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Abstract. We report on the development of a test-particle based kinetic Monte Carlo code
for large systems and its application to simulate matter in the continuum regime. Our code
combines advantages of the Direct Simulation Monte Carlo and the Point-of-Closest-Approach
methods to solve the collision integral of the Boltzmann equation. With that, we achieve a
high spatial accuracy in simulations while maintaining computational feasibility when applying
a large number of test-particles. The hybrid setup of our approach allows us to study systems
which move in and out of the hydrodynamic regime, with low and high particle densities. To
demonstrate our code’s ability to reproduce hydrodynamic behavior we peform shock wave
simulations whereas the focus of this work lies on the Sedov blast wave test. The blast wave
problem describes the evolution of a spherical expanding shock front and is an important
verification problem for codes which are applied in astrophysical simulation, especially for
approaches which aim to study core-collapse supernovae.

1. Introduction
Hydrodynamics is a frequent approach to describe the evolution of matter via its thermodynamic
properties. Hereby, the physical particles the medium is comprised of have mean-free-paths λ
which are much smaller than a characteristic length scale of the studied system L. If the so-
called Knusden number Kn is small with Kn = λ/L� 1, the continuum approximation can be
applied and the evolution of matter is described by the Navier-Stokes equations. The latter are a
set of coupled differential equations and are derived from the conservation of mass, momentum,
and energy density as well as the assumption of local thermal equilibrium [1]. The Navier-
Stokes equations can be solved numerically either by the Eulerian, i.e. grid-based, method
or the Lagrangian approach, also known as Smooth Particle Hydrodynamics [2]. Numerical
hydrodynamics is a widely applied tool in science and engineering. However, if the mean-free-
path of physical particles becomes large, resulting in Kn � 1, the continuum approximation
breaks down. As a consequence, the Navier-Stokes equations cannot be applied anymore to
evolve the system and transport equations have to be solved instead.

2. Kinetic Theory
In transport theory the many-body problem is solved via modeling the evolution of the particle
phase-space density function f(~x, ~p, t) with position ~x, momentum ~p, and time t. Hereby, the



equation of motion of the n-body density matrix is rewritten into a one-particle evolution,
coupled to an equation of motion for the n-body correlation function. Truncation of the latter to
the three-body level leaves a system of coupled non-linear equations of motion for the one-particle
density function and the two-body correlation function. To derive the transport equations, the
Wigner transform is applied to the particle density function and is then expanded to sums over
all possible single particle states. Rearranging the equation of motion to a collisionless one-body
propagation and collision terms results in the so-called Boltzmann transport equation [3]:
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The left-hand side of eq.(1) represent the collisionless motion of an ensemble of particles in

an external force field ~F while the change in the particles’ phase space distribution function
f = f(~x, ~p, t) due to binary collisions is given by the collision integral on the right hand side. The
probabilities of particle interaction depend hereby on their interaction cross-sections σ which are
connected to the particle mean-free-paths via σ ∝ 1/λ. Numerically, the Boltzmann transport
equation can be solved by the test-particle method. Hereby, the phase space distribution function
is represented by a sum of delta functions [4]:

f(~x, ~p, t) =
N∑
i=0

δ3 (~x− ~xi(t)) δ3 (~p− ~pi(t)) , (2)

whereas N is the number of test-particles in the simulation. Inserting f(~x, ~p, t) into eq.(1) results
in 2N coupled first-order differential equations of motion:
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d
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mi
, i = 1, . . . , N. (3)

Hereby, ~C(~pi) represents the effects of two-body collisions on the ith test-particle’s momentum.
Kinetic methods are typically applied for rarefied gases with large Knusden numbers. Examples
for transport models applications are studies of hypersonic flow [5], nano-scale devices [6],
particle production in heavy ion collisions [7, 8, 9], the dynamics of inertial confinement fusion
(ICF) capsules [10], and astrophysics [11]. However, application areas can be extended to
describe systems that can move in and out of the continuum limit. Especially heavy-ion
collisions and core-collapse supernovae contain baryons which are in hydrodynamic equilibirum,
as well as particles with mean-free-paths which can be very large. In heavy-ion collisions the
latter are e.g. π mesons while for core-collapse supernovae, neutrinos can be trapped, free-
streaming, or diffusing in the baryonic matter. In core-collapse supernovae, neutrinos are
typically evolved by coupling solvers for the neutrino transport equations to the evolution
of the hydrodynamics equations. However, while for one-dimensional core-collapse supernova
simulations, the Boltzmann transport equation can be solved exactly [12], multi-dimensional
calcualtions are currently computationally not feasible and can only be performed with
approximations to the neutrino transport [13]. On the other hand, Monte Carlo neutrino
transport has been suggested as an alternative approach since it is expected to scale better
for multi-dimensional simulations [14].
Transport codes are able to handle matter in different states, from low density rarefied gases
to high density matter in the continuum regime [15]. However, since the simulation of matter
in the continuum regime requires the frequent interaction of particles with each other, large
values of N are computationally challenging. One of the most efficient approaches to solve
the collision integral is the Direct Simulation Monte Carlo (DSMC) method [16]. Hereby,
the simulation space is partitioned into a scattering grid and interaction partners are chosen



