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Abstract: A model of proton-induced multi-fragmentation reactions based on percolation theory is 

described and applied to experimental data. With only the simplest of assumptions the essential 

features of the mass-yield curves, such as their U-shape and their power-law dependence for 

low-to-medium masses, are reproduced. However, the model is. as will be demonstrated, flexible 

enough to allow for the inclusion of different physical mechanisms. The fits to mass-yield data are 

then quantitative over the whole mass range. The connection with real physics is made and some 

relevant experiments are suggested. 

1. Introduction 

The production of complex fragments in nuclear collisions at intermediate and 
high energies is a difficult and far-from-understood area of current nuclear physics 
research. Experiments have been made with both proton and heavy-ion beams and 
the literature is now extensive [for a review, see e.g. ref. ‘)I. Many seemingly different 
phenomena, such as evaporation, spallation, fission and multi-fragmentation reac- 
tions (MFR), have been identified’), but in recent years it is the last of these that 
has received the most attention. This was triggered by the startling suggestion 2, that 
MFR are a manifestation of critical behaviour in nuclei. 

Properties of infinite nuclear matter3) indicate that such a “liquid-gas” phase 
transition is to be expected and it may be that the physical conditions attainable can 
probe the relevant region of the nuclear equation of state. Calculations for real, 
finite nuclei also suggest that some sort of phase instability exists4.5). On the other 
hand, though, investigations of the fragmentation of hot classical drops subject to 
classical molecular dynamics6) suggest that MFR cannot be used to study the phase 
diagram in the region of the critical point. This is because the fragmentation occurs 
not at the isothermal spinodal, but at the adiabatic one, which, in general, does not 
extend to temperatures as high as the critical one. Consequently it is by no means 
certain that the phase-transition model can correctly describe MFR. 
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More fundamental criticisms can also be made of the critical-behaviour approach. 

Is thermalization of the system possible in the short time available, for example? 

Why do so many different experiments give similar results, despite the fact that 

macroscopic phase transitions are notoriously difficult to study in detail? And, at an 

even more fundamental level, can such behaviour be invoked for a very small system 

where the high charge density almost certainly plays an important role? After all, 

many standard thermodynamic arguments lose their validity in the presence of 

long-range forces’), a problem discussed in detail by Thirring’). Questions such as 

these cast doubt on the applicability of standard thermodynamics to the problem at 

hand. 

These criticisms have led to other, more conservative descriptions of multi-frag- 

mentation reactions. Sequential evaporation has been extended to higher excitation 

energies’) and is useful for obtaining some information on the time development of 

the system. Initially the system is supposed to be in a state of thermal equilibrium 

and the evaporation is a surface phenomenon. However, TDHF-based approaches 9, 

suggest that multi-fragmentation occurs throughout the volume of the system, but 

such calculations suffer from, amongst other things, problems in the description of 

the collision phase. 

Phase-space calculations with thermodynamical input have also been made 1o-12), 

whereas other authors make statistical assumptions which lead to a description of 

MFR as a shattering13) or a percolation-like’4) process. 

The maximum entropy formalism has been used to show that the available MFR 

data contain rather little physical information 15,16). This approach resembles stan- 

dard percolation theory (SPT)“), insofar that both provide the statistically most 

favoured state. Deviations of the experimental results from these predictions give a 

clue to the true physics of MFR, but these are unfortunately small. 

In view of the many different models used and assumptions made in the study of 

MFR. we felt that it would be useful to have one method which could be used in a 

flexible manner to test uarious physical assumptions. To this end we proposed the 

nuclear lattice model (NLM)“). In its simplest form the nucleons are taken to 

occupy the sites of a three-dimensional simple-cubic lattice. Neighbouring pairs of 

sites are connected initially by bonds. Some bonds are then broken in a model- 

dependent manner and the size distribution of connected nucleons (which we call 

“clusters” and identify with nuclei) is evaluated. We explain the details of the NLM 

in sect. 2, where we also discuss its similarity to and differences from standard 

percolation theory. 

With such a flexible model the effects of various assumptions can be studied. 

Breaking the bonds in a random, uniform way corresponds to a purely statistical 

break-up, which in some ways can be associated with the multi-fragmentation of a 

thermalized system. As we show in sect. 3 this approximation describes the general 

features of the mass-yield data quite well, but improvements can be made, as we also 

describe in that section. In sect. 4 we consider other observables, in particular the 

multiplicity distributions. 
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Of course, the NLM is a crude approximation of reality and some justification of 
it is necessary, as is the physics of the bond breaking. These points are covered in 
sect. 5. We note also that both proton and heavy-ion beams are used to study MFR 
and it is not yet clear that the physical mechanisms are the same. In principle the 
NLM can be used for both types of projectile, but proton-induced reactions are 
more amenable to a first application of the model, in view of the assumptions 
inherent in it. This point is discussed further in sect. 5 and we end with our 
conclusions and outlook for future use of the model. 

2. Percolation theory and the nuclear lattice model 

2.1. PERCOLATION THEORY FOR FINITE SYSTEMS 

Any percolation model has two crucial ingredients: a description of the distribu- 
tion of a set of points or sites in a given d-dimensional space, and a criterion for 
deciding whether two given points or sites are connected. Connected sites are said to 
form clusters and by definition there is no path between different clusters. The study 
of properties of these clusters constitutes percolation theory. 

