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We present a study of single-mode Rayleigh-Taylor instabilities with a modified direct simulation Monte Carlo
(MDSMC) code in two dimensions. The MDSMC code is aimed to capture the dynamics of matter for a large
range of Knudsen numbers within one approach. Our method combines the traditional Monte Carlo technique to
efficiently propagate particles and the point-of-closest-approach method for high spatial resolution. Simulations
are performed using different particle mean free paths and we compare the results to linear theory predictions
for the growth rate including diffusion and viscosity. We find good agreement between theoretical predictions
and simulations and, at late times, observe the development of secondary instabilities, similar to hydrodynamic
simulations and experiments. Large mean free paths favor particle diffusion, reduce the occurrence of secondary
instabilities, and approach the noninteracting gas limit.
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I. INTRODUCTION

Dynamical simulations that are based on interacting par-
ticles are increasingly applied in different physical fields.
Different from conventional hydrodynamics methods that
operate in the continuum limit, kinetic approaches are able
to simulate matter at all Knudsen numbers K = l/L. Here l

is the particle mean free path and L is a characteristic length
scale. Examples of research areas that apply kinetic methods
include material science [1,2], nuclear collisions [3–9], and
plasma physics [10–12]. In astrophysics, particle methods have
a long history in radiation transport [13–19] and cosmological
simulations [20]. Modern usage also includes nuclear matter in
neutron star crusts [21] and neutrino transport in core-collapse
supernovas (CCSNs) [22,23]. Furthermore, particle methods
have received a large amount of interest from studies of inertial
confinement fusion (ICF) capsule implosion performed at the
National Ignition Facility [10–12,24–27].

Advantages of kinetic methods include their flexibility
with regard to optical depths, the facility to include com-
plex geometries and distributions of matter, and the correct
representation of the Boltzmann transport of many particles
in three dimensions. A current drawback in comparison to
hydrodynamic simulations of macroscopic systems is the large
number of particles that is required to accurately represent a
physical problem and reduce statistical noise. For example,
large optical depths require many particle interactions and
the corresponding simulations become increasingly slow.
However, as computational power increases, the relatively
straightforward parallelization and scalability of particle codes
[28–30] could outweigh the computational costs.

Depending on the physical problem, different particle-
based simulation techniques are used. Some more widely used
approaches simulations include molecular dynamics [31,32],
direct simulation Monte Carlo [33–35], and particle in cell
[36,37]. While all approaches have been primarily developed
to describe nonequilibrium matter, they are able to retrieve
macroscopic variables such as density, fluid velocity, pressure,
and temperature. Furthermore, they can model the evolution of

hydrodynamic phenomena such as shock waves [38–44] and
fluid instabilities [45–53]. Both are important components in
plasma and astrophysics.

Our goal is to develop a large-scale kinetic transport code
that can handle more than 106 particles in a computationally
efficient way and thereby simulate matter in nonequilibrium
and in the hydrodynamic regime. With that, we want to
study astrophysical phenomena such as CCSNs [54,55].
Furthermore, this approach could be applied in the simulation
of ICF capsule dynamics [24–27]. The evolution of both
systems, CCSNs and ICF, is largely governed by shock wave
dynamics paired with fluid instabilities and nonequilibrium
particle transport [55–63].

Our modified direct simulation Monte Carlo (MDSMC)
code has already been successfully tested on shock wave
phenomena in nonequilibrium and in the continuum regime
[39,64]. In this work we present a detailed study of fluid insta-
bilities in two dimensions. Here we focus on the single-mode
Rayleigh-Taylor instability (SMRTI) [65]. Our motivation
is the possible important role of RTIs in ICF and CCSN
dynamics. The advantage of the SMRTI is that at early stages,
it can be compared to an analytic solution from linear theory.
With that, we can refer to the latter and experiments for
comparison. Fluid instability simulations including RTIs have
been performed by particle codes in the past (see, e.g., [45,66]).
In this paper we present a detailed and comprehensive analysis
for a large range of particle mean free paths.

In the following we give a short introduction of RTIs in
Sec. II, followed by an overview of our MDSMC code in
Sec. III. We then proceed with our simulation setup and discuss
the results for varying particle mean free paths in Secs. IV
and V. The paper closes with a summary and outlook in
Sec. VI.

II. RAYLEIGH-TAYLOR INSTABILITIES

Rayleigh-Taylor instabilities form at the interface of two
fluids with different densities when the less dense fluid is
pushing against the one with higher density. A typical example
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is a heavy fluid resting on top of a lighter one in the presence
of a gravitational acceleration [67,68]. In such a case, small
perturbations at the fluid interface grow and result in the
development of RTIs. The latter can be found in many different
physical environments, ranging from astrophysical systems to
geophysical phenomena. Due to their large dynamical impact
and the direct connection with turbulent mixing, RTIs receive a
great deal of interest. Studies have been performed analytically,
experimentally, and numerically [69–71], while the growing
computational power allows one to study RTI phenomena in
greater detail and for increasingly larger systems.

In realistic environments, fluid instabilities of many differ-
ent wave numbers can be present. For code validation studies,
it is easier to focus on the SMRTI that arises from an initial
perturbation η0(x) with a defined wavelength λ. Its evolution
can be divided into several major stages.

During the first stage, the amplitude of the initial perturba-
tion is 2B � 0.5λ. Here the instability undergoes exponential
growth, which can be described by linear analysis [72,73]

η(x,t) = 0.5(eγ t + e−γ t )η0(x). (1)

For ideal fluids, the growth rate γ is given by

γ =
√

Agk, A = ρ2 − ρ1

ρ2 + ρ1
, k = 2π/λ, (2)

A being the Atwood number and k the wave number. The
densities of the light and heavy fluids are given by ρ1 and ρ2,
respectively. When diffusion and viscosity are included, the
growth rate changes to

γ (t) =
√

Agk

φ(A,t)
+ ν2k4 − (ν + ξ )k2. (3)

Here φ(A,t) represents dynamic diffusion effects, ξ is the
diffusion coefficient, and ν is the kinematic viscosity. Note
that, different from the ideal fluid approximation in Eq. (2),
the viscous growth rate is dependent on time t .

