collisions is the prospect for observing the resto-
ration of chiral symmetry. The spontaneous breaking of chi-
ral symmetry is accompanied by the creation of a quark-
antiquark condensate whose coupling to nucleons is
responsible for the great bulk of the nucleon mass, and is
therefore responsible for most of the observed mass of the
universe. The transient nature of the heavy-ion reaction pre-
cludes a detailed investigation of all the quasiparticle modes
in the highly excited collision volume. However, ther meson
is unique for it typically decays inside the spatial region
where the vacuum structure might undergo novel changes. A
neutralr decays with 99% probability into ap+p− pair and
decays with a small probability into ane+e− or m+m− pair.
The electromagnetic channels are especially useful because
dilepton pairs will largely leave the collision volume un-
scathed by interactions with the thousands of other constitu-
ents. Since ther has the same quantum numbers as the pho-
ton, the invariant-mass spectrum of dileptons is dominated
by ther for masses between 600 and 800 MeV. Experiments
at the CERN SPS fore+e− [1] andm+m− [2,3] suggest that the
r has either dissolved[4] (as would be expected in a quark-
gluon plasma), or has moved down a few hundred MeV[5]
(due to chiral symmetry restoration), or has been broadened
via collisions by many hundreds of MeV[6].

Recently, the possibility of studying in-medium properties
of ther meson through thep+p− channel has been discussed
[7,8]. Unlike dileptons, pions are not penetrating probes and
are likely to reinteract before they escape. Since tempera-
tures fall to near 100 MeV at breakup, where ther/p ratio
falls to a few percent, the chance that ap+ is accompanied by
a p− that originated from the samer, rather than a charged

pion from a different source, is only a few percent. Thus, a
background subtracted invariant-mass distribution should
have ar peak that comprises only a few percent of the inte-
grated distribution.

The STAR collaboration at RHIC has measured such a
peak in pp collisions, and for the first time, in peripheral
relativistic heavy-ion collisions[17]. A surprisingly signifi-
cant downward shift of the mass was observed even inpp
collisions, especially at lowpt, and an even larger shift was
observed in peripheral Au+Au collisions. Results are not yet
available for central collisions where it is more difficult to
observe the peak since ther/p ratio falls. Eventually, ther
peak should also be measured for central collisions given
sufficient statistics.

In Refs.[7,8], the mass distribution was predicted by con-
sidering the in-medium rate ofr decays intop+p− pairs,
dN/dMd3xdt. This is the same approach as has been applied
for dilepton studies. In Ref.[8], these rates were corrected
for collision broadening and for Bose effects. Collision
broadening was shown to be particularly important in mov-
ing strength to lower-lying masses. However, emission of
pions is of a fundamentally different character than that of
dileptons. First, the final-state distribution is not necessarily
proportional to the decay rate since the decay rate is often
balanced by a formation rate of similar magnitude. Second,
collisional broadening cannot be applied in the same manner
since measurements are made in the asymptotic state. Fi-
nally, the presence of ther alters the two-pion scattering
partial waves at nonzero separations which should affect the
mass distribution. As we will demonstrate, the production-
rate calculations of Refs.[7,8] provide different results than
a freeze-out prescription which is governed by the available
phase space such as in Ref.[9].

If the last strong interactions felt by the two pions used in
the distribution can be considered sufficiently hard to statis-
tically sample the outgoing phase space, the two-pion density
of states should govern the invariant-mass distribution. By
definition, the sudden breakup scenario requires the density
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being lowered to the point where collisions have ceased and
collision broadening can be ignored. However, this might not
be the same criterion for demanding that the real parts of the
self-energies(the mean field) have returned to vacuum val-
ues. Whereas the real part of the self-energy has one-loop
contributions that scale as the square of the coupling con-
stant, the imaginary part due to collision broadening is a
two-loop effect that scales as the fourth power of the cou-
pling constant. For the modeling of neutrinos through the sun
it is well justified to consider only the real part of the self-
energy since the coupling constants are effectively small.
However, for strongly interacting particles, it is rather incon-
sistent to ignore collision broadening while simultaneously
discussing mass shifts in the final state.

Although theser’s probably decayed during the breakup
stage, which is well below the critical density, the decayingr
mesons might still sample a region where mean-field effects,
i.e., in-medium mass shifts, are not negligible. Since pions
are Goldstone bosons, they probably leave the region with
their energy and momenta unchanged during their exiting
trajectory, and one expects that a modification of the two-
pion invariant-mass distribution would reflect the in-medium
modifications of ther rather than those of the pion.