The most easily visualizable percolation model consists of a lattice, the sites of 
which are occupied at random with a probability p. If p is not too big, only small, 
isolated clusters are produced, by for p --) 1 a cluster extending throughout the 
whole lattice exists. This is known as the percolating cluster. The fundamental result 
of percolation theory is that for pc sp I 1 the percolating cluster occurs with 
probability one, providing that the lattice is infinite in extent. That is, for p -c pc no 
percolating cluster exists and for p 2 pc one and only one such cluster is present. The 
quantity pc is called the critical occupation probability and the properties of the 
clusters for p close to pc are described by scaling theory”). We call the above- 
described model standard percolation theory (SPT), since a lattice is present which is 
both infinite in extent and occupied randomly. 

The results of scaling theory show that only the dimension of the lattice plays a 
role in determining the properties of the clusters close to the percolation threshold. 
In particular, these properties can be expressed in terms of a few so-called critical 
exponents, which are purely dimension dependent. For example, as a function of p 
the number of clusters of size s per lattice site, n,(p). varies as 

n,(p)as-‘f(s”(~-~c)), (2.1) 

where f(0) = 1 and +r and u are critical exponents with values for d = 3 of about 
2.15 and 0.45, respectively. The so-called scaling function f is discussed in ref. “). 

The percolation threshold pc itself depends not only on the dimensionality of a 
lattice, but also on its particular topology. For the square lattice pc = 0.593, whereas 
for the simple, body-centred and face-centred cubic lattices pc = 0.311, 0.245 and 
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0.198, respectively”). For simple hypercubic lattices 

PC = 1/(2d - 11, (2.2) 

for d + cc dimensions. Despite this topological variation, scaling theory shows that 

the cluster properties of, say, a simple and body-centred cubic lattice will be 

identical for the same value of p - pc (see eq. (2.1)). 

The sudden appearance of an infinite cluster for p zpc suggests that something 

rather like a phase transition is occurring. Consequently SPT is used to describe both 

thermodynamic and magnetic systems undergoing changes of phase. A more exotic 

application has been made in the study of the quark-gluon plasma ly) and it can also 

be applied to more general collective phenomena, polymer gelation and the spread 

of blight in an orchard. 

One might worry that for the study of a gas, for example, the lattice is rather 

artificial and should be dispensed with. Calculations show, however, that its presence 

plays a small role and the results for randomly positioned as well as randomly 

occupied sites differ only slightly from those of SPT17). 

An intimately related percolation model is that of bond percolation. Instead of the 

sites being occupied at random, all sites are occupied, but the bonds between them 

are broken at random with a breaking probability pR. The critical breaking probabil- 

ities pBC are 0.500 and 0.751 for square and simple-cubic lattices. respectively17). 

and we stress that for pR 5 pBC the percolating cluster exists, in contrast to the 

above-described site-percolation problem where it is present for p 2 pc. Otherwise 

bond percolation can be described in the same way as site percolation and, in many 

cases, transformations can be made from one to the other’“). A combination of 

bond and site percolation has also been constructed”) which we are considering as a 

possible extension of the NLM for the study of heavy-ion induced MFR (see sect. 6). 

We take the bond-percolation problem to be the starting point for the NLM 

description of MFR and our eventual aim is to relate the concept of our bonds, and 

hence the breaking probability, to the effective nucleon-nucleon interaction. Campi 

et al. 14) use the site-percolation problem as the basis of their calculations. 

The main difference between the NLM and SPT is that the nuclear system is 

described by a finite lattice in order to include important finite-size effects. For such 

a lattice p ac (and, of course, pc for the site problem) is no longer well defined, since 

the percolating cluster can disappear for p R < p RC. In fig. 1 we show as a function of 

pR and n the percolation probability P,._, defined as the probability with which a 

single cluster connects two opposite faces of a finite n x n x n simple-cubic lattice. 

As n -+ cc P,,,,, tends to the step function 

P pert -’ et Pet -Pa). (2.3) 

It is useful to study some properties of these finite-lattice calculations. This we do 

by evaluating the fractional shift E and the fractional rounding 6 of the distribution 
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Fig. 1. For various values of n the probability of bond percolation, P,,,,( ~a), is shown as a function of 
the breaking probability pR for n x n X n simple-cubic lattices. 

P,,( pB) with respect to the infinite-lattice limit. If paI and pB9 are defined by 

J&J PSI) = 0.17 f&J PA = O-9, (2.4) 

and the critical breaking probability psc( n) for the finite system by that value of the 
breaking probability for which the absolute value of dP,,,,( p&/dp, is a maximum, 
we can write 

E(n) = (PI&) -PBCbwPBCc4 

w = (PsA4 -P*9bwp,&). 