When B > λ, nonlinear effects start to dominate. Light fluid
bubbles rise into the denser phase, while spikes of the latter
sink downward. Perturbations with large wave numbers are
generated and aerodynamical deceleration of sinking spikes
leads to the formation of mushroom-shaped jets [74]. As
bubbles and spikes start to interact with each other, the
dynamics become chaotic, leading to turbulent mixing.

The effects that compressibility, viscosity, and surface
tension have on the evolution of the RTI have been discussed
in, e.g., [75,76]. Here surface tension and viscosity are found to
stabilize perturbations while simulations using compressible
fluids experience delays in the formation of the mushroom-
shaped jets. Challenges in numerical studies of RTIs arise in
the nonlinear regime when a finer computational grid leads
to the development of more secondary instabilities. This is
partly due to the finer resolution and partly due to the use of
a different grid. Convergence tests are generally performed
to ensure that the dynamics of the simulated system do not
change with resolution.

III. MODIFIED DSMC APPROACH

Here we present a short overview of our simulation method
adjusted to two-dimensional (2D) calculations. A general

discussion can be found in [39]. The foundation of our
approach is a DSMC method where the phase space of the
physical problem is represented by N δ functions or so-called
test particles:

f (r,p,t) =
N∑

i=0

δ2(r − ri(t))δ2(p − pi(t)). (4)

Here ri is the position and pi the momentum of the ith
test particle. This distribution function is used as input into
the Boltzmann equation [77] and results in 2N ordinary
differential equations of motion for each test-particle with
mass mi :

d

dt
pi = F(ri) + C(pi), (5)

d

dt
ri = pi

mi

, i = 1, . . . ,N. (6)

Particles interact with each other via one-body mean-field
forces F(ri), such as gravity. In addition, they undergo two-
body interactions, which are symbolized by C(pi). For realistic
fluids, the latter must contain the appropriate cross section σ .
In the current study, we want to test the continuum behavior
of our code. Particle interactions are therefore modeled as
simple elastic collisions. The implementation of more complex
interactions, as has already been done in previous works for
CCSN simulations [78–80], is beyond the scope of the present
paper. For elastic collisions, the 2D cross sections are related
to a particle effective interaction radius σ2D = 2eff . Here reff

is determined by the particle mean free path l and the number
density n, which is defined as the number of particles N divided
by the area A:

reff = 1/2ln, n = N/A. (7)

As in our previous works, l will be used as an input variable.
From that, we determine the particle effective radii and apply
them in our collision partner search [39]. Hereby, we calculate
the time to at which the effective radii of both particles overlap:

to(1,2) = tp ±
√

t2
p − t2

rel + t2
eff, (8)

tp = −(rrel · vrel)/|vrel|2, (9)

trel = |rrel|/|vrel|, (10)

teff = (reff,A + reff,B)/|vrel|. (11)

If either to1 or to2 is a real number, a collision can take place
[39]. Otherwise, the particles are too far away from each other.
Note that the effective radii are utilized in this step only. For
the actual interaction time we choose the point-of-closest-
approach (POCA) method, which is different from the usual
DSMC routine. Here the collision is performed at tp, when two
particles reach their minimal distance. With that, the POCA
algorithm reduces causality violations, which are often present
in DSMC-type simulations [9]. The combination of DSMC
and POCA results in a favorable scaling of the computational
time with N [39,81] and an improved spatial accuracy. When
the collision is performed at the point of closest approach, the
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outgoing particle velocity vectors are determined randomly in
the center-of-mass (c.m.) frame of the colliding pair

φ = 2πκ, κ ∈ [0.0,1.0], (12)

vx,out,c.m. = vin,c.m. cos(φ), (13)

vy,out,c.m. = vin,c.m. sin(φ), (14)

vin,c.m. =
√

v2
x,in,c.m. + v2

y,in,c.m.. (15)

From the c.m. frame they are then transformed back into the
laboratory frame.

At the beginning of each time step, particles are sorted into
their spatial cells or bins where they can only interact with
partners in their own bin or adjacent cells. To prevent particles
from traveling beyond their collision neighborhood during a
time step t , the latter is given by the cell size x divided by
the maximum particle velocity:

t(t) = x/vmax(t). (16)

We use Euler’s method to iterate the equations of motion

ri(t + t) = ri(t) + vold,i tp + vnew,i(t − tp), (17)

ri(t + t) = ri(t) + vold,it, (18)

where Eq. (17) is applied when a collision takes place
and Eq. (18) otherwise. Computationally expensive sorting
algorithms are not necessary as we represent each grid cell
via a linked list of particles it contains, which only requires a
simple coordinate check.

Our code can perform simulations in two and three dimen-
sions, whereas the degrees of freedom and matter equation
of state change accordingly. The collision partner search is
parallelized using shared memory parallelization via OpenMP.
However, our 2D RTI studies are long-time simulations. Using
OpenMP with 32 processors, they take on average ∼1.2×105

time steps in ∼350 h. To enable larger 2D and 3D simulations
in the future, a distributed memory parallelization via the
message-passage interface (MPI) is necessary and is currently
under development [81]. The scaling of the collision partner
search has been tested in the current OpenMP and preliminary
MPI setups and is close to ideal for 2D and 3D simulations
[39,81]. In general, our study of the SMRTI uses the same
algorithm as in [39], however, we include a change in the
boundary conditions for the long-time evolution of the RTI
(see the next section).

