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We examine the line-wrap feature of text processors. We show that adding characters to previously format-
ted lines leads to the cascading of words to subsequent lines. The length of these cascades shows a power-law
distribution. We show that this system is in a state of self-organized criticality. The connection to one-
dimensional random walks and diffusion problems is demonstrated. Of particular interest is the exponential
cutoff of the power-law distribution occurring for finite line lengths. Finally we examine the predictability of
large cascade$S1063-651X96)50208-4

PACS numbgs): 05.40:+j, 07.05.Tp, 89.80th, 91.30.Px

Composite systems may evolve to a critical state in whichtotal of small avalanches can predict the occurrence of large
minor events may trigger a chain reaction that can affect aavalanche$12].
arbitrarily large number of constituents of the system. This Here we introduce what we believe to be the most simple
state was calledelf-organized criticalityf1—3], and was first (@nd most directly connected to everyday experieness
investigated for sandpiles. Theoretically and experimentally@Mple of self-organized criticality. Consider a modern word

[4], avalanches in sandpiles show power-law distributiongrocessor with Iing—wrap feature and fixed maximum number
characteristic of real earthquaks,6]. The absence of an ©f characters per line. Such a word processor formats a para-
intrinsic length scale is attributed to self-organized critical-9raPh without the explicit need to enter carriage returns or

ity, where avalanches of all sizes contribute to keep the sy%ﬂ?oﬁggcgnarsvcrgerség iara]t;vc:rz% I?letStolilr?ggV]:/oer golr:g(iao’lelr ';n
tem perpetually in a critical state. y PP '

. . infinitely long paragraph formatted by this word processor. If
So far, to our knowledge, no analytic solu_tlon to_ theone then adds another character to the beginning of the first
model of Ref[1] has been presented. However, if one intro-

S X .~ ~"line, the last word of this line may be wrapped to the second
duces a preferred direction, then an exact analytic solution igo" and a cascade of line wraps may ensue. If a steady
possible[7], and a connection to the problem of two annihi- syream of characters or words is entered at the beginning of

lating random walkers can be established. Other authors hayge first line, a sequence of cascades on all scales results, and
established connections to the driven or convective diffusione |ine lengthgexcluding trailing blanksin the paragraph
equation[8]. A number of one-dimensionallD) sandpile  form a self-organized critical state. In the following we will
models with nontrivial dynamics have been propo$8l  show that finite line lengths set a length scale in this system
some of which can be analytically solved. Other interestingwhich cuts off the scale-invariant behavior. We will also
examples of self-organized criticality have been found inshow the connection to random walks and the diffusion
models of forest fire§10] and evolution11]. equation. And finally we will address the important question
Of particular interest is the question of predictability of of predictability of large avalanches in this system.
catastrophic avalanches. In a recent experiment measuring Let us—for the moment—neglect temporal correlations
the total mass of the sandpile it was found that a runnindbetween the individual words shifted through the paragraph.
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law, with an exponent of approximatehyr4/3 very much

106 1 I 3 reminiscent of the earthquake strength distribution found in
N\ @ 1 N (b) Ref. [5].
105 v ° TN 3 We should point out here that none of our results depends
R on the type of the word length distribution chosen. We ob-
104 | T 1 tained for practical purposes identical results with Poissonian
= word length distributions.
=103 } | 1 The result of Eq(3) can be understood by formulating the
problem in terms of a random walk. One step in this random
10° | G 3 d walk is the change in the number of blanks in a given line
H caused by a cascade passing through. To derive the step size
101 i "g 114 distribution, we realize that pushing a word of lengtlirom
ERR RS line n to n+1 increases the number of trailing blanks in line
100 . - ) . IR n by /. Conversely, pushing a different word of length
100 10! u 102 103 10l N 102 103 from line n—1 into line n decreases the number of trailing

blanks in linen by /’. The probability distribution for a

o _ changeAb in the number of trailing blanks in a line is then
FIG. 1. Cascade lengths distribution for the word processor with

line-wrap feature.(a) Infinite line length, (b) finite line lengths, ®
/=20, 30, 50, 70, 100, 200, from left to right, respectively. p(Ab)zz p(b)p(b—Ab) (4)
N(n) denotes the number of times a cascade occurred that affected b=0

exactly the firsn lines. The straight lines correspond to the asymp- ] S -
totic n—32 solutions. wherep(b) is the probability distribution for trailing blanks