In fig. 2 we plot these quantities as functions of n and conclude that 

E(n) =r 0.20/n*~96 ) 

i3( n) = 0.80,‘t~‘~~. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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Fig. 2. The fractional shift I and fractional rounding S(n) as defined by eqs. (2.5) and (2.6). are 
shown as functions of n for n x n X n simple-cubic lattices. The straight lines are the fits of eq. (2.7) and 

(2.8). 
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These results should be compared with those presented by Fisher**) and Heermann 

and Stauffer*l), who show that for large but finite lattices (10 I n I 100) both a 

and 6(n) are proportional to l/n’/‘, where the critical exponent Y is about 0.88 for 

d = 3 [refs. 17.21.22)]. 

The calculation of e(n) is harder than that of 6(n) since, as will be shown below, 

the fluctuations in the fragment yields are largest for pB =pBC. Consequently good 

*statistics are more difficult to obtain. We note, however, that if other definitions of 

E(H) are employed, such as replacing pBc(n) in eq. (2.5) by psi or pB9, similar 

results to eq. (2.7) are obtained: e(n) = 0.47/n’.” and c(n) = -0.33/r1’.~~ with psi 

and p B9, respectively. 

The finite-lattice result that P,,, < 1 for breaking probabilities just less than the 

critical one shows that a finite lattice will begin to break up at a lower value of pB 

than in the infinite case. This may be identified tentatively with results for the 

thermal properties of finite nuclei 3-5 ), which show that a phase instability occurs at 

temperatures less than that expected from infinite nuclear-matter calculations. 

0.6 0.6 1.0 

0.4 0.6 0.6 1.0 

Fig. 3. For a 5 x 5 x 5 simple-cubic lattice the behaviour of (a) P,,,( pa). (b) the mean fragment 
multiplicity (PI), (c) the standard deviation of the fragment multiplicity distribution, (J, and (d) the 

apparent exponent h are shown as functions of ~a. Correlations between these functions are readily 
identifiable. 
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In fig. 3 we show for n = 5 how the behaviour of the mean value and standard 
deviation of the multiplicity distribution are correlated with P,,,( in). (The multi- 
plicity is the total number of clusters produced.) Also shown is the pe dependence of 
the so-called apparent exponent X, which, for small fragment size s, is defined by 

n,( Pa) = const X s-‘(PB). P-9) 

We see that in the critical region h has a ~nimum with value equal to the 7 of eq. 
(2.1). This is one of the main “justifications” of the phase-transition model of MFR, 
since in the droplet theory of Fisher 22) the yield of droplets of size s varies as s p-T 
when the condensation occurs at the fluid’s critical point. The large fluctuations in 
the multiplicity distribution at ~a =pBC( n) are also indications of phase-transition 
behaviour. 

We will return to these results later. 

2.2. THE NUCLEAR LATTICE MODEL 

Having summa~ed the mean features of SPT and described the deviations for the 
case of finite lattices, we now consider in detail the nuclear lattice model (NLM). 

We restrict ourselves, as indicated in the introduction, to reactions of the type 

p+A,-,A,+X, (2.10) 

and so we distribute the A, nucleons of the target nucleus in an approximately 
spherical way over a simple-cubic lattice. We note that arbitrarily deformed nuclei 
can also be considered, but, providing the “nucleus” is reasonably compact, the 
results are essentially unchanged. Initially, therefore, each “nucleon” is connected by 
bonds to a maximum of six nearest neighbours, depending on its location within the 
“ nucleus”. 

We choose a simple-cubic lattice because it is particul~ly amenable for computa- 
tion. As mentioned above, the results of SPT show that only the dimension of the 
lattice has a marked effect on the cluster properties, with, for a given dimensionality, 
the particular topology of the lattice determining only the critical occupation or 
breaking probability. Whereas this can no longer be expected to be true of finite 
systems, we are not aware of any quantitative results and so we hope that our 
calculations are reasonably insensitive to the chosen lattice type. We are investigat- 
ing this point further, 

For a given impact parameter b we then remove from the lattice those nucleons in 
the cylindrical channel with radius r at impact parameter b defined by the fireball 
geometry (see fig. 4). For proton-induced reactions typically 6-8 nucleons are in the 
fireball and so the effect on the results is slight, i.e. c~culations with and without 
removing the nucleons in the fireball channel yield very similar results. Therefore, we 
also obtain nearly the same results for all impact parameters (see subsect. 3.2). 
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p participants” 

Fig. 4. The fireball geometry: the lattice sites in the cylindrical channel with radius r at impact parameter 

h are left unoccupied. 

Using the breaking probability pB as an input parameter, a Monte-Carlo al- 

gorithm decides for each bond individually whether it is broken or not. This 

procedure is followed by a counting algorithm which looks for clusters and evaluates 

their size. The cluster counting is the most time-consuming part of any percolation- 

like calculation and it is important to have a very efficient algorithm for this 

purpose. We have developed a technique, described in the appendix, that enables us 

to perform calculations for a mass-132 lattice in around 8 ms per event on the 

IBM-3084 at GSI Darmstadt. 

Finally we integrate over impact parameter and so obtain complete mass and 

multiplicity distributions for the prescribed value of pR. Spin and isospin degeneracy 

are assumed (but see sect. 6). 

It is clear that the only input for a given target mass is pB, for which different 

prescriptions can be made in an attempt to study the characteristic features of 

various physical mechanisms. Herein lies the great strength of our model, since such 

considerations are not at all possible in other approaches. Physical interpretations of 

pB will be given later in the paper. 