IV. SIMULATION SETUP

A. Particle initialization

The 2D SMRTI is initialized as a heavy fluid with density
ρ2 lying on top of a light one with ρ1 = 0.5ρ2. The box size
is 0 � x � Lx and 0 � y � Ly . Both fluids are initially at
rest with a pressure P0 at the fluid interface. The units of all
quantities are given by the dimensions of length L̃, density ρ̃,
and pressure P̃ . Consequently, the units for velocity are

√
P̃ /ρ̃,

the units for time L̃
√

ρ̃/P̃ , and the units for the gravitational
acceleration P̃ /L̃ρ̃. In the latter, g is set to 1.0 and is pointing

in the negative-y direction. The simulation space is divided
into two equally sized areas A1 = A2, where A2 contains the
high-density fluid while the low-density fluid is in A1. Both
subspaces contain the same number of test particles N1 =
N2 with masses m1,2 = ρ1,2A1,2/N1,2. To keep track of their
motion, particles in A2 are assigned a particle type τ2 = 2,
while particles A1 are given τ1 = 1.

The pressure as a function of the y position is given by the
barometric formula. Assuming that the densities ρ1 and ρ2 are
constant and do not depend on the height, the expression for
the pressure is given by

P1,2(y) = P0 + ρ1,2g(y − 0.5Ly), (19)

where we choose P0 = 2.5. This allows the determination of
the temperature at height y via the ideal gas law

kT1,2(y) = P1,2(y)/n1,2. (20)

With given P , k T , and their connection to the the root-mean-
square velocity P = v2

rms nm/2, we can initialize absolute
velocities for each particle i at yi with random directions by a
2D Maxwell-Boltzmann (MB) distribution

F2D,v(v,yi) =
(

m

2πkT (yi)

)
exp

(
− mv2

kT (yi)

)
(21)

and a Monte Carlo algorithm [82]. Furthermore, to initialize
the SMRTI, a perturbation η0(x) is introduced via a modifica-
tion to the fluid interface

η0(x) = 0.5Ly + B0 cos(2πx/λ) (22)

with an amplitude B0 = 0.01 and wavelength λ = 2Lx .

B. The RTI growth rate with D and ν

In 2D systems, expressions for the dynamic viscosity μ and
diffusion coefficient ξ can be determined from kinetic theory
(using the approach of [83])

μ = ρv̄l/2, ξ = v̄l/2. (23)

Here v̄ is the 2D mean velocity

v̄ =
√

kT /2m (24)

and the kinematic viscosity ν in Eq. (3) can be obtained
by ν = μ/ρ = ξ . To determine φ(A,t) in Eq. (3), we apply
the approach of [84] and numerically solve the following
eigenvalue equation for the vertical velocity component ω:

a2(t)
d

dσ

[
�

dω

dσ

]
= ω

(
� − a(t)φ

dQ

dσ

)
, (25)

with

� = 1 + AQ, a(t) = 1/kε, ε = 2
√

ξ t, (26)

Q(σ ) = 2π−1/2
∫ σ

0
exp(−ζ 2)dζ = erf(ζ ), (27)

and σ being the scaled vertical direction (y − 0.5Ly)/ε.
The boundary conditions are ω → 0 for σ → ±∞. For the
solution, Eq. (25) is replaced by a finite-difference analogy.
The value of ω(σ + δσ ) can be obtained from the knowledge

013009-3



IRINA SAGERT et al. PHYSICAL REVIEW E 92, 013009 (2015)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

G
ro

w
th

 ra
te

 γ
(t)

time t

(a)
ideal

l = 0.025 Δx
l = 0.56 Δx
l = 1.5 Δx
l = 3.0 Δx
l = 5.0 Δx

l = 10.0 Δx
l = 30.0 Δx

 0

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

A
m

pl
it

ud
e 

ga
in

 Γ
(t

)

time t

(b)

ideal
l = 0.025 Δx

l = 0.56 Δx
l = 1.5 Δx
l = 3.0 Δx
l = 5.0 Δx

l = 10.0 Δx
l = 30.0 Δx

FIG. 1. (Color online) (a) Growth rate γ (t) and (b) amplitude gain �(t) for different mean free paths l according to Eqs. (3) and (29). The
values of γ and � in the limit of ideal hydrodynamics are given by thin solid lines.

of ω(σ ) and dω(σ )/dσ via iterations. These are started at
σ � −1, so ω(σ ) = exp(σ/a) can be assumed. For trial values
of φ and assigned A and t , the solution for ω is obtained to
sufficiently large σ . For the correct φ, ω should approach zero
and otherwise diverge to +∞ or −∞. We apply a root-finding
routine to determine the value of φ. Due to the time dependence
of the growth rate γ (t), the evolution of the instability is now
given by

η(x,t) = �(t)η0(x), (28)

�(t) = 0.5(eβ(t) + e−β(t)), β(t) =
∫ t

0
γ (t)dt, (29)

where β(t) is determined by numerical integration. Figure 1
shows the values of γ (t) and the amplitude gain �(t) for l =
0.025x − 100.0x. The growth rate is almost constant for
l = 0.025x and close its ideal fluid value of γ ∼ 2.046.
For larger mean free paths, viscosity and diffusion lead to a
decrease in γ (t). For l = 100.0x, we find that γ < 0 at all
times, which implies that the SMRTI evolution is dominated
by diffusive effects from the very beginning [71,84]. In this
case, an instability will not develop and the two gases will
diffuse into each other. Table I lists the exact values of �(t) for
t = 0.5, 1.25, and 1.75 together with the kinematic viscosities
ν, Reynolds numbers [71]

R = λν−1
√

A(A + 1)−1gλ, (30)

and nondiffusive viscous growth rates γnd and �nd [72]. The
latter are similar to � but generally higher, which leads to a
faster SMRTI evolution. For comparison with our simulations
we will use the diffusive viscous growth rates �(t).