Whereas, this mass shift may be of the order of 100 MeV
at high temperature, it is unlikely to be much more than
25 MeV at breakup when densities have fallen well below
the nuclear density. Theory has not provided a definitive es-
timate of the mass shift, and even the sign of the shift is
somewhat controversial. In a pion gas ther meson is shifted
upwards by<15 MeV by the mixing withpp states[10].
More sophisticated models include excited baryonic states
and may also consider ther anda1 to be part of chiral mul-
tiplet [11]. Such models also result in mass shifts of the order
of 10 MeV. From a different perspective, the mass of ther is
affected by the dissolution of theqq condensate which
couples to ther and provides much of its mass. According to
lattice gauge calculations[12], the condensate should largely
dissolve at temperatures near the deconfinement transition. It
should also be significantly reduced by the presence of other
heavy hadrons, e.g., nucleons. QCD sum rules have been
applied to estimate the reduction of ther mass due to the
presence of nucleons, and the effects can be parametrized by
the form

mr
*

mr

= 1 −a
r

r0
, s1d

with a being quoted as0.16±0.06 in Ref. f13g. Other
treatments based on QCD sum rulesf14,15g result in simi-
lar shifts, but the value ofa remains uncertain at the fac-
tor of two level. At RHIC, the breakup density of
santidnucleons is<10% of normal nuclear density and the
expected lowering of the mass from coupling to the re-
ducedqq condensate should be of the order of 20MeV.
Since multiple competing effects are of the order of
20 MeV and each is fairly uncertain, the net shift remains
an open question for theoretical debate which can hope-
fully be resolved by experiment. It is not the aim of the
current paper to model the in-medium mass shift of ther,

but rather to investigate how the invariant-mass distribu-
tion would look in a thermal description based entirely on
the outgoing two-pion density of states and related Bose
effects. Changes to the observed mass distribution beyond
what is executed from these considerations might then be
associated with modificationsf16g of the in-medium prop-
erties.

In contrast to the preceding discussion for strong interac-
tions, it is not necessarily inconsistent to consider final-state
Bose effects from third bodies while neglecting other three-
body interactions. Whereas the effects of third-body interac-
tions for providing mass shifts and collisions are propor-
tional to the density, multiparticle Bose effects are
determined by the phase-space density. During an isentropic
expansion, or during free streaming, the average phase-space
density, as sampled by the particles themselves, stays con-
stant even though the density is changing rapidly. Thus, we
argue that it is reasonable, and in fact important, to include
Bose effects even though the description is based on two-
body phase space.

In the following section, methods for calculating the two-
particle density of states are presented along with a compari-
son with the functional forms one would expect from rate
calculations. After convoluting with the Boltzmann weight-
ing, we find that ther peak is shifted downward by
,30 MeV relative to the nominalr mass. The shift is due to
three factors, the Boltzmann weighting[18], the fact that the
density of states peaks below ther mass, and the inclusion of
other partial waves. Bose-Einstein effects also enhance the
distribution at lower masses[8,19,20], especially for heavy-
ion collisions where the pionic phase-space filling factors are
approaching unity[21,22]. In Sec. III methods are presented
for including Bose effects into the two-pion density of states.
The resulting mass distribution is strengthened at lower in-
variant masses, but the peak does not shift appreciably.

II. INVARIANT-MASS DISTRIBUTIONS FROM
THE TWO-PION DENSITY OF STATES

Since the first measurements of ther meson[23,24], the
masses and widths have fluctuated by several MeV depend-
ing on the analysis. Currently, the Particle Data Group as-
signs a nominal mass of 771.1 MeV and a width of
149.2 MeV [25], with uncertainties for each number being
near 1 MeV. Ther mass has been determined from a number
of means, e+e−→p+p− reactions, pp collisions, and pp
→ppp reactions[26]. Electroproduction of ther is compli-
cated by the interference with thev→2p channel[27] which
constructively interferes with ther0 channel since the elec-
tromagnetic coupling violates isospin conservation. Sincepp
collisions are typically highly inelastic, extracting ther mass
is complicated by the same factors that complicate the study
in a heavy-ion environment. In thepp→ppp reaction, the
proton is treated as a source of pions which are assumed to
scatter elastically with the incoming pions. In fact,p+p−

phase shift analyses have been successfully performed.
Considering only scattering throughr0, the p+ p− cross

section should have a Breit-Wigner form,
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ssMd = 3
4p

q2

sPId2

sM2 − M0
2d2 + sPId2 , s2d

whereq is the momentum of either pion in the center-of-
mass framesM =2Împ

2 +q2d andPI is the imaginary part of
the one-loop self-energy of the relativistic propagator:

