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Abstract: The existing BUU theory of heavy ion collisions is modified to conserve total momentum and 

retain the two-particle correlations induced by the collision term. In this framework the two-proton 

correlation function is investigated for heavy ion collisions. For light heavy-ion systems (i60, ‘*C) 

and intermediate beam energies (25-85 MeV/nucleon) the experimental features of the correlation 

function are reproduced. 

During the last few years many experiments investigating correlated light particle 

emission in heavy ion reactions have been performed for intermediate lm6) and high 

beam energies 7*8). For high energies the dominant contribution to the proton-proton 

correlation function is found to be the direct knock-out ‘). In this energy domain 

correlations between protons emitted with nearly equal momentum can be used to 

determine size and lifetime of the collision zone 9,10). For intermediate beam energies 

(20-200 MeV/nucleon) the importance of the conservation of total momentum has 

been pointed out 6*11,12). 

Theoretical models based on the assumption of local thermal equilibrium like the 

“fireball” model i3*14) as well as models based on semiclassical transport equations 

(“BUU”, “VU,,‘) 15-‘*) have been quite successful in reproducing protons singles 

spectra in heavy ion collisions at the energies in question. However, neither in the 

fireball model nor in BUU/VUU total momentum is explictly conserved. Thus both 

approaches cannot address the question of the importance of this conservation law 

for light particle correlations. 

In this paper we modify the equations used in the BUU-approach to take 

momentum conservation into account. Our starting point is the BUU equation: 

4 
~-VX.V~U+V*f,.p/m=- 

(27r13 
d"pz d3p, da ~12 g s3(p, +pz-p3-~4) 

x (f3f4(1 -fXl -fd -f&(1 -f3)(1 -f4)) (1) 

for the time evolution of the phase space density J = f ( ri, pi, t). In (1) oi2 is 1 p, -p&m 

and the integration da is performed over the relative angles between p1 -p2 and 
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p3-pd. Commonly this equation is solved in the test particle simulation which 

results in the set of coupled differential equations: 

dr. L- dt -Pilmiv 

~c-vru(P(ril) + c(Pi) I 

i=l,..., n * (AT+ &I (2) 

for the test particles. AT and AP are the target and projectile mass. n is the number 

of test particles per nucleon. This number should for practical purposes at least be 

100 to guarantee a smooth spatial behaviour of the density p. The term C(p<) 

represents the contribution of nucleon-nucleon collisions to the change of the 

momenta of the test particles. The collisions are treated using a cascade approach 19) 

in which the NN cross section is parametrized as a function of energy and angle 

in the NN center-of-mass system. The effects of the Pauli principle for the final 

states of the nucleons after the collision are also taken into account (compare 

reference ‘“)). The mean field potential is taken from a density dependent Skyrme 

parametrization 20921) 

0 

4/3 

U(p)=-218MeV*P+164MeV* p . 
PO PO 

The corresponding equation of state in the one-body limit yields a nuclear matter 

binding energy of -15.75 MeV, saturates at p = po, and yields a nuclear compressibil- 

ity of K = 235 MeV. There is no Coulomb interaction included. Since we will only 

apply our calculations to small systems, the Coulomb interaction is not too important. 

The potential used does not properly describe the nuclear surface. However, it turns 

out in the calculations that impact parameters around &,,,, deliver the maximum 

contribution to the observables extracted. The peripheral reactions which are not 

properly described with the potential of eq. (3) do not contribute very much to, for 

example, the total proton cross section. 

Whereas total momentum is exactly conserved in the NN collisions this is not 

the case for the interaction of the individual test particles with the mean field U(p) 

resulting in small fluctuations of the total momentum P of the system. Furthermore, 

different subsets of (AT+ AP) test particles can exchange momentum which results 

in a wide spread of total momenta II, for these subsets 1 around the value P/n. 