C. Boundary conditions

Our previous studies apply simple reflective boundary
conditions [39]. For example, if during t a particle with
velocity vold crosses the box boundary at y = by = 0 to a
position beyond the boundary rold, its location and motion are
updated via

xnew = xold, ynew = −yold, (31)

vnew,x = vold,x, vnew,y = −vold,y . (32)

For the current tests, we modify this simple approach.
In addition to the usual particle motion, we have to

consider that the gravitational acceleration g is present at
all times. When a particle is moving towards by = 0, it is
accelerated downward. Once it is reflected by the wall and
moves in the opposite direction, its y velocity is decreased
due to g. Furthermore, with typically O(105) simulation time
steps, the sinusoidal form of the SMRTI instability together
with the simple reflective boundary conditions could lead to
the development of standing waves or shock waves in the
simulation box. Since these could impact the evolution of the
SMRTI, we modify the boundary conditions so that particles

TABLE I. Kinematic viscosities ν, amplitude gain with and without diffusion �(t) (see the text) and �nd(t) [72], respectively, growth rates
without diffusion γnd, and Reynolds numbers R for different particle mean free paths l.

l (x) ν (
√

P̃ /ρ̃ L̃ ) �(t = 0.5) �(t = 1.25) �(t = 1.75) γnd �nd(t = 1.75) R

0.025 3.515×10−6 1.559 6.338 17.156 2.025 17.313 5.030×105

0.56 7.873×10−5 1.515 5.457 13.548 1.934 14.769 2.245×103

1.5 2.109×10−4 1.485 4.881 11.322 1.852 12.800 8.383×102

3.0 4.217×10−4 1.426 4.172 8.931 1.759 10.883 4.192×102

5.0 7.029×10−4 1.363 3.508 6.891 1.661 9.176 2.515×102

10.0 1.406×10−3 1.244 2.456 4.040 1.471 6.599 1.257×102

30.0 4.217×10−3 1.024 1.069 1.089 1.005 2.989 4.192×101
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that interact with the walls receive a random new direction
of motion. We refer to these as random reflective boundary
conditions.

To implement these modification, we determine the
particle-boundary collision time tb from

by = yold + vold,y tb + gt2
b

/
2, (33)

tb = 1

g

[−vold,y ±
√

v2
old,y − 2(yold,y − by)

]
, (34)

where by = Ly or by = 0. The incoming y velocity at by is
given by

vb,y = vold,y + gtb. (35)

Together with the unchanged particle motion in the x direction,
the absolute velocity vb at by becomes

vb =
√

v2
b,y + v2

x,old. (36)

To determine the postreflection velocity, the outgoing direction
of motion is randomized. For that, we create random numbers
κx ∈ [−1.0,1.0] and κy ∈ [0.0,1.0] or κy ∈ [−1.0,0.0], de-
pending on whether the reflection is performed at by = 0 or
by = Ly , respectively. The random numbers are scaled so that
κ2

x + κ2
y = 1 and the new velocity components and positions

are calculated as

vnew,y = vbκy + g(t − tb), (37)

vnew,x = vbκx, (38)

ynew,y = by + vbκy(t − tb) + g(t − tb)2/2, (39)

xnew,x = xold + vold,x tb + vnew,x(t − tb). (40)

With that, our simulation should be able to disperse incoming
waves and shocks at the boundaries and thereby minimize wall
effects.

D. Minimal mean free path

In our previous studies [39], we set the mean free path
to small values of, e.g., l = 10−3x to simulate matter in
the continuum regime. This was motivated by the effective
particle radius being dependent not only on l but also on the
particle number per bin N = Nbin as is shown in Eq. (7)
with A = Abin = (x)2. In our shock wave studies, Nbin

varies up to a factor ∼50. In this case, setting l to a small
value l � x ensures that the effective radii stay sufficiently
large for particles to see all potential interaction partners
in the collision neighborhood. For the SMRTI, the number
of particles per calculation bin fluctuates around Nbin ∼ 10.
Considering that a particle can only detect collision partners
in its collision neighborhood, we can set a maximal limit on the
effective radius to reff,max ∼ 2x (considering two interacting
particles at opposite corners of the collision neighborhood),
which results in a minimal value of the mean free path

lmin,1 = x/4Nbin ∼ 0.025x. (41)

Although for l � lmin,1 the effective radii technically in-
crease, particles are still unable to see beyond the collision

neighborhood. While all simulations with l � lmin,1 should
therefore evolve similarly, comparisons with theoretical pre-
dictions that involve viscosity and diffusion should consider
the true minimal value of l. As can be seen from Eq. (41),
the only possibility to reduce lmin,1 is to increase the value of
Nbin keeping x constant, or decrease the latter at a constant
Nbin. The value of lmin might even increase if we assume that
in the continuum limit all particles interact and that collisions
generally take place between close neighbors. In this case, we
can determine reff from a particle area

Ap = πr2
p = Abin/Nbin, (42)

which implies

rp =
√

Abin/πNbin = reff . (43)

Again, in principle, a larger effective radius enables particles
to see beyond their closest collision partner, however, the in-
teraction will still take place between particles with a distance
�2reff . Using Eqs. (7) and (43) we arrive at a new mean-free-
path limit of lmin,2 = √

π/4Nbinx ∼ 0.28x. Furthermore,
in our collision algorithm, we discard interactions that involve
more than two particles. This situation occurs frequently for
close-to-continuum simulations and, as a result, about half of
potential collisions are not performed when l is small [39]. To
account for the fact that we have about 50% fewer collisions
during a time step than anticipated and therefore more free
streaming particles, we increase the minimal mean free path
to

lmin,2 = 2×0.28x = 0.56x. (44)

In the following we will use l = lmin,1 for our close-to-
continuum simulations but also apply lmin,2 when comparing
results with theoretical predictions.

