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We examine the line-wrap feature of text processors. We show that adding characters to previously format-
ted lines leads to the cascading of words to subsequent lines. The length of these cascades shows a power-law
distribution. We show that this system is in a state of self-organized criticality. The connection to one-
dimensional random walks and diffusion problems is demonstrated. Of particular interest is the exponential
cutoff of the power-law distribution occurring for finite line lengths. Finally we examine the predictability of
large cascades.@S1063-651X~96!50208-4#

PACS number~s!: 05.40.1j, 07.05.Tp, 89.80.1h, 91.30.Px

Composite systems may evolve to a critical state in which
minor events may trigger a chain reaction that can affect an
arbitrarily large number of constituents of the system. This
state was calledself-organized criticality@1–3#, and was first
investigated for sandpiles. Theoretically and experimentally
@4#, avalanches in sandpiles show power-law distributions
characteristic of real earthquakes@5,6#. The absence of an
intrinsic length scale is attributed to self-organized critical-
ity, where avalanches of all sizes contribute to keep the sys-
tem perpetually in a critical state.

So far, to our knowledge, no analytic solution to the
model of Ref.@1# has been presented. However, if one intro-
duces a preferred direction, then an exact analytic solution is
possible@7#, and a connection to the problem of two annihi-
lating random walkers can be established. Other authors have
established connections to the driven or convective diffusion
equation@8#. A number of one-dimensional~1D! sandpile
models with nontrivial dynamics have been proposed@9#,
some of which can be analytically solved. Other interesting
examples of self-organized criticality have been found in
models of forest fires@10# and evolution@11#.

Of particular interest is the question of predictability of
catastrophic avalanches. In a recent experiment measuring
the total mass of the sandpile it was found that a running

total of small avalanches can predict the occurrence of large
avalanches@12#.

Here we introduce what we believe to be the most simple
~and most directly connected to everyday experiences! ex-
ample of self-organized criticality. Consider a modern word
processor with line-wrap feature and fixed maximum number
of characters per line. Such a word processor formats a para-
graph without the explicit need to enter carriage returns or
line feed characters. If a word is too long for a line, it is
automatically wrapped into the next line. We consider an
infinitely long paragraph formatted by this word processor. If
one then adds another character to the beginning of the first
line, the last word of this line may be wrapped to the second
line, and a cascade of line wraps may ensue. If a steady
stream of characters or words is entered at the beginning of
the first line, a sequence of cascades on all scales results, and
the line lengths~excluding trailing blanks! in the paragraph
form a self-organized critical state. In the following we will
show that finite line lengths set a length scale in this system
which cuts off the scale-invariant behavior. We will also
show the connection to random walks and the diffusion
equation. And finally we will address the important question
of predictability of large avalanches in this system.

Let us—for the moment—neglect temporal correlations
between the individual words shifted through the paragraph.
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~This assumes in practice that individual lines are infinitely
long—an assumption we will relax again below.! In addition,
we assume here for definiteness that the individual word
lengths including one trailing blank are evenly distributed
between 2 and 2̂l w&22, where^l w& is the average word
length. @The probability for any given word length between
these two limiting values is then (2^l w&23)21.# For a fixed
number of characters per line, the probability to haveb trail-
ing blanks in this line can be shown to be

p~b!5H ^l w&21 for b50,1

2^l w&222b

2^l w&223^l w&
for 2<b<2^l w&22

0 otherwise

~1!

and consequently the average number of trailing blanks in a
line is

^b&5 (
b50

2^l w&22

bp~b!5
2

3
^l w&211

1

3
^l w&21. ~2!

In Fig. 1~a! we display~crosses! the size distribution for
cascades in this system.N(n) denotes the number of times a
cascade occurred that affected exactly the firstn lines. Here
the total number of lines was chosen to be 103, and
^l w&56. A total of 33106 words (51.83107 characters!
were generated for this plot. One can clearly observe that for
large number of lines,n, the distribution approaches the
power-law limit ~solid line!,

N~n!}n23/2. ~3!

It is also of interest to compute the total activity, i.e., the
total number of characters moved to different lines. The
number distribution for this activity also approaches a power

law, with an exponent of approximately24/3 very much
reminiscent of the earthquake strength distribution found in
Ref. @5#.