Before proceeding to a consideration of experimental data, it is worthwhile 

exploring the simplest properties of the NLM. For this we assume that pR is the 

same for each bond, independent of its position on the lattice and of the projectile’s 

impact parameter. For such calculations there is essentially no dependence of the 

results on the position of the fireball. 

In fig. 5 we have chosen A, = 132 (“Xe”) and show the behaviour of the 

fragment-mass distribution for various values of pB. When pB is small (0.35) we see 

that a few nucleons and low-mass fragments are evaporated off, with a large residual 

nucleus remaining. For high pB (0.74 and 0.85) no such residual nucleus is present, 

corresponding to complete break-up of the target. 

At intermediate pe (0.60) we obtain a U-shaped mass distribution. This is a 

well-known feature of many experimental mass-yield curves. Gross et al. 11) insist 

that the Coulomb interaction is the main factor responsible for this observation, but 

we see from our model that such a feature is produced solely as a result of the finite 

size of the system. 
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<m> = 55.27 

0 = 7.09 

Multiplicity. m 

Fig. 5. Dependence of the mass yield (left) and multiplicity distribution (right) on the breaking 

probability ~a for the reaction p + Xe. Also shown are the mean value (HI) and the standard deviation (r 

of the multiplicity distributions. The breaking probability ~a = 0.74 is roughly the critical one for this size 

system. 

Also shown in fig. 5 are the multiplicity distributions. The mean multiplicity 
increases monotonically with increasing ~a, a fact that we will make use of later. 

We see from these results that at the critical breaking probability ( ps = 0.74 = pBC) 

the standard deviation of the multiplicity distribution is a maximum, that the 
mass-yield curve has almost a perfect power-law dependence with X = 2.21 2: 7, and 
that there are no longer any high-mass fragments produced: compare pB = 0.60 and 
p B = 0.74. 
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Comparison of experimental data 1.2.23-25 ) with the above-described properties of 

the NLM shows that it is capable of a qualitative description of the available 

mass-yield curves. We now proceed to show that this description can be made 

quantitative. 

3. Comparison with data 

3.1. CALCULATIONS WITH CONSTANT BREAKING PROBABILITY 

In the previous section we used a constant breaking probability over the whole 

lattice to demonstrate that experimental mass-yield curves can be qualitatively 

described by the NLM. Such a pe is also used in this section, but we now attempt to 

make quantitative fits*. 

As far as the details of the calculations are concerned, we note that we typically 

made of the order of lo4 Monte Carlo runs to obtain mass-yield curves with good 

statistics. 

In fig. 6 we display NLM fits to three sets of experimental data: p + Ag at 11.5 

GeV [ref. ‘3)], p + Ta at 5.7 GeV [ref. 24)] and p +i9’Au at 11.5 GeV [ref. 25)]. We see 

that the general quality of the fits is good, despite the fact that, apart from an overall 

normalization factor, there is only one free parameter, namely pB. This is de- 

termined with an accuracy of Ap, = f 0.01 and, interestingly, always takes values of 

about 0.65, being 0.64, 0.67 and 0.67 for p + Ag, p + Ta and p +19’Au, respectively. 

Although the fits displayed in fig. 6 are quite good, we notice that our model 

systematically fails to describe the yields of high-mass fragments (A r + AT). This is 

indicative of real physics, since the purely statistical approach fails. Experimentally 

the high-mass fragments are produced by peripheral processes in which, for example, 

a few nucleons are “chipped off” the target leaving a large residual nucleus, or there 

is inelastic excitation and subsequent decay of the target. An impact-parameter 

independent pB cannot be expected to describe such a production mechanism and 

we present an improvement in the next subsection. 

As remarked on in the introduction, the suggestion that MFR explore liquid-gas 

phase-transition behavior 2, led to increased interest in this type of reaction. In fig. 7 

we show the data for p + Xe at 80-350 GeV taken by the Purdue Group*) together 

with fits according to both the phase-transition picture and the nuclear lattice model 

( pB = 0.82). The two fits are equally good, with deviations from the data in the 

region A, = 6-10 being due to nuclear-structure effects. The fact that our model, 

despite its small physical content, can also describe this data, questions the validity 

of the liquid-gas phase-transition interpretation. Indeed, we have shown that this 

particular mass distribution is determined purely by simple statistics. 

l Due to an erroneous fitting procedure, the constant-p, fits to the same sets of data that were 
presented elsewhere 26,x ) are not quantitatively accurate. 
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Fig. 6. Fits of NLM results to experimental data. (a) p -I Ag at 11.5 GeV [ref.23)], pa = 0.64: (b) p + Ta 
at 5.7 GeV [ref.“)], ~a = 0.67; and (c) p +‘97A~ at 11.5 GeV [ref.25)], pa = 0.67. 
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Fig. 7. For the reaction p + Xe at 80-350 GeV [ref.‘)] the data are fitted by (a) the phase-transition 
model, and (b) the NLM with ps = 0.82. 