Here we propose a modification of the set of equations (2) which also results in 

a slight physical reinterpretation. Instead of propagating n(A,+A,) test particles, 

we simultaneously propagate n events of A,+A, nucleons each. The phase space 

density f( r, p, t) is averaged over all n events to assure the same accuracy in the 

evaluation of the mean field potential and the Pauli-blocking factors (1 -f( r, p, t)) 

as in the conventional BUU approach. In this reinterpretation the cascade part 
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remains practially unchanged. However, in deriving the BUU equation, two-particle 

correlations are calculated perturbatively to obtain the collision integral. These 

correlations will be included in the modified BUU theory by restricting collisions 

to collisions between particles in the same event simulation. It is now possible to 

enforce conservation of momentum in every event separately at every time instant via: 

dr 
A_ 
dt -Pjlmj, 

q =ZXAp V Vdrk)) 
&-+A, 

j = 1,. . . , (AT+ AP) . (4) 

It is easily verified that indeed 

II, = C pj = constant. 
j=l 

The correction introduced via q is merely a shift of the total momentum of the 

system and compensates for the error made in the evaluation of the equations (2). 

BUU calculations with sets of ensembles were already performed before 15), but 

without enforcing conservation of total momentum. 

The ansatz of eq. (4) violates energy conservation. A similar correction could be 

introduced to assure the explicit conservation of total energy of the system. However, 

in numerical studies we found that over a time interval of 200 fm/c total energy 

was conserved down to 1 MeV/nucleon. This value was not much different from 

what we found using an original BUU calculation. Thus this effect is negligible in 

the beam energy region of interest in this paper. 

We have compared our calculations to experimental data for the systems 

25 MeV/nucleon I60 + ‘*C [ref. 3)], 40 MeV/nucleon ‘*C + ‘*C [ref. 2)], and 

85 MeV/nucleon “C+ ‘*C [ref. “)I. It would be very much desirable to also compare 

to heavier systems. However, to extract proton-proton correlation functions with 

reasonably small statistical errors, we need to generate a large number of events. 

This number is of the order of 10 000 to 100 000. In addition, the emission of protons 

is not limited to the early phase of the heavy ion reaction like (for example) the 

emission of photons [ref. ‘“)I. In all experiments under consideration contributions 

of projectile evaporations were not negligible. Therefore every event has to be traced 

for a comparatively long time. Both of these requirements result in a rather large 

consumption of CPU time and have limited us to the study of these smaller systems. 

Before we approach two-proton correlations we wish to present our simulation 

of the singles spectra. In fig. 1, we compare our results (histograms) to the experi- 

mental data for the reaction 25 MeV/nucleon 160 + r*C + p+X as a function of 



W. Bauer / Light particle correlations 

106 

105 

104 

3 
s lo3 

7 3 102 

S 101 

z > 100 

a 10-l 

10-2 

,P) 

(x10’) 

(x103) 

m 

$ 
4, 

“, 7o” (x102) 

% 

D % 130° (x10’) 
“. 0 
% : 160’ (x10’) 

....BI.,.,,..L,-L &L., 

607 

E (MeV) 

Fig. 1. Double differential proton cross sections for the reaction 25 ~eV/nucleon 160+ 12C. Our calcula- 
tions (histograms) are compared to the data (circles) from ref. ‘). 
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Fig. 2. Double differential proton cross sections for the reaction 40 MeV/nucleon “C f “C. The calcula- 
tions are represented by histograms and the data (circles) are taken from ref. ‘f. 
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proton energy and emission angle 8. In fig. 2, a similar comparison is made for the 

reaction 40 MeV/nucleon 12C + 12C + p+ X. For each figure 40 000 events were 

generated. 

It can be seen from figs. 1 and 2 that the overall normalization of the cross section 

is well reproduced. The angular and energy dependences of the experimental cross 

sections agree with our calculations in all cases. 