We should point out here that none of our results depends
on the type of the word length distribution chosen. We ob-
tained for practical purposes identical results with Poissonian
word length distributions.

The result of Eq.~3! can be understood by formulating the
problem in terms of a random walk. One step in this random
walk is the change in the number of blanks in a given line
caused by a cascade passing through. To derive the step size
distribution, we realize that pushing a word of lengthl from
line n to n11 increases the number of trailing blanks in line
n by l . Conversely, pushing a different word of lengthl 8
from line n21 into line n decreases the number of trailing
blanks in linen by l 8. The probability distribution for a
changeDb in the number of trailing blanks in a line is then

P~Db!5 (
b50

`

p~b!p~b2Db! ~4!

wherep(b) is the probability distribution for trailing blanks
as given by Eq.~1!. The probability distributionP(Db) is
symmetric aboutDb50 and approximately triangular in
shape. Its mean is 0, and its variance is finite.

The total number of characters moved through linen by
the cascade is

cn52 (
i51

n21

Dbi , ~5!

whereDbi is the change of the number of trailing blanks in
line i . If, for anyn, we havecn<bn , wherebn 5 number of
trailing blanks in linen, then the cascade terminates. Thus
we see that our cascading problem is equivalent to a random
walk problem with step size distribution given by Eq.~4!.
The result of Eq.~3! is the solution of the return-to-the-origin
problem for a one-dimensional random walk.

It is, perhaps, more instructive to consider the correspond-
ing continuum diffusion problem. The diffusion equation is

] t f ~x,t !5D]x
2f ~x,t ! ~6!

with the boundary conditionf (0,t)50 and the solution

f ~x,t !5
x

4ApD3t3
exp@2x2/4Dt#, ~7!

wheret corresponds to the number of lines,n, in the random
walk, andx is the distance of the random walk to 0.D is the
diffusion constant and can be calculated from the second
moment of the random walk step size distribution, Eq.~4!,

D5^Dbn
2&/2. ~8!

(D'6.3 for the parameters used to produce Fig. 1.! For the
current at the origin we obtain

J~ t !5D]xf ~x,t !ux50}t
23/2, ~9!

in agreement with the numerical finding of Fig. 1.

FIG. 1. Cascade lengths distribution for the word processor with
line-wrap feature.~a! Infinite line length, ~b! finite line lengths,
l l520, 30, 50, 70, 100, 200, from left to right, respectively.
N(n) denotes the number of times a cascade occurred that affected
exactly the firstn lines. The straight lines correspond to the asymp-
totic n23/2 solutions.
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We now proceed to study the case where we include all of
the temporal correlations entailed by pushing an ordered~but
individually randomly selected! sequence of words through
our word processor. This is the case for finite line lengths.
Inserting a number of characters equal to the line length,
l l , will result in a completely new first line, pushing the old
first line into the second, and so on. Thus we get catastrophic
cascades~5 cascades involving all lines—1000 in the spe-
cific example considered here! at least everyl l characters.

In Fig. 1~b! we show our results using identical param-
eters to Fig. 1~a!, but using finite line lengths,l l520, 30,
50, 70, 100, and 200. It can clearly be seen that the power-
law distribution is now cut off by an exponential. The expo-
nent is numerically found to be}(l l)

22. This behavior can
be understood in terms of the random walk formulation of
the problem. The finite line length corresponds to an addi-
tional absorbing barrier for the random walk, restricting
cn<l l ;n. The corresponding solution to the diffusion
equation is

f f~x,t !5(
j51

`

Cjsin~kjx!exp~2Dkj
2t ! ~10!

with long-time behavior dominated byk1, where
kj5p j /l l . For large word lengths, we haveD}^l w&2 and
the exponent thus is}(^l w&/l l)

2.
Of particular interest in studying models with ‘‘random’’

catastrophic events is to investigate the limits of predictabil-
ity of these events. To do this we record the number of
characters,Dc, entered between catastrophic cascades. Using
the same parameters as for the calculations in Fig. 1, we
display in Fig. 2~histogram! the number of events as a func-
tion of Dc, N(Dc). It is obvious from this figure that they
follow a Wigner distribution,

N~Dc!}~Dc/^Dc&!exp@2p~Dc/^Dc&!2/4#. ~11!