The results of fig. 3 show that a given apparent exponent X > T corresponds to two 

possible values of pB that are indistinguishable in the mass region where eq. (2.9) is 

valid. However, if heavy fragments are (are not) observed, one can immediately 

choose that pB less (greater) than pBC. In the p + Xe and p + Kr experiments2) it 

was not feusible to detect heavy fragments and so we apparently are left with an 

undetermined pB: 0.58 or 0.82 for the xenon target and 0.58 or 0.81 in the case of 

krypton. 

Evaluation of the ratio of the two experimental cross sections can, however, 

distinguish between these values. This is shown on the left-hand side of fig. 8, and we 

see that only the higher values of pB describe the data correctly. Consequently, as 

these values of the breaking probability are greater than the critical one, these 

calculations imply that no high-mass fragments will be produced in these reactions. 

The excellent agreement between experiment and the NLM in this case is very 

encouraging. (The right-hand side of this figure is relevant to a later discussion.) 
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0 6 10 15 0 5 10 15 

Fig. 8. The ratio of the yields in the p + Xe and p + Kr reactions at go-350 GeV [refs.2.‘5)]. The squares 

are the data points (with error bars) and the solid dots NLM results with: (a) Constant breaking 

probability, ~a = 0.58 and 0.58 (for Kr and Xe. respectively); (b) Constant breaking probability. 

~a = 0.81 and 0.82 (Kr/Xe); (c) Woods-Saxon breaking probability. paa = 0.62 and 0.62 (Kr/Xe): (d) 

Woods-Saxon breaking probability, paa = 0.88 and 0.88 (Kr/Xe). Isospin symmetry was assumed in our 

calculation. 

3.2. RELAXATION OF THE CONSTANT-p, RESTRAINT 

As stressed above, our initial aim when introducing the NLM was to provide a 
model that could be used to test different physical assumptions. This we now put 
into practice since, as we have seen in the previous section, a purely statistical model 
( pB = constant) cannot reproduce all features of the data. 

The energy deposited in the target by the projectile is larger for central than for 
grazing and distant collisions, and the breaking probability should reflect this. 
Assuming that this energy is deposited uniforms over the target, irrespective of b, 

we choose the simplest physically reasonable ansatz and write 

p’(b) = 1 + exp[;lbB: R)/a] ’ 
(3.1) 
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where pea is a normalization probability (or “central breaking probability”) and R 
is the radius of the target nucleus. Since we do not know exactly how the energy is 

deposited, we leave the “diffuseness” a as a fit parameter. 

We note that when p B( b) # constant, the physical size of the lattice constant, i.e. 

the spacing between lattice sites, must be specified. To do this we assume a bulk 

density equal to that of normal nuclear matter, p0 = 0.15 nucleons/fm3, and so 

obtain the relationship: 1 lattice constant = 1.9 fm. For our calculations we use 

lattice constants = 1.2 AlI3 fm . (3.2) 

We find that a = 1.0 fm is required to describe the data accurately. 

In fig. 9 we fit the same data as in fig. 6 with the p,(b) of eq. (3.1). We find that 

P BO = 0.65, 0.69 and 0.70 for p + Ag, p + Ta and p +19’Au, respectively, and we see 

immediately that the quality of the fit is considerably better and the yields of both 

low- and high-mass fragments are described. Interestingly, for any given set of data, 

p BO is greater than pB. This is because the smaller breaking probability for 

non-central collisions causes a decrease in the production of light fragments which 

must be compensated for by a correspondingly larger breaking probability for 

central collisions, if the experimental yield of low-mass fragments is still to be 

reproduced. The production of small-to-medium mass fragments is dominated by 

central collisions and so it is clear that complete mass-yield distributions must be 

obtained if any meaningful clue to the underlying physics is to be found. 

Applying the ansatz (3.1) to the p + Xe and p + Kr reactions gives values of pBO 
of 0.62 or 0.88 for both sets of mass-yield data. Consideration of the cross-section 

ratio, however, does not enable us to choose a particular value of pBO, since both 

give similar fits to data, as shown on the right-hand side of fig. 8. In this case 

multiplicity distributions would provide the actual pea, as (m) = 10 and 35 for 

p BO = 0.62 and 0.88, respectively (Xe target). 

We also tried different ans’ritze for p B( b) such as 

(3.3) 

which can be derived, for example, from the number of primary nucleon-nucleon 

collisions suffered by the projectile as it crosses the target: clearly this depends on 

the impact parameter and the nucleon mean free path. However, this ansatz fails to 

reproduce the entire mass-yield distributions as well as eq. (3.1). 

4. Multiplicity distributions and the apparent exponent 

We found in sect. 2 that the apparent exponent A, as defined by eq. (2.9), has a 

minimum value, equal to the critical exponent 7, at the percolation threshold 
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Fig. 10. The apparent exponent h as a function of (a) ,D,~. and (b) the mean multiplicity (HI) for the 
p + Xe system. The solid (dotted) curves are for a uniform (Woods-Saxon) breaking-probability distrihu- 

tion and the dots indicate the X-values required to fit the mass-yield data. 

specified by eq. (2.4). We also discovered that the mean fragment multiplicity (m) 

increases monotonically with increasing breaking probability, which was assumed to 

be constant over the entire lattice, and independent of the impact parameter. This 

monotonic increase allows elimination of the somewhat artificial quantity pB and 

consequent construction of A((m)). For the p + Xe system the results are shown in 

fig. 10, with the solid points indicating the value of X that fits the data (see fig. 7). 