V. MEAN-FREE-PATH STUDIES

A. Evolution of a plane fluid interface

Before discussing the SMRTI simulations, we will study
the evolution of a plane fluid interface with B0 = 0. Different
from hydrodynamic codes, the finite number of particles in
kinetic methods always leads to small irregularities of the fluid
interface. If not suppressed, these serve as the source for the
development of large-scale instabilities. Figure 2 shows the
evolution of the initially smooth interface for t � 3.0 using
107 test particles. The initialization of the simulation is as in
Sec. IV, however the box size is chosen as Lx = 0.8 and Ly =
0.5 with 1280×800 calculation bins and 160×100 output bins.
The boundary conditions are random reflective and particles
are interacting with each other via simple elastic collisions
according to the POCA algorithm using l = lmin,1.

It can be seen from Fig. 2 that the seemingly smooth fluid
interface develops a diffusion layer with small dips and peaks
within t � 1.0. This mixing is due to the finite value of l

that allows particles to move from one fluid into the other. The
peaks and dips are caused by irregularities of the fluid interface
as a consequence of the random initial particle positioning. As
the perturbations grow over time they result in the formation
of large-scale RTIs with different wavelengths. We find a
similar behavior in our close-to-continuum SMRTI simulation
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FIG. 2. (Color online) Evolution of fluid instabilities at an initially unperturbed interface of a high-density (blue, above the white separation
interface) and a low-density (red, below the white separation interface) fluid in the presence of a gravitational acceleration. The particle number
is N = 107. We plot the particle type τ at times (a) t = 0, (b) t = 1.0, and (c) t = 3.0.

that we discuss in the next section. It is important to point
out that a small modification of the particle initialization via,
e.g., changed particle positions, can result in a different RTI
evolution at later times.

B. The SMRTI close to the continuum limit

We start with a SMRTI simulation close to the hydrody-
namic limit by setting l = lmin,1 = 0.025x. The box dimen-
sions are Lx = 0.25 and Ly = 1.6 with 800×5120 calculation
bins and 100×640 output bins. The width of a calculation
bin is thereby x = 3.125×10−4. We use N = 4.0×107 test
particles.

Figure 3 shows the initial particle type τ [Fig. 3(a)],
normalized particle number with N0 = N/(Lx×Ly) = 625
[Fig. 3(b)], and pressure P [Fig. 3(c)]. All quantities are
given as averages per output bin and we mirror the results at
x = 0. Figure 4 provides an estimate on the level of statistical
noise in the simulation via y profiles of the density, pressure,
and particle type taken at x = 0.125. We see significant
fluctuations in Nbin and P and, as a consequence, will average
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FIG. 3. (Color online) Initialization of SMRTIs with (a) average
particle type τ , (b) average particle number Nbin in units of N0 = 625,
and (c) average pressure p.

output quantities over several output bins in our later analysis.
The simulation evolves up to t = 3.75 and the results for
τ are plotted in Fig. 5 for t = 0.5 [Fig. 5(a1)], t = 1.25
[Fig. 5(a2)], t = 1.75 [Fig. 5(a3)], t = 2.5 [Fig. 5(a4)], and
t = 3.75 [Fig. 5(a5)]. For t � 1.75 we add the analytic solution
from linear theory using l = lmin,1 and l = lmin,2 as dashed and
solid lines, respectively. For better visualization, the output is
limited to 0.2 � y � 1.4.

As before, we see the formation of a diffusion layer for
t � 0.5 caused by the finite number of test particles and the
finite value of l. At t = 0.5, the SMRTI amplitude is in good
agreement with the analytic prediction, but small perturbations
are present and serve as sources for fluid instabilities that
become visible at t ∼ 1.25. Here, in addition to the growth of
the SMRTI, small bubbles of light fluid are visible. Overall, the
analytic prediction with lmin,1 and lmin,2 matches the envelope
of the bubble maxima. However, at t � 1.75, the amplitude
of the SMRTI significantly lags behind the prediction with
lmin,1, while lmin,2 provides a better fit. The disagreement with
lmin,1 might indicate that the minimal mean free path is indeed
given by lmin,2. The SMRTI evolution could also be affected
by the secondary instabilities. These are clearly seen for t �
1.75 and might make comparisons with analytic predictions
less reliable. Furthermore, a finite mean free path introduces
compressibility effects that have been shown to change the
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FIG. 4. (Color online) Profiles of the initial average particle
density Nbin/N0, average particle pressure P/P0, and particle type
τ taken at x = 0.125.
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FIG. 5. (Color online) Time evolution of the average particle type τ per bin in the SMRTI simulation for (a) l = 0.025x, (b) l = 1.5x,
(c) l = 3.0x, (d) l = 5.0x, (e) l = 10.0x, (f) l = 30.0x, and (g) l = 100.0x. Snapshots are taken at times (1) t = 0.5, (2) t = 1.25,
(3) t = 1.75, (4) t = 2.5, and (5) t = 3.75. Dashed lines give the analytic predictions using the corresponding growth rates for l from Table I.
The solid lines in (a1)–(a5) are the analytic solution for l = lmin,2 = 0.56x. The number of test particles is N = 4.0×107 with 800×5120
simulation bins covering a space of 0.25×1.6.
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RTI evolution [71]. To estimate their impact, we calculate the
Mach number [85]

M =
√

(ρ1 + ρ2)gλ/2P0. (45)

Our simulations have M ∼ 0.55 and are therefore in the
compressible subsonic flow regime (with M � 0.3 for in-
compressible subsonic flow). Nonviscous, ideal fluids have
a growth rate of γi ∼ 2.046 resulting in �i = 17.960 for
t = 1.75. When compressibility is included, γ decreases to
γc ∼ 2.01 [we use Eq. (31) of [75]] and the corresponding
amplitude gain is �c(t = 1.75) = 16.865. The difference
between �i and �c is small and the amplitude reduction η

for x = 0 and t = 1.75 is

η(0,1.75) = ηi(0,1.75) − ηc(0,1.75)

∼ 0.980 − 0.969 = 0.011. (46)

This is only about 1.1% of the SMRTI amplitude and thereby
too small to account for the disagreement seen in Fig. 5(a3).
Of course, the impact of compressibility could be larger when
viscosity and diffusion are taken into account. We will return
to this point in the next section.