PI = PI,0

M0

M
S q

q0
D3

Fsq, q0d, s3d

PI,0 = G0M0. s4d

Here, G0 is the nominal width andq0 is the momentum
required to provide the nominal massM0. The last term
Fsq/q0d is a form factor whose exact form is in doubtf19g.
The productq2s peaks precisely at the nominal mass ir-
respective of the form factor.

The spectral function of ther is related to the imaginary
part of the propagator,

SrsMd =
2M

p
Im

1

sM2 − M0
2d + iPI

s5d

=S 2M

pPI
DBWsMd, s6d

BWsMd =
sPId2

sM2 − M0
2d2 + sPId2 . s7d

Here, Sr is usually associated with the number of states
available to ther with a given mass. The real part ofP is
being ignored for the current discussion. Since the Breit-
Wigner function BWsMd always peaks atM =M0, and
sincePI/M is rapidly growing withM near ther mass, the
spectral function always peaks below ther mass. Setting
the form factor in Eq.s3d to unity, the peak of ther
spectral function shifts downward by 5MeV. Applying
some of the different expressions forPI discussed in Ref.
f19g may result in the peak being shifted further down-
ward, perhaps as much as an additional 5MeV.

The change in the total density of states can be expressed
in terms of phase shifts,[9,28,29]:

DrsMd =
1

po
,

s2, + 1d
dd,

dM
. s8d

Given the relation between the phase shift and the self-
energy, one can expressDr in terms of the self-energy:

tan d =
PI

M0
2 − M2 , s9d

DrppsMd =
3

p

2MPI

sM0
2 − M2d2 − PI

2S1 +
M0

2 − M2

2PIM

dPI

dM
D .

s10d

The first term is the spectral function of ther, which is
often associated with the probability of having ar meson

of massM. Together, the two terms describe the entire
correction to the density of states, including the effects of
modifying the outgoing partial waves.

Figure 1 illustrates the importance of using the correct
expression for the density of states. The spectral function of
the r is peaked below the Breit-Wigner function, and the
total density of states is peaked even lower. The difference is
especially strong at low invariant masses, as the Breit-
Wigner function rises asq6, the r spectral function rises as
q3, and the pionic density of states rises asq. This relative
scaling withq would hold for anyp-wave interaction.

Thus far, the distribution of masses has not incorporated
the Boltzmann factor, which should push the peak even
lower with the thermal weight,e−M/T [18]. More precisely,
one needs to integrate over the modes in momentum space
due to relativistic effects,

D
dNpp

dMd3x
=E d3Pr

s2pd3e−ÎPr
2+M2/TDrppsMd. s11d

This should represent the background-subtracted two-pion
invariant-mass distribution. As can be seen in Fig. 2, the
Boltzmann weight pushes the distribution increasingly
downward for lower temperatures. The upper panel shows
the mass distribution assuming a temperature of 170MeV,
which is a reasonable temperature for thermal models of
pp collisions, while the lower panel shows the result for a
temperature of 110MeV, which may be reasonable for the
breakup temperature in central heavy-ion collisions. Cal-
culations using both ther spectral function and the two-
pion density of states are displayed to illustrate the impor-
tance of choosing the appropriate form for the density of
states. The Boltzmann factor greatly magnifies the en-
hancements at lowM, to the point that a second peak
appears for lower temperature.