Clearly a mean multiplicity measurement would, independently of the complemen- 

tary p + Kr data, determine which of these two points is the physically relevant one, 

and hence the “true” value of pB. In the previous section we took pH = 0.82, 

equivalent to (m) = 83, as opposed to p B = 0.58 ((m) = 21). As noted above, such a 

multiplicity measurement is necessary to determine the “true” value of p RO. 

In this figure we also show the behaviour of X((m)) for the ansatz (3.1) for 

p,(b). We see that in this case the mean multiplicities are much smaller for a given 

X, because heavy fragments are inevitably produced. We see quite clearly that the 

correlation between A and (m) is another tool that can be used to disentangle ihe 

physics of MFR. Unfortunately, to our knowledge no data exist at present which 

encompass both measurement of X and (m). 

Coming now to the discussion of the multiplicities alone we note a striking 

discrepancy between our results and those of Gross et al. I’). They must specify the 

maximum allowable multiplicity ab initio, and, furthermore, must limit it to no more 

than 6 for computational reasons. Their resulting values of (m) are 3.0, 3.7 and 3.5 

for p + Ag, p + Ta and p + 197A~ respectively. However, as previously stated, the , 

only free input to the NLM is pB (or pBO) and the multiplicity distribution is 

automatically obtained along with the mass yields. For the fits shown in sect. 3 (fig. 

6) the calculated values of (m) are 27.7, 46.4 and 51.8 for p + Ag, p + Ta and 
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p +‘97A~, respectively, which are consistently about an order of magnitude greater 
than the results of ref.“). With the improvement of eq. (3.1) we obtain (for the fits 
shown in fig. 9) values for (m) of 12.0, 22.4 and 26.0 for p + Ag, p + Ta and 
p +‘97A~, respectively, which are also considerably larger than Gross’s results. 
Similar multiplicities to ours have been calculated by Bondorf et al. ‘*) using a 
thermodynamic approach. 

5. Justification of the NLM and inte~retation of pa 

In the previous sections we have seen that the nuclear lattice model can give a very 
good description of proton-induced MFR. It was also demonstrated that different 
physical processes can be incorporated within the model, as was initially hoped. 
Nonetheless, it was clear from the outset that the NLM has artificial features which 
lead one to question whether such a model can truly describe reality. However, 
somewhat paradoxically it seems that a simple description works because the process 
is complicated. The same is true in other areas of physics, good examples being 
flipping a coin or, as pointed out in ref.‘), thermodynamics. We now intend to 
justify the model a po~~erjori. 

As pointed out in sect. 2$ results of SPT show that the presence of the lattice does 
not play a major role in determining cluster properties. We do, however, assume that 
the motion of the nucleons in the target can be neglected, or, in other words, that the 
projectile sees a frozen image of the target. This assumption is good for proton- 
induced collisions at the energies discussed in this paper, since the proton energy is 
much greater than the Fermi energy of the nucleons in the target. For heavy-ion 
projectiles one expects considerable distortions of the nuclear shape, perhaps cou- 
pled with high compressions, and then some re-consideration of the NLM becomes 
necessary. This will be done in the following section. 

The model can also be criticized on the grounds that all possible partitions of the 
lattice are considered, without any allowance for, in particular, energy conse~ation. 
At the energies considered here, however, the proton has more than enough energy 
to break any reasonable nucleus into its constituent nucleons and energy conserva- 
tion probably does not play an important role in determining the mass spectra. 
Underlying this statement is the assumption that the fragmentation is a fast, direct 
one-step process. In addition we note that it is not at all yet clear by what means 
energy is deposited in the spectators and consequently how energy conservation 
should be correctly formulated. 

We do, however, conserve nucleon number and will also conserve charge when an 
isospin-dependent breaking probability is considered (see below). 

The representation of complicated nucleon-nucleon interactions by only one 
parameter, the breaking probability, is, of course, a drastic simplification of reality 
and some link between these interactions, the excitation energy of the nucleus and 
pB is required if the NLM is to be more than a sophisticated counting game. We 
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Fig. 11. Excitation functions for the production of (top left) ‘Be (dots) and 24Na (triangles) in p + Ag 

reactions’X), and (top right) 24Na (triangles) and 175Hf (dots) in p +ly7Au reactionszx). Note the 

saturation of the yields at higher incident energies. In the lower portions of the figure we show as a 

function of pa the yields of (bottom left) mass-7 (“Be”) (dots) and mass-24 (“Na”) fragments (triangles) 

for a mass-107 (“Ag”) target, and (bottom right) mass-24 (“Na”) (triangles) and mass-175 (“Hf”) 

fragments (dots) for a mass-197 (“Au”) target. Comparison of the two left-hand figures and the two 

right-hand ones to each other, and reference to fig. 6, suggests that 0.64 spg” 5 0.72 and 0.67 I pg” I 

0.74 for p + Ag and p +197 Au, respectively. 

stress from the outset, though, that this is a far from trivial task and one that 

requires considerable investigation. 