randomly amongst particles within a cell. The resulting simulation times scale as O(N logN)
and can be reduced even further by performing the calculations in parallel on multiple processors.
However, a consequence of the probabilistic choice of interaction partners is that spatial details
cannot be resolved to smaller scales than the size of a grid cell. Furthermore, the finite
separation between collision partners and the instantaneous character of interactions can lead
to causality violations in a special relativistic regime [9]. An approach which minimized the
distance between interaction partners is the Point-of-Closest-Approach (PoCA) method. Hereby,
scattering partners are determined as test-particles whose path crosses within one timestep.
The PoCA method has been successfully applied in modeling physical systems with limited
number of constituents, for example the simulation of heavy-ion collisions [17, 18, 19]. While
such simulations have very good spatial resolution, the PoCA method typically requires the
comparison of each particle with every other particle of the simulation and has a computational
scaling of O(N2). The time to search for interaction partners can be reduced by a spatial
sort of particles. Nevertheless, for large values of N , PoCA methods are computationally very
expensive.

3. Combination of the DSMC and PoCA methods
In our approach we combine the advantages of the DSMC and the PoCA techniques to solve
the collision integral of the transport equations. Our final goal is to study astrophysical systems
such as core-collapse supernovae and matter inertial confinement fusion capsules via the kinetic
scheme. Similar to the DSMC method we divide the simulation space into a grid. However,
interaction partners are not chosen randomly but are determined from test-particles in a grid cell
and the neighboring cells via the PoCA method. With that, we ensure a spatial accuracy which
is higher than in usual DSMC simulations. To avoid a computationally expensive spatial sorting
we connect and propagate particles in their corresponding cell via a linked lists. Furthermore,
the setup of the scattering grid allows us to use multiple processors and deterimine interaction
partners for different cells in parallel. With that, though computationally more expensive than
DSMC methods, our algorithm has a much smaller computational time than traditional PoCA
methods and can thereby describe systems with a large number of interacting particles. Collision
partners are determined via three steps [20]. First, possible interaction partners are selected as
particles reaching their point of closest approach during the timestep ∆t. For that we determine
the sign of the crossing number χ:

χ = (~rrel(t) · ~vrel(t))(~rrel(t+ ∆t) · ~vrel(t+ ∆t)). (4)

Hereby, ~rrel and ~vrel are the relative position and velocity vectors for particles A and B at the
current as well as the next timestep:

~rrel(t) = ~rA(t)− ~rB(t), ~vrel(t) = ~vA(t)− ~vB(t) (5)

A negative value of χ indicates that within ∆t, particles A and B reach their distance of closes
approach and their paths cross. As a next step we determine the collision time via [20]:

tc 1,2 =
1

|~vrel|2
[
−(~vrel · ~rrel)

2 ±
√

(~vrel · ~rrel)2 − |~vrel|2 (|~rrel|2 − (reff,A + reff,B)2)

]
. (6)

If the distance of closest appraoch between particles A and B is larger than the sum of their
effective radii reff the collision time tc has imaginary values and the interaction does not take
place. These first two steps typically leave several potential interaction partners for one particle
of interest. The final collision partner is then determined from this sample as the particle with the
shortest distance to the particle of interest. After collision partners have been assigned to each



other, we perform the scattering in the center of mass frame of each collision pair. Previous
approaches showed that a limitation of interactions to unambigiously determined scattering
partners can lead to a significant underestimate of the collision rate [9]. In our work, we allow
different particles to have the same collision partner and perform the corresponding interactions
sequentially during one time-step ∆t [20]. We find that typically all test-particles interact with
each other when matter is in the hydrodynamic regime. Once all collisions have been performed
each particle’s position is updated accroding to :

~x(t+ ∆t) = ~x(t) + ~voldtmin + ~vnew(∆t− tmin), with tmin = − ( ~rrel · ~vrel) / | ~vrel|2 . (7)

Hereby, tmin is the time when particles reach their distance of closest approach. This is an
improvement of the approach which was used in [20]. Large particle densities and small mean-
free-paths can lead to negative collision times tc (see eq.(6)). In [20] this case was treated
as an instantaneous collision. However, by allowing particles to reach their point of closest
approach during ∆t, we achieve a better localization of shock fronts which is important in e.g.
astrophysical simulations of core-collapse supernovae.