Thep+p− density of states is also affected by phase shifts
in other channels. Forp+p−, thes-wave channel is split into
two isospin components, 2/3 weight forI=0 and 1/3 weight
for I=2. TheI=0 channel is particularly important as it cor-
responds to the mythicals meson. Although phase shift

FIG. 1. The spectral function of ther (dotted line) is broader
than the Breit-Wigner form(dashed line). The total density of
states, including effects of modifying the outgoing partial waves, is
noticeably shifted to the left relative to the other forms. The differ-
ence is especially noticeable at small invariant masses, where the
three forms rise proportional toq6, q3, andq respectively.
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analyses do not reveal a sharp peak as in a resonance
[30–34], the phase shifts are considerable, rising steadily
from zero at threshold to<90° at M=2MK,1 GeV, where
the kaon channel opens. At the two-kaon threshold, the be-
havior of the phase shifts becomes complicated and an in-
elastic treatment becomes warranted. Since one uses deriva-
tives of the phase shifts to find the density of states,
interpolating data for phase shifts can be dangerous due to
noise in the experimentally determined phase shifts. Thus,
we apply a simple form that describes the general behavior

dI=0,S=0 = aq+ bsM − 2mpd. s12d

The first coefficienta is the scattering length, which is
small due to constraints from chiral symmetry. The num-
ber varies throughout the literature by several tens of per-
cent. We use the valuea=0.204/mp f35g. The second term
does not contribute to the scattering length, assM −2mpd
,q2 at low q. Choosingb=9.1310−4 GeV−1 crudely re-
produces experimental phase shifts, which are reviewed in
Ref. f30g. Since these phase shifts rise half as far as those
in the d channel, have one-third the spin degeneracy, and
have a 2/3 weight in thep+p− channel, they are noticeably
less important than ther channel in affecting the overall
density of states, unless one is near the two-pion threshold
wherep-wave interactions vanish.

Other phase shifts also contribute:sI=2,,=0d, sI=0,,
=2d, andsI=2,,=2d. Since none of these phase shifts exceed
more than a few degrees, they make nearly negligible con-
tributions to the density of states. For thesI=2,,=0d channel,
we apply an effective range expansion[36]

cot d =
1

qa
+

1

2
Rq, s13d

wherea=−0.13 MeV−1 and R=1.0 MeV−1. The d wave is
also composed ofI =0 and I =2 pieces. For thesI =0,,
=2d piece, the dataf37g are rough, and we make a simple
expansion

dI=0,,=2 = cq5, s14d

where c=6.2 GeV−1. The parametera is uncertain to the
50% level. For thesI =2,,=2d partial wave, we use an
expansionf36g

dI=2,,=2 = − 8.4q5 + 12.5q6 GeV−1. s15d

None of these three channels are well understood, but
none have a substantial impact at or below ther region of
invariant mass.

Figure 2 also shows the invariant-mass distribution of a
thermal ensemble withT=110 MeV using all thes, p, andd
channels. Thes-wave contributions are non-negligible near
the r mass, and dominate near the two-pion threshold. The
d-wave contributions matter only for masses near or greater
than 1.0 GeV.

III. BOSE-EINSTEIN CORRECTIONS

Bose-Einstein corrections should preferentially enhance
low-mass pairs since low-mass pairs are more likely to in-
clude a low-momentum pion. This has been investigated
within the context of ther peak as well as the influence onZ
boson decay modes[19]. In this section, we present a means
to include Bose enhancement effects which are consistent
with the statistical picture described in the preceding section.

In order to demonstrate Bose enhancement effects, we
revert to the fundamental definition of the two-particle den-
sity of states:

rsMd =
1

2p
Im Tr

1

M − H + i e
s16d

=
1

2p
Im Tro

n=0

1

M − H0 + ie
SV

1

M − H0 + i e
Dn

. s17d

We will work in the two-pion rest frame, so the trace
would cover all two-pion states that have total momentum
zero. When including Bose effects, one would sum all
such two-pion states, plus average over the distribution of
other identical particles whose probability of being popu-
lated is

fsqd =
f0sqd

1 − f0sqd
= f0sqdf1 + fsqdg. s18d

Thus, s1+ fd can be considered as a Bose enhancement
factor while f0 is the phase-space filling factor if Bose
statistics were neglected.