We begin by considering some data which have far-reaching consequences for our 

model. In fig. 11 we show excitation functions for the production of various 

fragments in the reactions p + Ag and p + 19’Au. The data were gathered from 

ref. 28) and references therein. We see, quite surprisingly, that the production cross 

sections for all types of fragment saturate above about 5 GeV incident proton energy 

and remain constant even when this energy is considerably greater. This can be 

interpreted as a limitation of the amount of energy that can be deposited in the 

target ‘.14). Naively, one expects the breaking probability to increase monotonically 

with increasing beam energy, but the results of fig. 11 imply that a limiting breaking 
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probability p;i’“, smaller than unity, is to be expected. This is an extremely 
important ingredient in the connection between the NLM and physics. 

In the lower parts of fig. 11 we display the yields of various masses as a function 
of pB for the p + Ag and p + Au systems. Clearly as ps + 1 these yields must 
vanish, which suggests, when due allowance is made for the mass-yield fits shown 
previously, that 0.64 I pg” I 0.72 for p + Ag and 0.67 s pg” I 0.74 for p +ig7 Au. 

With the ps(b) of eq. (3.1) the nucleus is not, on average, completely broken up 
for pa0 + 1 and the corresponding limits on pgr are 0.65 <pg$ I 0.85 for p + Ag 
and 0.70 I pgr I 0.75 for p +i9’Au. 

The data of ref.*) suggest that p:” = 0.81 and 0.82 for p + Kr and p + Xe, 
respectively, since the fragment yields remain essentially constant for proton en- 
ergies between 80 and 350 GeV. 

We turn now to particular calculations of the breaking probability. 
The cold-fragmentation picture of MFR, in which the spectator matter remains 

essentially cold and then breaks up, rather like the shattering of glass under impact, 
due to internal stresses or hydrodynamical instabilities at the participant-spectator 
boundary, has been quite successful 13*15). In this picture Hufner 29) obtains a typical 
value for the breaking probability of about 0.6, in qualitative agreement with our fits 
to the data. 

In this context we would like to note again that implicit in all our calculations has 
been the assumption of a cold fragmentation, i.e. a direct reaction. The other 
extreme is that of using a the~~yna~~ approach 11*12). In this case the effects of 
the final state phase space become important and have to be taken into account. 

In such a framework it is also possible to make an analogy between the NLM and 
the Ising model of ferromagnets5). It can then be shown21*30) that the temperature 
dependence of the breaking probability is 

where EB( 2”) is the energy required to break each bond (i.e. one-third of the binding 
energy per particle in an infinite simple-cubic system). In the Fermi-gas model at 
low temperatures 

E&‘-) = 16 -&T*, (5.2) 

whereas for real nuclei (also at low temperatures)3) 

E,(T)=8-*T? (5.3) 

Assuming that the listing excitation energy of nuclei is about 5 MeV,/A [refs. i*14), 
eqs. (5.2) and (5.3) give values of p;” of 0.66 and 0.85, respectively. The results of 
Bonche et ~1.~) correspond to pg” = 0.89-0.95, depending on the force used, 
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whereas Dean and Mosel suggest 5), also on the basis of a thermal model, that 

pg” = 0.84. All these values lie in the right “ballpark” and, interestingly, they are all 

close to the critical breaking probability. This could be one reason for the apparent 

success of the phase-transition model of MFR. 

As previously noted, the apparent exponent h, defined by eq. (2.9) has a 

minimum value equal to the critical exponent r when pa = p RC (see fig. 3). Since 

the same is true for a system undergoing a thermal phase transition at the critical 

point, Panagioutou et al. ‘l) claim that the critical temperature T, can be extracted 

from the available data. They suggest that A has a minimum at T = T, = 12 MeV. 

The extraction of temperatures from data is, however, very difficult and subject to 

considerable interpretational problems 11,32) and, perhaps more seriously, the results 

of classical molecular-dynamical calculations6) indicate that the critical region itself 

cannot be probed by MFR. Consequently, it would be unwise to use this procedure 

to determine the functional dependence pR(T). We simply note once more than 

A( p B) and A( paO) display minima independent of any thermodynamical input. 

6. Conclusions and outlook 

We have presented a tool with which different aspects of proton-induced MFR 

can be investigated. With only the simplest of assumptions we obtain an excellent 

description of the mass-yield curves, in particular their U-shape and l/A”, depen- 

dence for small-to-medium masses. 

The connection with SPT has also been shown, and possible relationships to real 

physics of our only free parameter, the breaking probability, have been described. 

This parameter does not seem to vary very significantly from one system to another. 

We have also demonstrated the importance of multiplicity measurements and 

complete mass-yield distributions. The relationship between multiplicity and ap- 

parent exponent is a particularly sensitive test of the physics of MFR, but suitable 

data is unfortunately lacking. 