C. Mean-free-path comparison

Figures 5(b)–5(g) show the SMRTI for l = 1.5x

[Fig. 5(b)], l = 3.0x [Fig. 5(c)], l = 5.0x [Fig. 5(d)], l =
10.0x [Fig. 5(e)], l = 30.0x [Fig. 5(f)], and l = 100.0x

[Fig. 5(g)], whereas (1)–(5) correspond again to different time
snapshots as described in the previous section. The jump
from l = 0.025x to l = 1.5x is motivated by a previous
finding that shock wave dynamics do not differ significantly
for l � x [39]. We expect a similar outcome for the SMRTI
simulation. Of course, l still impacts particle diffusion, com-
pressibility, and viscosity [71], however, we expect stronger
effects for l > x. For comparison with the simulations, we
use again the viscous diffusive growth rates �(t) from Table I
and plot the analytical predictions for t � 1.75 in Fig. 5. It can
be seen that the latter agree with the simulations. One possible
explanation for the lag of the SMRTI with l = 0.025x at
t = 1.75 was the effect of finite compressibility. However,
the general agreement between theory and simulations for
1.5x � l � 5x indicates that compressibility does not play
a large role for the SMRTI height. The lag therefore is either
caused by secondary instabilities or indicates that the true
minimal mean free path is given by lmin,2.

Figure 5 also demonstrates the growth of the mixed fluid
layer thickness with l as well as the accompanying blurring
of small-scale perturbations. While the simulation with l =
30.0x still exhibits signs of a weak SMRTI development,
no Rayleigh-Taylor evolution can be seen for l = 100.0x

and both fluids simply mix over time as was discussed in
Sec. IV B. For such large values of the mean free path, the
simulation approaches to the regime of noninteracting gas.

For small l, the average position of the mixing region
matches the analytic prediction for t � 1.75. We can also see
the impact of the mean free path on the SMRTI amplitude in
Figs. 5(a3)–5(g3), where the latter clearly decreases with larger
l. For a more quantitative analysis, we plot the amplitude B

as a function of time t � 1.75 and scaled time ts = t
√

Ag/λ
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FIG. 6. (Color online) Time evolution of the SMRTI amplitude B

for l = 0.025x (red closed circles), l = 1.5x (green open circles),
l = 3.0x (blue closed squares), l = 5.0x (pink open squares),
l = 10.0x (cyan closed triangles), and l = 30.0x (brown open
triangles) scaled by the perturbation wavelength λ together with the
linear theory solution (lines).

in Fig. 6. Here B is extracted in the following way: Data
are taken from the simulation every t = 0.25 resulting in
75 output files. For each time snapshot, we find the highest
point Bmax for 0.005 � x � 0.125 and τ � 1.8. Once Bmax is
determined, we pick the lowest point Bmin with the same x

coordinate as Bmax but τ > 1.2. The height of the SMRTI is
then given by the average

B = 0.5(Bmax + Bmin) − 0.8. (47)

Furthermore, to suppress statistical noise, we average B over
five consecutive snapshots and scale it with λ. The simulation
data are plotted as points, while the linear theory predictions
are represented by lines. To better distinguish between the
different curves, we shift the data sets by a factor α along
the y axis. Although the simulation data scatters around the
analytic solutions, both generally fit very well at early times. At
larger t , especially for l = 0.025x, the instability amplitude
increases slower than the analytic prediction with l = lmin,1,
while a better fit is again achieved for l = lmin,2.

Next we compare the thickness of the diffusion layer, which
is determined by

D = (Bmax − Bmin). (48)

For the output in Fig. 7, we scale again by λ and see an increase
of D with l. Furthermore, we find that D > B for early times,
which implies the domination of diffusion over SMRTI growth.
The black circles in Fig. 7 mark the times when the latter takes
over. While up to this point the width of the mixed fluid layer
increases, its growth saturates and even decreases for larger t .
This can be caused by displacement of heavy fluid at the top of
the light fluid bubble due to its upward motion. Alternatively,
the bubble might squeeze matter in the mixed fluid layer due to
finite compressibility. Since the decrease is more pronounced
for larger l, a cause involving finite matter compressibility
seems to be more likely.
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D. Final-state comparison

We now analyze the SMRTI states at t = 3.75 and compare
them with theoretical predictions. First, we plot the normalized
particle density

ρ = m1,2n/m1N0, m1 = 10−8, m2 = 2m1 (49)

in Figs. 8(a)–8(g) as in Fig. 5. We can see two interesting
phenomena. First, with larger l, particle densities at the top of
the simulation box decrease over time. The effect is visible for
l = 30.0x and l = 100.0x and is caused by the absence
of scattering. Initially, particle velocities are set up according
to MB distributions. Over time, the gravitational acceleration
increases components in the negative-y direction. Due to
the absence of particle interaction, the latter cannot transfer
vertical velocity components into other directions and, as a
consequence, particles are accelerated downward. Since the
absolute particle velocity decrease with height, the effect is
most pronounced at the top of the simulation box. The second
effect is present for l � 3.0x where the density of the heavy
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FIG. 9. (Color online) Velocity profiles of the rising SMRTI
bubble (thin lines) and sinking spike (thick lines) for different mean
free paths l along the y axis at t = 3.5. The velocities of the
sinking material are compared to the free-fall velocity [74] (thick
dash–double-dotted line).

fluid at the foot of the SMRTI is increased in comparison
to the top of the simulation space. This could be attributed
to compressibility as descending spikes squeeze matter when
they move downward. Different from the diffusion layer width,
the effect is most pronounced for small mean free paths. It
could be caused by larger spike velocities for small l, which
result in stronger matter compression.