~As a side note we mention here that we obtain essentially
identical behavior for finite line lengths,l l , as long asl l is
large compared to the mean value of the Wigner distribution,
^Dc&.! Also displayed in this figure~circles! is the distribu-
tion of the number of characters pushed into line 1000,
c1000. This clearly follows the same functional form. From
our above considerations of the diffusion equation we see
that N(c1000)→ f (x,t51000), and that therefore the mean
number of characters entered between catastrophic cascades
is

FIG. 2. Histogram: Number distribution,N(Dc), of events with
Dc characters entered between catastrophic cascades, i.e., cascades
which reached line 1000. Circles: Number distribution,N(c1000), of
events with total length of random walks,c1000, for catastrophic
cascades. The inset is a magnified view of the region around the
origin. The parameters of this simulation are identical to the ones
used for Fig. 1~a!.

FIG. 3. Contour plot of the number distribution,N(c1000,Dc),
of catastrophic cascades with random walks of total lengthc1000and
number of characters entered,Dc, before the next catastrophic cas-
cade. The gray level is proportional toN(c1000,Dc), with black
representing the maximum and white a value of 0.

FIG. 4. Average stress,sn(Dc), as a function of the line num-
ber, n, and the number of characters entered since the last cata-
strophic cascade,Dc.
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^Dc&5ApDn. ~12!

We thus see that both distributions displayed in Fig. 2 are
governed by diffusion physics.

SinceDc represents the number of characters entered be-
tween catastrophic cascades, andc1000 is the number of char-
acters removed by a catastrophic cascade, sum rules require
thatN(Dc) andN(c1000) have the same norm and mean. The
surprising aspect of Fig. 2 is that both distributions are iden-
tical, even down to the quadratic rise near the origin~see
inset!. The connection with the diffusion equation explains
the Wigner-distribution form ofN(c1000), but not for
N(Dc).

Despite the same functional shape, the above two distri-
butions are not tightly correlated. Figure 3 shows a density
plot of the number distributionN(c1000,Dc), where the gray
level is proportional to the number of counts in a given bin.
One sees only a weak enhancement of this number distribu-
tion along the diagonal. Here we plot the correlation between
c1000and the time delay to the next catastrophic cascade, but
we obtain virtually identical results when plotting the corre-
lation betweenc1000 and the time delay since the previous
catastrophic cascade.

The total number of trailing blanks summed over all lines
up to a certain maximum~here: 1000! changes by21 each
time a new character is entered. Catastrophic cascades
change the total number of blanks byc1000. Thus the total
number of trailing blanks has exactly identical time depen-
dence~up to a minus sign! as the total mass of the sandpile
measured in Ref.@12#.

In order to understand the trends of the buildup and re-
lease we compute the average stress in linen,

sn~Dc!5$^bn&2bn%Dc , ~13!

as a function of the time delay,Dc, since the last catastrophe.
~Here, the notation { }Dc indicates averaging over all events

with identical value ofDc.! This is done in Fig. 4. We see
from our data in Fig. 4 that a catastrophic cascade typically
inserts more extra blanks in the early lines, thus reducing the
stress in them below the average level. This indicates that
large positive steps early in the random walk are correlated
with catastrophic events. However, the structure of the stress
as a function of the line number demonstrates the complex
nature of the evolution of the self-organized critical state.
This behavior cannot be explained in terms of a simple ran-
dom walk.

In conclusion, we have examined self-organized critical-
ity in line-wrap cascades in word processors. We find that
the distribution of cascade lengths and cascade strengths can
be accurately modeled with the diffusion equation and com-
pared to analytic forms. Thus our system provides a connec-
tion between the exciting new field of complexity and some-
what more established branches of statistical physics. We
find that the issue of predictability is complex. Although the
distribution of times between large cascades is of a simple
Wigner-distribution form, stress develops in a rather compli-
cated style. Even though the present system represents a very
simple nontrivial example of self-ordered criticality, the
model inspires a wealth of questions, several of which we
have addressed analytically and many more which remain
unresolved, such as what is the optimum way to predict the
onset of large cascades. By conquering this easily modeled
example, insight may be reached regarding more complex
systems such as sandpiles or more pertinent problems such
as the modeling of earthquakes.

It is also possible to extend the model to higher dimen-
sionality or to incorporate the addition of stress all through
the paragraph rather than only through the first line. Work in
these directions is currently in progress.
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