4. Sedov shock test
Shock wave studies are very well suited to demonstrate a code’s ability to model hydrodynamic
behavior. To reach the continuum regime, i.e. Kn � 1, we set the particle mean-free-path to be
very small with respect to the width of a scattering grid cell. Since analytic shock wave solutions
are generally obtained for an ideal gas equation-of-state, they require a simple description of
particle interactions in from of elastic scattering. Hereby, to facilitate a simple treatment of
particle interactions we assign particle degrees of freedom f via the number of dimensions in the
simulation. This affects the equation-of-state of the studies matter via its heat capacity ratio
γ = 1 + 1/f which becomes γ = 2 for a two dimensional simulation and γ ∼ 1.67 in the case
of three dimensions. It has already been demonstrated that the kinetic approach can reproduce
the Sod and Noh shock problems [20]. The current work is focused on the Sedov blast wave
test. While the Sedov test is a standard test for hydrodynamic codes it has not been discussed
for kinetic schemes. The test describes an expanding spherical shock front and is therefore of
special interest for codes which aim to simulate astrophysical problems, such as core-collapse
supernovae. The initial setup of the Sedov test is a simulation space filled with matter at uniform
density nin and vanishing pressure. An explosion is set up via a point-like deposition of energy
Eblast [21, 22]. The result is a spherical shock wave that moves outwards leaving behind matter
with decreasing densities towards the center. While the bulk velocity of matter has a radial
dependence vb ∼ r/t, with t being the time and r the radial distance from the center of the
simulation space, the position of the blast wave can be written as:

rshock =
(
Eblast t

2/α nin

)1/(2+d)
, (8)

with a peak density of n(r) = nin (γ + 1)/(γ − 1). Hereby, d is the number of dimensions in the
simulation and α is a constant of the order one. As the shock wave moves away from the center
it leaves behind matter at vanishingly low densities. This can be a challenging problem for
simulations operating with a finite number of particles since densities cannot become arbitrarily
small [23]. Furthermore, as in all numerical studies, a general problem is the finite spatial
resolution of a simulation which typically leads to a broadening of shock fronts. For the Sedov
test, the latter impacts the density profile reducing its peak values. We perform the Sedov test
in two dimensions with N = 3.5 × 107 test-particles distributed randomly in 250 × 250 bins
over −0.04375 ≤ x, y ≤ 0.04375. The blast wave is initialized around x = y = 0 with a radius
of rblast = ∆x. The mean-free-path is chosen to λ = 0.001 ∆x. While the particle velocities
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Figure 1. Radial profiles of the
particle density (a), velocity (b),
and pressure (c) in the Sedov test
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Figure 2. Number of particles (a),
velocity (b), and pressure (c) per
bin in the Sedov test

outside the blast region are initialized with absolute values of vin = 3, we deposit Eblast by
setting vin = 37180 for particles with radial distance r ≤ rblast. For this study we chose an
adaptive timestep with ∆t = ∆x/vmax, whereas vmax is the maximum absolute particle velocity
at the current timestep. With a number of particles in the blast region of 1840 the resulting
explosion energy is Eblast ∼ 1.27176×1012. Figures 1(a)-(c) show the the density, radial velocity,
and pressure profiles at timestep 420 with t = 2.57877 × 10−5, averaged over r together with
the analytic solution. The latter is obtained by the sedov3.f code [24]. Figures 2(a)-(c) show



the particle numbers, bulk velocity, and pressure per bin in the simulation space at the same
timestep. We find that the density of matter at the shock front is slightly reduced. However, as
previously explained, this is an expected result of simulation due to the finite spatial resolution.
The particle number in the center of the simulations has higher values than the analytic solution
which can be attributed to the finite minimal number of test-particles in one cell. The small
value of the latter on the other hand leads to large flucutations in radial velocity at the center of
the simulation as seen in Figs. 1(b) and 2(b) as well as in the pressure profile shown in Fig. 1(c).
The pressure is obtained from the stress tensor (see [20] for more details) via a radial average
of the pressure per bin, shown in Fig. 2(c). Overall, we see a very good agreement between the
analytic solution and the kinetic simulations.

5. Summary
In this work we present a transport code which combines the computational advantages of
the Direct Simulation Monte Carlo technique with spatial resolution of the Point-of-Closest-
Approach method to solve the collision integral of the Boltzmann equation. This enables us to
simulate systems with a large number of test-particles in the hydrodynamic regime with a high
spatial accuracy. To ensure that the hydrodynamic regime can be successfully reproduced we
perfom shock wave studies whereas the present work is focused on the Sedov shock wave test. To
facilitate the comparison of our simulation to analytic solutions of shock wave propagation, we
model particle interactions via elastic scatterings with the number of degrees of freedom given
by the number of dimensions in the simulation. The current work verifies that our code is able to
handle matter in the hydrodynamic regime and reproduce the Sedov shock with high accuracy.
To our knowledge, there are no particle methods that addressed the Sedov shock test and our
work represents the first of such studies. In the future we aim to apply our code to study the
dynamics of core-collapse supernovae and matter in inertial confinement fusion capsules.
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