We define the two-particle correlation function 

UR * Q12 
=- 

(+l * 02 

= a, ’ I I dE, 
dE d4a,2(&, E2, 01, 0234) 

2 

A& A% dE1 don, dE2 da, /I 

dE d’o,(E,, 0,) 

AE, r dE, dR, 

X I dE d2a2(E2, 02) 

A.% 2 dE2dR2 ’ (6) 

In this definition oR = T* (&-I- Rp)’ is the total reaction cross section. A& and 

AE2 are the energy intervals over which the cross sections are integrated. 4 is the 

relative azimuthal angle between the two coincident particles. 

It is useful to write eq. (6) in terms of emission probabilities E. With 

d4E,2(K, E2,4,e2,4) 

dE, dR, dE2 d0, ’ 

; 
i=1,2, 

eq. (6) reads: 

wl, e2, 4, Ab, AE2) 

dE d4E12(&, E2,4, e2, 4) dE d24% 0,) 
2 

dE, don, dE2 dR, ’ d&d&I, 

X dE d24E2, &A 
’ dE2da2 ’ 

(7) 

(9) 

In case of statistically independent emission of particle 1 and 2 the emission 

probability sr2 factorizes 

&12(&, J32, 6, e2, 9) = &I(&, 4)E2(E2,e2) 

and it is then obvious from eq. (9) that for this case 

C(e1,e2,4,AE,,AEz)~l. 

(10) 

(II) 
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Values of C < 1 mean a suppression and C > 1 an enhancement of the emission 
of particle-2 into the phase space region {@,, I$} due to the coincident emission of 
particle-l into the phase space region { &, E,}. 

For intermediate energy systems there are plenty of data available. For the reaction 
25 MeV/nucleon 160 + “C + 2p+X we have compared our results to the experi- 
mental data ‘). In this experiment, a trigger detector was placed at an angle 8, = 40” 
with respect to the beam axis. A second detector was placed at the angles & = 15”, 
40”, and 70” with respect to the beam axis. Its azimuthal angle (b relative to detector 
1 was varied between 0” and 180” to obtain azimuthal correlations. The energy 
intervals used for both detectors were AE, = AE2 = [36 MeV, 120 MeV] := Es6. In 
fig. 3 the experimental results are represented by circles and the histograms stand 
for the corresponding calculations. 

The most obvious feature from this figure is the fact that the two-proton correlation 
function is always smaller than 1. The emission of a second proton is always 
suppressed due to the emission of the first one. Adopting the language of statistical 
mechanics one can say that this result is a microcanonical effect due to the finiteness 
of the number of particles and available energy. Naively one could argue that at a 
beam energy of 25 MeVfnucleon there are 400 MeV total kinetic energy available 
and the emission of a single proton with an energy of, for example, 40 MeV could 

1.0 I . ’ ’ 
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88 = 4o” 
r 

0 90 180 

f# (de& 

Fig. 3. Two proton correlation function C as a function of relative azimuthal angle 4 for three different 
angles f+ and 8, = 40” for the reaction 25 MeV/nucleon I60 + “C. The data (circles) are taken from ref. 3). 
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only be considered as a small perturbation. However, one has to keep in mind that 
not all of the 400 MeV kinetic energy of the projectile is thermalized, especially not 
in peripheral collisions. The experimentally observed anticorrelation is well repro- 
duced by the calculations for all three angles. 

The data also show an increasing value of the correlation function of the two 
emitted protons with increasing relative azimuthal angle I$ between them. This effect 
is due to the conservation of overall momentum. Due to the emission of the trigger 
particle the remaining system experiences a ‘recoil’. This experimental result is also 
reproduced in the calculations. For e2 = 15” and & = 40” the agreement is very 
satisfying. For 0, = 70” we see differences of up to 0.15 in the values of the experi- 
mentally and theoretically extracted correiation functions. This could be partially 
due to the poor statistics for this angle in the theoretical study. 