Using the cyclic property of the trace, Eq.(16) can be
written in terms of a derivative with respect toM,

FIG. 2. The thermal mass distribution ofp+p− pairs is shown
for three calculations, both atT=110 MeV andT=170 MeV. Using
the full density of states as calculated from taking derivatives of
phase shifts results in a broader distribution for the,=1 channel
(full line) than using ther spectral function(dotted line). Including
all s, p, andd channels(dashed line) provides significant strength at
low invariant masses due to thes wave channels and moderate
strength at higher masses from thed wave channels.
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rsMd = r0sMd +
1

2p
Im

d

dM
Tro

n=1

1

n
S V

M − H0 + i e
Dn

s19d

=r0sMd +
1

p
Im

d

dM
Tro

n=1

1

n
S P

M − H0
V

+ ipdsM − H0dVDn

. s20d

One can expand then terms and note that the sum includes
all possible orderings ofn factors where each factor is
either the principal value piece, which is real, or the
imaginary part, which is proportional to the density of
states. One could restrict this sum to cover only those
terms where the first factor is the imaginary part and mul-
tiply by a factor ofn/Nr, whereNr is the number of times
that ipdsM −H0d appears in the term. The sum overn can
then be transformed into a sum of all possible numbers of
appearances of the real part:

rsMd = r0sMd +
1

2p
Im

d

dM
Tr o

Nr=1

1

Nr

fipdsM − H0dRgNr,

s21d

R ; V + V
P

E − H0
R. s22d

Here,R is often referred to as theR matrix. This can be
written in terms of a logarithm,

DrsMd =
1

p
Im

d

dM
Tr lnS1 + ipdsM − H0dR

1 − ipdsM − EdR D . s23d

Thus, the density of states is determined completely by a
single matrix

t ; pr0sMdR, s24d

which is evaluated only for those states whose energy
equalsM. In a partial-wave basis,t is related to the phase
shift t=tand. In a plane-wave basis, the matrixt links one
direction of the relative momentum with another, i.e., the
matrix should be written with indicestV1,V2

.
The presence of other particles alterst. Each matrix ele-

ment V used to constructt is modified by the presence of
other particles by the Bose enhancement factor

Vsq1, − q1;q2, − q2d → Vsq1, − q1;q2, − q2dÎf1 + fsq1dgf1 + fs− q1dgf1 + fsq2dgfs1 + fs− q2dg. s25d

If the intermediate states contained in the definition ofR
are not affected by the phase-space density, one can scale
t in the same manner asV. Then, given the fact that each
state appears in both the bra and ket, one can modifyt in
a simple manner to account for Bose effects,

tsq1, − q1;q2, − q2d = t0sq1, − q1;q2, − q2df1 + fsq1dg

3f1 + fs− q1dg. s26d

The density of states is comprised of integrals of a cyclic
nature,In,

DrsMd =
1

p
Im

d

dM o
n=1,3,5,. . .

In/n, s27d

InsMd =E dV1

4p

dV2

4p
. . .

dVn

4p

3t0sV1, V2dt0sV2, V3d . . . t0sVn, V1df1 + fsq1dg

3f1 + fs− q1dg ¯ f1 + fsqndgf1 + fs− qndg. s28d

Unless the momentum of the pairP=0, the phase-space
densities will be sensitive to the direction of the relative
momentumV.

For a purelys-wave interaction,t0 has no angular depen-
dence andIn easily incorporates Bose effects,

In = St0E dV

4p
f1 + fsqdgf1 + fs− qdgDn

. s29d

The correction to the density of states is then

DrsMd =
1

p

dt/dM

1 + t2 , s30d

t = tandE dV

4p
f1 + fsqdgf1 + fs− qdg, s31d

whered is the phase shift as measured in the absence of
Bose modifications.

For ap wave interaction,t0 has the angular dependence,

t0sV1, V2d = t0q̂1 · q̂2. s32d

By choosing a coordinate system where thez axis is par-
allel to the total pair momentum, there is reflection sym-
metry about thex, y, andz planes. By making use of the
identity

E dVb

4p
sAW · b̂dsb̂ ·CW dFsVbd = AW 8 ·CW , s33d
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Ai8 = AiFi , s34d

Fx =E dV

4p
FsVdcos2 f sin2 u, s35d

Fy =E dV

4p
FsVdsin2 f sin2 u, s36d

Fz =E dV

4p
FsVdcos2 u, s37d

one can iteratively perform the integral in Eq.s28d:

InsMd = st0Fxdn + st0Fzdn + st0Fzdn. s38d

Using FsVd=f1+fsqdgf1+fs−qdg, one can calculateDr:

DrsMd =
1

p
Sdtx/dM

1 + tx
2 +

dty/dM

1 + ty
2 +

dtz/dM

1 + tz
2 D , s39d

tx = tandE dV

4p
f1 + fsqdgf1 + fs− qdg3 sin2 f sin2 u,

s40d

ty = tandE dV

4p
f1 + fsqdgf1 + fs− qdg3 cos2 f sin2 u,

s41d

tz = tandE dV

4p
f1 + fsqdgf1 + fs− qdg3 cos2 u. s42d

The calculation ofDrsMd must be repeated for each value
of the total momentum sincefsqd, which is defined in the
two-pion rest frame, changes when the total momentum is
changed.