To test this assumption, we determine vertical velocity
profiles of the rising bubble and the sinking spike. These
are shown in Fig. 9, where we plot the y velocities per bin
averaged over 0.005 � x � 0.015 for the rising bubble and
0.235 � x � 0.245 for the descending spike. Furthermore,
we average the obtained velocities over ten consecutive
output bins in the y direction. The resulting profile shapes
generally agree with expectations [74], whereas we find a
clear dependence on l. The negative bubble velocity for
l = 0.025x at 1.0 � y � 1.2 is caused by the secondary
instability at its top. The largest absolute velocities are found
in the l = 0.025x case, which supports our assumption that
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FIG. 8. (Color online) Normalized particle density ρ via Eq. (49) for SMRTI simulations at t = 3.75 and different mean free paths l

[(a)–(g)] as in Figs. 5(a5)–5(g5). Solid and dashed lines correspond to theoretical estimates for the bubble radius with Ra = 0.194 (solid line)
and R = 0.258 (dashed line) in Eqs. (53) and (54), respectively. See the text for discussion.
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the stronger compression of matter occurs due to larger spike
velocities for small mean free paths. Starting at the apex of
the light fluid bubble, the horizontal component of the spike
velocity should be small and the particle motion dominated by
the vertical downward component [74]. As a consequence, we
can compare the spike velocities to the free-fall velocity of the
heavy fluid in the gravitational field [74]

vfall(y) = −
√

2g[1 − (ρ1/ρ2)](yb − y) + vF ,

vF = 0.59
√

g[1 − (ρ1/ρ2)]/k, (50)

where yb = 1.132 marks the average height of the bubble apex
for l � 5.0x. We find that the spike velocities in simulations
with l � 5.0x agree with vfall(y) for 0.8 � y � 1.1. The
deviations from Eq. (50) in the lower spike region are most
likely caused by the influence of the mushroom shape. For
larger mean free paths, the velocity profiles become less
pronounced. This is due to the larger viscosity and broader
spike regions, which allow particles to move horizontally in
addition to their vertical motion.

In addition, we can also determine the bubble velocity and
compare it with theoretical predictions for its asymptotic value
at t → ∞ [86]:

vbubble,a = 1.025

√
2A

A + 1

g

3k
, (51)

which implies

vbubble,a/
√

g/k ∼ 0.41, (52)

whereas [74] gives vbubble,b/
√

g/k ∼ 0.59 (interestingly, the
two expressions differ by a factor of

√
2). To extract vbubble in

our simulations, we average all y velocities per bin in the range
Bmin � y � Bmax. The latter are determined for 0.005 � x �
0.015. To further reduce statistical noise, we average vbubble

over five consecutive time snapshots. Figure 10 shows the sim-
ulation results for vo together with the asymptotic predictions
for vbubble,a and vbubble,b. For l = 10x and l = 30x, the
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FIG. 10. (Color online) Scaled velocity of the SMRTI bubble as
a function of time for different mean free paths l. The horizontal solid
and dashed lines are theoretical estimates of the asymptotic bubble
velocity [74,86] (see the text).

bubble velocity rises very slowly. While it eventually reaches
vbubble,a for l = 10x, it stays small for l = 30x due to the
large particle diffusion. For l � 5x, we initially see a linear
increase of vbubble with time. The velocities eventually reach
a maximum in the range vbubble,a < vbubble < vbubble,b with a
subsequent drop. The latter is more pronounced for smaller
mean free paths and, for l = 0.025x, is most likely caused
by the secondary instability forming at the top of the bubble
[see Fig. 5(a4)]. For l = 1.5x and 3.0x we find a similar
stagnation of vbubble. Although here a secondary instability is
not directly visible, the flat bubble top in Figs. 5(b5) and 5(c5)
could be interpreted as its onset that decreases vbubble. The
effect is very weak for l = 5.0x. Here the top of the bubble
is round and the velocity does not exhibit a large decrease with
time.

Another effect that needs to be addressed in the future is
the size of the simulation space. As the light fluid bubble rises,
it approaches the upper boundary of the simulation space.
Although we apply random reflective boundary conditions,
wave reflection might still occur and, when propagating
downward, could interact with the bubble and cause it to
deform or decelerate. In addition, as the bubble rises and
expands, it comes very close to the vertical box boundaries.
These can impact the evolution of the SMRTI by preventing
its full expansion. To explore the latter, we compare the radius
of the light fluid bubble with theoretical predictions. The 2D
asymptotic value of the bubble curvature κ was determined in
[86] for an ideal fluid to be

κa = −2π/4.88λ ∼ −2.575, (53)

with a corresponding radius Ra = −1/2κ2 ∼ 0.194, and in
[87] (using Fig. 1 of the reference with ζ1/k ∼ −0.105) to be

κb ∼ −0.105(16π/3
√

3λ) ∼ −2.031. (54)

The latter results in Rb ∼ 0.246. It is noteworthy that Rb ∼ Lx ,
which might lead to wall effects in the late stages of the SMRTI.
We plot semicircles with Ra (solid line) and Rb (dashed line)
together with the particle densities of the SMRTIs in Fig. 8.
Since Ra and Rb are derived for ideal fluids, we expect the
best fit for close-to-continuum simulations, while both radii
should overestimate the bubble size for calculations with large
mean free paths. This effect is clearly seen for l = 10.0x.
However, Ra seems to reproduce the SMRTI with l ∼ 5.0x

best, while underestimating the bubble for smaller mean free
paths. This could imply that Rb is a better estimate of the
radius, however, when comparing with numerical results we
find that Rb seems to always overestimate the SMRTI bubble,
even for l = 0.025x. This could be due to the small width of
the simulation space, which might restrict the bubble and result
in a smaller radius. Studies of the SMRTI in a bigger simulation
space need to address the bubble evolution in the future.