In two other experiments 2*4) th e in-plane/out-of-plane ratio R( 8i, &, A&, AE,) 

was investigated. This ratio is defined as 

(12) 

In both experiments the system 12C+ 12C was investigated. The trigger detector 
was placed at 8, =45”, and 62 was varied. In fig. 4 the beam energy was 
40 MeV/nucleon. The low-energy cutoff for both detectors was 10 MeV. The data 
were taken from reference **) and are represented by the symbols. Our calculation 
(histogram) can roughly reproduce the experimental findings. The ratio R is always 
between 1 and 1.5. In fig. 5 the same quantity is plotted for the beam energy 
85 MeV/nucleon. In this experiment “) a low energy cutoff AE, = 35 MeV was used 
for the trigger detector and AE, = 55 MeV for the other detector. Again the calcula- 
tions roughly reproduce the magnitude of the experimental ratio for all angles 19~. 

g 2.00 
b, 12c + 12c -* 2p + x 

E beana = 40 MeV/nucl 

Fig. 4. In-plane/out-of-plane ratio as a function of S, for 8, = 4.5” for the reaction 40 MeVfnucleon 
‘*C+ ‘*CL Our calculations (histograms) are compared to the data (circles) from ref. *‘). 



W. Bauer / Light particle correlations 611 

Fig. 5. In-plane/out-of-plane ratio as a function of e2 for 8, =45” for the reaction 85 MeV/nucleon 
“C + ‘*C. The data from ref. “) are represented by circles and our calculations by histograms. 

In both cases the fact that the in-plane/out-of-plane ratio is bigger than 1 has to 
be attributed to the effects of the overall momentum conservation. A BUU-calculation 
without the explicit conservation of momentum gave values of R which did not 
deviate significantly from 1. 

In both systems there is no particular enhancement of the ratio R at &=45’ 
visible which would correspond to a quasielastic pp scattering. In reference “) it is 
estimated that such a pure quasielastic pp scattering process would give values of 
R up to 9. In both experiments no such enhancement was observed. This also agrees 
with our calculations. This suppression of the quasielastic pp scattering contribution 
might surprise at first, but the reason is probably to be found in the wide distributions 
of NN center-of-mass momenta for individual collisions due to the Fermi motion 
of the nucleons. In all of the reactions considered, the Fermi spheres of target and 
projectile had at least partial overlap. For higher beam energies the direct knock-out 
component should be relatively enhanced and become visible both in the calculations 
and the experimental data. 

To sum up we can state the following: The observed in-plane/out-of-plane ratios 
can be understood in terms of overall momentum conservation for the emitting 
system. The two-proton correlation function mainly reflects effects of this conserva- 
tion law and the finiteness of the available energy. In the reactions considered, there 
are no obvious signatures for the presence of a direct knock-out component as 
expected from a pure quasielastic pp scattering. The calculations agree with all of 
these experimental findings. Thus we can also conclude that in the mass and beam 
energy range investigated here the effects of additional two-particle co~elations in 
the interaction (which are beyond the scope of a mean field theory like the one 
applied here) are unimportant for the observables considered so far. 
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It would be interesting, however, to perform the following experiment in which 
the pure effects of momentum conservation could be filtered out and other types 
of correlations could become important. With identical detector setups and beam 
energies one could measure (Y + a + p + p + X, “C + 12C + t + t + X, and 160 + 160 3 
(Y + (Y +X. In all these reactions the fraction of mass carried away by the two 
coincident particles is the same. Choosing the right detector energy intervals, one 
could also fix the mean momentum carried away by the emitted particles to be the 
same in all three cases. By comparing the results of these three setups one could 
eliminate the effects of the conservation laws and possibly detect other types of 
correlations. 

It is a pleasure to acknowledge a critical reading of the manuscript by G.F. Bertsch 
and U. Mosel as well as helpful discussions with W.G. Lynch, G.D. Westfail, and 
C.K. Gelbke. 
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