as given by Eq(1). The probability distributionP(Ab) is
(This assumes in practice that individual lines are infinitelySymmetric aboutAb=0 and approximately triangular in
long—an assumption we will relax again belown addition, ~ Shape. Its mean is 0, and its variance is finite. _
we assume here for definiteness that the individual word The total number of characters moved through Imby
lengths including one trailing blank are evenly distributedthe cascade is
between 2 and ¢,,) — 2, where(/,,) is the average word ho1
length.[The probability for any given word length between ci=—3 Ab, )
these two limiting values is then (2,,)—3)*.] For a fixed n =Y
number of characters per line, the probability to haveail-

ing blanks in this line can be shown to be whereAb; is the change of the number of trailing blanks in
linei. If, for any n, we havec,<b,, whereb,, = number of
</’W>*1 for b=0,1 trailing blanks in linen, then the cascade terminates. Thus
2/ —2—b we see that our cascading problem is equivalent to a random
p(b)= Wz— for 2<b=<2(/,)-2 (1) walk problem with step size distribution given by Ed).
2/ ) =37 w) The result of Eq(3) is the solution of the return-to-the-origin
0 otherwise problem for a one-dimensional random walk.

Itis, perhaps, more instructive to consider the correspond-

and consequently the average number of trailing blanks in 419 continuum diffusion problem. The diffusion equation is

line is af(x,t)=Da2f(x,t) (6)
20/ ) -2

2 1 B with the boundary conditiofi(0,t)=0 and the solution
(by=" 2, bp(b)=3(/w)-1+3(/W " @

f(x,t)= ———=ex{d — x?/4Dt], 7
In Fig. 1(a) we display(crossesthe size distribution for (1) 4 7D33 1 ! @

cascades in this systefd(n) denotes the number of times a

cascade occurred that affected exactly the firihes. Here ~ Wheret corresponds to the number of lines,in the random
the total number of lines was chosen to be3l@nd Wwalk, andx is the distance of the random walk to.is the
(/\w)=6. A total of 3x10° words (=1.8x 10" characters diffusion constant and can be calculated from the second
were generated for this plot. One can clearly observe that fomoment of the random walk step size distribution, k),

large number of linesn, the distribution approaches the

_ 2
power-law limit (solid line), D=(Abp)/2. (8)
_3p (D~6.3 for the parameters used to produce Fiy.Fbr the

N(njen === ®) current at the origin we obtain
It is also of interest to compute the total activity, i.e., the J(t) =Dy (X,1)| g oxt %2, 9

total number of characters moved to different lines. The
number distribution for this activity also approaches a powein agreement with the numerical finding of Fig. 1.
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FIG. 2. Histogram: Number distributiolN(Ac), of events with FIG. 3. Contour plot of the number distributioN(C1000,AC),

Ac characters entered between catastrophic cascades, i.e., cascagegatastrophic cascades with random walks of total lesggh, and
which reached line 1000. Circles: Number distributibic 0, Of number of characters enterelic, before the next catastrophic cas-
events with total length of random walks;o0, for catastrophic —cade. The gray level is proportional ¥(cyo00,AC), with black
cascades. The inset is a magnified view of the region around théepresenting the maximum and white a value of 0.

origin. The parameters of this simulation are identical to the ones

used for Fig. £). N(Ac)ec(Ac/{Ac))exd — w(Ac/{Ac))?/4].  (11)

We now proceed to study the case where we include all of
the temporal correlations entailed by pushing an ordératl  (As a side note we mention here that we obtain essentially
individually randomly selectgdsequence of words through identical behavior for finite line lengths;,, as long as’| is
our word processor. This is the case for finite line lengthslarge compared to the mean value of the Wigner distribution,
Inserting a number of characters equal to the line length{Ac).) Also displayed in this figurécircles is the distribu-

/), will result in a completely new first line, pushing the old tion of the number of characters pushed into line 1000,
first line into the second, and so on. Thus we get catastrophic;gge- This clearly follows the same functional form. From
cascadeg= cascades involving all lines—1000 in the spe-our above considerations of the diffusion equation we see
cific example considered herat least every’| characters.  that N(c1g99 — f(X,t=1000), and that therefore the mean

In Fig. 1(b) we show our results using identical param- number of characters entered between catastrophic cascades
eters to Fig. 1), but using finite line lengthsy,=20, 30, is
50, 70, 100, and 200. It can clearly be seen that the power-
law distribution is now cut off by an exponential. The expo-
nent is numerically found to be (/) 2. This behavior can