If, however, the NLM is to be more widely applicable, it must be extended to 

include heavy-ion reactions and to allow for a description of energy-related observ- 

ables such as the energy spectra of the fragments. To calculate the latter it might be 

possible to allow the fragments to move apart from each other under the influence of 

their mutual Coulomb repulsion. It would be necessary, however. to work in a 

six-dimensional phase-space, with the momentum distribution of the particles intro- 

duced ab initio. This distribution could be taken from an appropriately calculated 

Wigner function, which would then also account for the Pauli principle14). It is 

important to note that such a version of the NLM would differ from d = 6 SPT 

insofar that the uncertainty principle implies that the position and momentum 

coordinates of the particles are not independent variables. Work in this direction is 

underway. 
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Another energy-related question is that of excited-fragment production and subse- 
quent de-excitation. In the version of the NLM described in this paper all clusters 
generated are allowed, whether they are approximately spherical, cylindrical 
(“spaghetti” clusters), planar (“lasagne” clusters) or have more complicated 
non-compact shapes. In principle only the roughly spherical clusters should be 
detectable; the others should be allowed to de-excite, that is, be split into smaller, 
more compact clusters. The rms cluster radius and the ratio of surface area to 
volume could be among appropriate criteria for this subsequent division. As percola- 
tion theory shows that clusters are ramified for pB > pBC [ref. “)I, many highly 
deformed “nuclei” will be formed for pr, close to pz”, which may be of particular 
importance for the p + Xe and p + Kr systems. We intend to investigate the effects 
of subsequent de-excitation in future work. 

For a simple-cubic lattice, as used in the NLM, the number of nearest neighbours 
is six, whereas the a-particle, with no more than 3 bonds per nucleon, is the most 
stable composite nucleus. In connection with this and the known saturation proper- 
ties of the nucleon-nucleon interation, it may be possible to use the idea of 
percolation with restricted valence33). Here occupation of a site or existence of a 
bond is prohibited if it leads to a site being connected to too many neighbouring 
sites. The ,effects of this in the nuclear case are worthy of investigation, as restricted 
valence seems to lead to a different percolation threshold33). 

Not unrelated to the restricted-valence problem is consideration of the spin and, 
perhaps more importantly, the isospin dependence of the nucleon-nucleon interac- 
tion. It would be entirely possible to allow ~a to depend on the spin and isospin 
states of the nucleons, thus permitting calculation of isotopic distributions. 

We feel that study of heavy-ion MFR should and can only be made concurrently 
with investigation of momentum-dependent effects. The reason for this lies in the 
belief that such reactions involve deformations and compressions very much larger 
than those expected with a proton projectile. How two heavy ions deform and 
respond to each other at these energies is not entirely understood, but the field is 
both fruitful and expanding. If such studies can provide a phase-space distribution 
of the nucleons, then this could be a useful starting point for a heavy-ion version of 
the NLM. 

In addition, a combination of bond and site percolation could be used in a 
description of heavy-ion reactions, with the site-occupation probability being related 
to the density of the system and the bond-breaking probability to its temperature. A 

phase diagram, similar to that used in other applications of percolation theory21,30), 
could then be constructed. 

To conclude, we stress once more that the nuclear lattice model is an extremely 
powerful and versatile tool for investigating different physical mechanisms within 
the same approach. Encouraged by the results presented here and stimulated by the 
possible extensions discussed above, we hope that further use of the NLM will 
elucidate the physical processes occurring during a multi-fragmentation reaction. 
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Appendix 

We describe in this appendix the algorithm used for the counting of the clusters. 
Let us denote the set of all grid points in an n X n X n cube by A and by A(O) s A 

the subset of sites occupied by uncounted “nucleons”. We note that for each 
member of A only one flag is required to indicate either whether it belongs to 
B = A - ,4(O) or to an already-counted cluster. Initially bonds are assumed to exist 
between all neighbouring pairs of sites belonging to this subset. These bonds are 
then “broken” with a probability pB, and the problem is to “detect” and measure 
the size of the clusters so produced. 

We scan A until the first point belonging to Ato) is found. This we denote by PI, 
and we must now find all the other points of A”’ connected by unbroken bonds to 
P,. We call C(O) = (P,} the zeroth generation of C, where C = {P,, . _ . , Pm} repre- 
sents all the sites of the cluster (of size m), of which PI is a member. All sites 
neighbouring P, and belonging to A (l) = A(‘) - 0” are then examined and those 
connected to P, by unbroken bonds form C (l) In general the nth generation of C, . 

C’“‘, consists of all those points of A(“) = Acn -l) - C’” -I) which are connected via 
bonds to at least one point of A (nP1). This procedure is repeated until Ccn) = { }, 
and the total cluster is then given by 

c= fi C”‘. 
i=o 

We illustrate our algorithm in fig. 12 for a square lattice. The different generations 
of C for P, = (1,2) are 

c(O)= ((1,2)}, 

c’“= {(2,2)}, 

Cc*‘= {(2,1),(W)}, 

Cc3’= {(3,1),(3,3),(42)}, 

ct4’= ((4,1),(4,3)}, 

C’S’ = { } 

and C is then a size-9 cluster. 

2 p, 
1 

E. . 
I 5 2 3 4 

Fig. 12. Illustration of the cluster-counting algo~thm for a square lattice. The occupied sites are indicated 

by dots and the unbroken bonds by solid lines. 



W. Bauer et (11. / Nucleur lattice model 121 

The algorithm is then continued with a new starting point, Pyw, that belongs to 
A(% Ww = A(O) - C until AC”Lnew = 0. 
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