E. The SMRTI with small mean free paths

As mentioned before, the particle mean free path in our
studies is limited by a minimal value lmin. Considering that
collision partners cannot be farther away than ∼2x, this
value should be given by lmin,1 = 0.025x. On the other
hand, when assuming that for large Nbin collision partners
are typically close to each other and using an average distance
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FIG. 11. (Color online) Particle type τ for the SMRTI with diffusion suppression, mean free path l = 10−3x, and particle number
N = 4.0×107. (a)–(e) correspond to different simulation times as in Fig. 5. Dashed lines give the analytic prediction for the SMRTI amplitude
for l = lmin,1 = 0.025x, while solid lines were obtained using l = lmin,2 = 0.56x.

of 2
√

Abin/πNbin, the minimal mean free path increases to
lmin,2 ∼ 0.56x (see the discussion in Sec. IV D). Previously,
we argued that simulations should evolve similarly for l � lmin,
especially properties such as diffusion layer width and SMRTI
amplitude, quantities that directly depend on l, should not
differ much. We will test this assumption by setting l � x =
10−3x and performing a SMRTI simulation.

Figure 11 shows the corresponding simulation snapshots
with Figs. 11(a)–11(g) as in Fig. 5. While the diffusion layer
width is very similar to l = 0.025x, large-wave-number
instabilities seem to be more pronounced. This is clearly
visible in Figs. 11(b) and 11(c). Furthermore, in the latter, the
upper small-scale instability develops into a RTI itself. The
corresponding small fluid bubble moves upward together with
the SMRTI. As it approaches the simulation walls, the lower
part of the bubble is deflected downward while the upper part
continues to move upward, distorting the mushroom shape.
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FIG. 12. (Color online) Scaled amplitude B/λ (closed triangles
and circles) for l = 10−3x and l = 0.025x together with the linear
theory predictions (thick lines) for l = 10−3x, l = 0.025x, and
l = 0.56x. Simulation results for the diffusion layer width D/λ for
l = 10−3x and l = 0.025x are given by thin dashed and solid
lines, respectively.

For a quantitative comparison of the SMRTI amplitude and
diffusion layer width, we determine both as in Sec. V C and
plot them together with the simulation result for l = 0.025x

and linear theory predictions for l = 10−3x, l = 0.025x,
and l = 0.56x in Fig. 12. The formation of secondary insta-
bilities for l = 10−3x complicates a reliable determination
of the SMRTI amplitude and, as a consequence, we limit
the comparison to t � 1.75. As we can see, the linear theory
solution predicts a slightly higher amplitude for l = 10−3x

in comparison to l = 0.025x. The values for B/λ in the
simulations, on the other hand, are very similar. The same
applies to the diffusion layer widths. This confirms our
prediction that mean-free-path dependent quantities, such as
SMRTI amplitude and mixed layer width, are given by the
true minimal value of lmin. The more pronounced small-scale
structures for l = 10−3x might be caused by a different
sequence of random numbers in the simulation. For close-to-
continuum simulations, small differences at early times could
lead to different perturbations of the fluid interface and result
in different SMRTI evolutions.

VI. SUMMARY AND OUTLOOK

We presented simulations of single-mode Rayleigh-Taylor
instabilities with a large-scale modified direct simulation
Monte Carlo code. Our approach combines the computational
scaling of DSMC methods and the spatial accuracy of the
point-of-closest-approach technique. The aim of the current
work was to test our kinetic code on its ability to reproduce
fluid instabilities and study the latter for finite viscosity and
diffusion. The code has been validated in the hydrodynamic
regime by 2D and 3D shock wave studies in the past and
is able to simulate matter for a large range of Knudsen
numbers. For our RTI simulations, we applied N = 4.0×107

test particles. At early stages of the SMRTI, the growth rate can
be analytically obtained from linear theory while for late times
the onset of secondary instabilities and turbulent mixing is
seen by hydrodynamic codes and experiments. We compared
our simulations to the expected behavior of the SMRTI in
these regimes. Our kinetic method is limited by a minimal
value for the particle mean free path l, which depends on
the particle number per simulation cell. By applying different
l we were able to simulate matter in a regime that is close
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to the continuum limit and for nonequilibrium matter. For
l � 5x, we found the characteristic mushroom shape of the
SMRTI, which was observed in hydrodynamic simulations
and experiments. Furthermore, in our close-to-continuum
simulations, initial irregularities of the fluid interface result in
the formation of large-wave-number instabilities that evolve
into RTIs themselves. A diffusion layer, caused by particles
moving from one fluid into the other, is always present.
Its width increases for larger l while small-scale structures
become blurred. For large mean free paths, simulations
eventually approach the regime of noninteracting gas.

Overall, our simulations agree with the analytic prediction
from linear theory including diffusion and viscosity and lead to
similar SMRTI shapes as we would expect from hydrodynamic
studies. We conclude that our kinetic approach can reproduce
the general features of SMRTI. In the future, we plan to
perform convergence tests with a larger number of test particles
and thereby smaller mean free paths as well as more general
fluid instability studies. With that, together with the already

successfully passed shock wave tests, we will be able to direct
our attention to the simulation of, e.g., astrophysical systems,
such as core-collapse supernovas.
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