The p-wave ands-wave corrections to the density of
states do not interfere with one another since they have op-
posite parities andf1+fsqdgf1+fs−qdg has even parity. How-
ever, calculation of the,=2 contributions would be compli-
cated by the fact that the elliptical distortion of the Bose
enhancement factors would mix the,=0 and,=2 contribu-
tions. For the calculations here, the,=2 contributions were
calculated by assuming that the Bose enhancement factors
were independent ofV, then using enhancement factors
which had been averaged over all directions ofV.

The mean Bose enhancementks1+f1ds1+f2dl is shown as
a function of the invariant mass and momentum of the de-
caying r0 in Fig. 3 assuming a breakup temperature of
110 MeV and an effective chemical potential of 90 MeV.
The enhancement has been averaged over the directions of
the relative momentum. The enhancement is largest for low-
momentum, low-mass pairs since these pions most strongly
sample the region of high phase-space density. For higher
invariant masses, the Bose enhancement is actually stronger
for higher pair momenta, as it allows one of the outgoing
pions to have lowpt and sample the high phase-space density

region. From viewing Fig. 3, it is clear that the Bose modi-
fications to the invariant-mass distribution would be more
acute if experiments were to focus on pion pairs with low
total momentum.

Bose corrected densities of states are shown in Fig. 4 for
T=110 MeV andm=90 MeV. A nonzero chemical potential
was used to account for the relative overpopulation of pionic
phase space which may result from rapid cooling[38] and
might be magnified by the effects of chiral symmetry resto-
ration [39]. Analyses ofpp correlations from RHIC indeed
point to high phase-space densities[21,22], especially for
central collisions of heavy ions. As expected, lower-mass
states were more enhanced by Bose effects. Since the density
of states was proportional to the derivative of tandks1+fds1
+ f8dl, and since the averaged phase-space filling factors gen-
erally fall asM increases, the density of states was less en-
hanced for intermediate masses as compared to the no-Bose
case. The peak of the distribution shifted downward by only
1 MeV after the inclusion of Bose effects.

FIG. 3. The mean values ofks1+f1ds1+f2dl are shown as a func-
tion of the invariant mass and total momentum of the outgoing pion
pair. The values have been averaged over all directions of the rela-
tive momentum. The enhancement factors exceed 2.0 for a low
values of the pair momentum and invariant mass.

FIG. 4. The mass distribution is shown with(solid line) and
without (dashed line) Bose effects forT=110 MeV,m=90 MeV.
Bose effects enhance the probability of producing low invariant-
mass pairs since they are more likely to have low momenta and
stronger Bose enhancement factors.
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Although the position of the peak was not much affected
by Bose effects shown in Fig. 4, Bose effects led to a near
doubling of the distribution at low masses. These effects are
most important at lowpt where the phase-space densities are
higher. Inpp collisions, a movement of ther peak was ob-
served for lowpt pairs [40,17] which is suggestive of Bose
effects. However, at ther peak each pion has a relative mo-
mentum of ,300 MeV/c and will largely sample phase-
space regions with moderate to low phase-space densities.
Although the invariant-mass distribution is mainly altered at
invariant-masses below ther peak, Bose effects should con-
tribute to washing out the peak by increasing the slope of the
background structure in Fig. 4.

IV. SUMMARY

Our principal finding is that ther peak in thep+p−

invariant-mass distribution should be<35 MeV lower than
the nominalr mass, if one accepts the scenario of a sudden
breakup that thermally samples the two-pion density of
states. The shift was the result of convoluting the density of
states which is shifted by,10 MeV below ther mass with
the Boltzmann factor. Given the extra cooling inherent to
heavy-ion collisions, the breakup temperature is probably
near 110 MeV, well below the characteristic temperatures
used to describepp collisions. The low temperature provides
an additional downward shift of the peak in heavy-ion colli-
sions. In addition to the shift of the peak, the distribution
showed significant additional strength at invariant masses
near the two-pion threshold. This additional strength hinged
on using the correct expressions for the density of states,
especially in the,=0 channels. Although the position of the
peak was not much affected by Bose effects, Bose effects led
to a near doubling of the distribution at low masses.