T T T
be understood in terms of the random walk formulation of 8'(1) 3 E
the problem. The finite line length corresponds to an addi- _o01kb E
tional absorbing barrier for the random walk, restricting 02 ;/’WTW . Ac= 0
c,</; Vn. The corresponding solution to the diffusion 0.1 r l < . 3
equation is 0.0 M- -
) T oak Ac= 40
<] . 1 1 1 1
ff(x,t):_zl C;sin(k;x)exp( — DK?t) (10) = o1 ' T T
i= 0.0 i o
. : : : ol Ac= 80 1
with long-time behavior dominated byk;, where -02f \ | | | 3
kj=mj!/. For large word lengths, we ha(/,)* and 0.1 . ; ' N
the exponent thus is ((/)//)>. 0.0
Of particular interest in studying models with “random” —0.1¢ Ac=200
catastrophic events is to investigate the limits of predictabil- = : : : : =
200 400 600 800 1000

ity of these events. To do this we record the number of
charactersAc, entered between catastrophic cascades. Using
the same parameters as for the calculations in Fig. 1, we
display in Fig. 2(histogram the number of events as a func-  FIG. 4. Average stress, (Ac), as a function of the line num-
tion of Ac, N(Ac). It is obvious from this figure that they ber, n, and the number of characters entered since the last cata-
follow a Wigner distribution, strophic cascadec.

n
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(Ac)= J#Dn. (120  Wwith identical value ofAc.) This is done in Fig. 4. We see
from our data in Fig. 4 that a catastrophic cascade typically

We thus see that both distributions displayed in Fig. 2 arénserts more extra blanks in the early lines, thus reducing the
governed by diffusion physics. stress in them below the average level. This indicates that

SinceAc represents the number of characters entered bdarge positive steps early in the random walk are correlated
tween catastrophic cascades, apghois the number of char-  with catastrophic events. However, the structure of the stress
acters removed by a catastrophic cascade, sum rules requie a function of the line number demonstrates the complex
thatN(Ac) andN(cqp09 have the same norm and mean. Thenature of the evolution of the self-organized critical state.
surprising aspect of Fig. 2 is that both distributions are idenThis behavior cannot be explained in terms of a simple ran-
tical, even down to the quadratic rise near the origgge = dom walk.
insed. The connection with the diffusion equation explains In conclusion, we have examined self-organized critical-
the Wigner-distribution form ofN(c,g09, but not for ity in line-wrap cascades in word processors. We find that
N(Ac). the distribution of cascade lengths and cascade strengths can

Despite the same functional shape, the above two distribe accurately modeled with the diffusion equation and com-
butions are not tightly correlated. Figure 3 shows a densityared to analytic forms. Thus our system provides a connec-
plot of the number distributiolN(c;000,AC), Where the gray tion between the exciting new field of complexity and some-
level is proportional to the number of counts in a given bin.what more established branches of statistical physics. We
One sees only a weak enhancement of this number distribdind that the issue of predictability is complex. Although the
tion along the diagonal. Here we plot the correlation betweelistribution of times between large cascades is of a simple
C1000@nd the time delay to the next catastrophic cascade, biwigner-distribution form, stress develops in a rather compli-
we obtain virtually identical results when plotting the corre- cated style. Even though the present system represents a very
lation betweenc,yy and the time delay since the previous simple nontrivial example of self-ordered criticality, the
catastrophic cascade. model inspires a wealth of questions, several of which we

The total number of trailing blanks summed over all lineshave addressed analytically and many more which remain
up to a certain maximurthere: 1000 changes by-1 each unresolved, such as what is the optimum way to predict the
time a new character is entered. Catastrophic cascad@#set of large cascades. By conquering this easily modeled
change the total number of blanks byy,. Thus the total example, insight may be reached regarding more complex
number of trailing blanks has exactly identical time depen-Systems such as sandpiles or more pertinent problems such
dence(up to a minus sighas the total mass of the sandpile as the modeling of earthquakes.

measured in Ref.12]. It is also possible to extend the model to higher dimen-
In order to understand the trends of the buildup and resionality or to incorporate the addition of stress all through
lease we compute the average stress intine the paragraph rather than only through the first line. Work in

these directions is currently in progress.

Sp(Ac)={(b,)—bptsc, (13
" t(bn? = Bufac This research was supported by NSF Grant No. PHY-
as a function of the time delay.c, since the last catastrophe. 9403666, and W.B. was supported by NSF Grant No. PHY-
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