The thermal model presented here rests critically on a pair
of assumptions. First, we have assumed that the breakup is
sudden, i.e., the last strong interaction experienced by the
particles samples the outgoing two-particle phase space. In-
deed, interferometric measurements do suggest a sudden
breakup[22,41,42]. If emission were gradual, e.g., surface
evaporation, this picture would be invalid. An appropriate
treatment of the surface would include the dynamics of sur-
face penetration and absorption, and might include colli-
sional broadening. For instance, spectral lines in stars are
affected by collisional broadening. The “truth” of the
breakup at RHIC probably has elements of both volumelike
breakup and surfacelike evaporation. Thus, the effect of col-
lisions, which played a pivotal role in moving the distribu-
tion downward in Ref.[8], requires more study.

The second assumption inherent to these calculations is
related to the negligence of finite-size effects. The enhance-
ment factors applied to small-angle correlation studies are
usually based on the outgoing wave function,ufsq, r du2
[43,44]. For large sources, there is a straightforward corre-
spondence between the integrated wave functions and the
phase shifts[45,46]:

1

po
,

s2, + 1d
dd,

dE
=

qM

8p2 E d3rfufsq, r du2 − uf0sq, r du2g.

s43d

Since the modification of the wave function is mostly con-
fined to a region whereqR,p, one expects that the treat-
ments shown here should work well forq.100 MeV/c, or
for masses greater than 400MeV. For masses near thresh-
old, a different approach, based on the actual scattered
wave functions, would be warranted. Such an approach
could also incorporate the effects of the Coulomb interac-
tion between pions.

Finally, it should be emphasized that other correlations,
besides those resulting from the change in the two-pion den-
sity of states, will play a role in any experimental measure-
ment. Experimental analyses are typically based on a like-
sign subtraction. This should eliminate global correlations
such as elliptic flow which correlate same-sign and opposite-
sign pairs equally. However, any correlation based on charge
conservation should survive the subtraction[47,48]. For ev-
ery p+, there is a,75% chance that local charge conserva-
tion will result in an extrap− being emitted with a similar
rapidity. This should provide a bump in the like-sign-
subtracted invariant-mass distribution that peaks for masses
near 400 MeV. The ratio of ther peak in the like-sign sub-
tracted distribution to the bump from charge correlation is
approximately determined by the chance that a givenp+ had
its last interaction with other hadrons through the decay of a
r0. This ratio should be smaller for central collisions since
the breakup temperature is lower which reduces ther/p ra-
tio.

The in-medium mass of ther might be altered by
,20 MeV at breakup. Given that this peak is also spread out
and distorted as shown in the calculations presented here, it
is certainly challenging to isolate the contribution from ther
and to quote a peak height to a better accuracy than 20 MeV.
Upcoming runs at RHIC may increase the statistics by more
than an order of magnitude. Thus, we believe that there re-
mains a good chance that ther can be studied in detail, even
in the central collision Au+Au environment.

Finally, we compare the experimentally observed mass
shifts to results of our model. In Ref.[17] it was reported
that ther shifts downward inpp collisions by,20 MeV at
higher pt while shifting downward by,45 MeV at low pt.
The shift appeared to be 5–10 MeV larger for high-
muliplicity pp collisions and perhaps another 5 MeV lower
for peripheral Au+Au reactions. A similar behavior forpp
collisions had been reported forÎs=27 GeV pp collisions
[40]. The shifts that we extracted were as large 35 MeV, but
these calculations assumed a lower temperature, 110 MeV,
and a higher effective chemical potential, 90 MeV, than
would be appropriate forpp phenomenology. For a tempera-
ture of 170 MeV, and zero chemical potential, the shift was
in the range of 20 MeV, a somewhat smaller shift than what
was observed by STAR. It appears that the experimental
mass shift is 10–20 MeV stronger than what we would
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expect from our approach. But, before this discrepancy can
be attributed to novel in-media phenomena, i.e., a mass shift
of the r, it should be stressed that systematic uncertainties
described in Ref.[17] are of the order of 10 MeV. This prob-
lem would be served well by both a higher statistics experi-
mental analysis and a more detailed theoretical modeling.
An improved calculation would consider finite-size

effects, the influence of other resonances, and the effects of
experimental acceptances and efficiencies.
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