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Abstract
The present status of the use of two-particle intensity interferometry as a diagnostic tool

to study the dynamics of intermediate energy üeavy ion collisions is examined. Calculations
for the two-proton correlation function are presented and compared to experiment . These
calculations are based on the nuclear Boltzmann-Uehling-Uhlenbeck transport theory. At heavy
ion beam energies around 100 MeV pernucleon it is found that there is only a weak sensitivity
of the results on the nuclear compressibility, but a strong dependence on the in=mediu~-n
nucleon-nucleon Gros :-~ sF~ction .

~ UC

Intensity interferom~;try was introduced by Hanbury Brown and Twiss as a technique for
astronomical distance mc;asurement [1]. They recorded the two-photon correlation function
for incoming coincident photons as a function of their relative rramentum. This correlation
funi~tion can be written as;
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where (niz} is the probability of detecting two coincident photons of wavenumber kl and k~ in
detectors 1 and 2, and (n;~ is the probability of detecting aphoto, of momenWm k; in detector
i (i = 1, 2~. Equation 1 contains only count rates, which are proportional to the absolute
squares of the amplitudes. ~~ .s a consequence, HBT interferometry is insensitive to phase shifts
introduced by atmospheric disturbances . It can b~° used ~~ith very large base lines as~d delivers
superior resolution . ibis was first shown in [2] by nyeasuring the angular diameter of Sinus.

Thephysical basis of the HBTeffect is that twophotons have anon-zero correlation function
dwe to the symtne~nation of their wave functions, a consequence of the quantum statistics for
identical particles,
A similar technique can also be used for source sins determinations in subatomic physics.

This was first realized by Goldhaber et al . [3] by studying angular distributions of pious in
Pp annihilation processes. They found that the emission probability of coincident identical
pions is strongly affected by their Bose-Einstein statistics, vc~hich causes an enhancement of the
correlation function at zero relative momentum, q = 0. The width of the m~.~:imum at q = 0
depends on the radius of the interaction volume [3] and also on the life-time of the emitting
source ~4].
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In recent years, two-pion intensity interferometr_y has been strongly pursued at ~ltra_-

relativistic energies, where the interest is on the interplay between source dynamics and
final state interaction [5, 6] and pion correlations from an exploding source [?]. Intensity
interferometry derives its main attraction, however, from the prospect of its possible use as a
diagnostic tool for the formation of quark-gluon plasma [7, 8] .

Intensity interferometry is not restricted to bosons, but can also be applied to Fermions.
I£oonin [~] proposed to use two-proton intensity intéï%rometry to obtain gpictur~s' of heavy
ion collisions. The advantage of using protons as a probe lies in the fact that they ate already
present in the colliding nuclei and can be liberated relatively easily. In contrast, to create a
pair of pions one has to spend an energy En,;n = 2m,~ ~ 280 MeV in the center of mass of
the generating system . Therefore, protons can be +ased as a probe at much lower energies . In
acïdition, the two-proton relative wave function contains the prominent 2He-`resonance', which
leads to enhanced sensitivity of the correlation function to the source size . Lastly, protons are
easy to detect with the required resolution .

Recent progress has been centered around the theoretical computation of two-proton
correlation functions from nuclear transport theory [ 10,11,12,13] . In this framework, it is now
possible to understand the dependence of the correlation functions on the parameters discussed
above. Comparisons of this theory to experimental data [10, 12, 13] have now established
two-proton intensity interferometry as a quantitative tool to study heavy ion reaction dynamics .

1Zec;ently, several groups have begun to study two-neutron corre~ations [ 14, 15, 16, 17].
This probe has thv advantage that there is no Coulomb interaction between the two neutrons or
between the neutrons and the emitting source . However, there are bigger experimental obstacles
due to the relatively small neutron detection efficiencies of good~resolution detectors and due
to problems associated with `cross-talk' between neighboring detectors.

A summary of the present status of the field as well as further references can be found in
[ 18]. In this paper we will primarily focus on the use of two proton intensity interferometry as
a diagnostic tool for studying intermediate energy heavy ion reaction dynamics and with it th°
determination of limits on the parameters of interactions of nucleons in dense nuclear mattes

During the last 5-7 years, several groups have developed a nuclear Q~~: roYa Theory for
intermediate energy (20 MeV < Ebea�,~A _< 2 GeV) heavy ion reactions [19, 20, 21, 22].
This transport theory describes the time evolution of the nuclear one-body Wïgner distribution
f(r, p, t) underthe influence ofthe nuclearmean field andindividual nucleon-nucleon collisions
via the 13oltzmann-t3chling-Ilhlenbeck (1~~`~~ equation
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All presen~~t solution schemes for the above equation employ the test particle method, in

which the enture phase space is divided into small cells, whose equations of motion are first
order differenti~~l equations in time . The collision integral is solved via an intranuclear cascade
[23J for the test particles . The test particle collisions respect the Pauli exclusion principle due
to the presence of the factors 1 - f, which are numerically implemented via a Monte Çarlo
rejection method.

3. LARGE-ANGLE CORRÉLATIONS

Since the solution of Equation 2 represents the time evolution of the single particle
distribution function f, it is possible (in the limit of t -~ oo) to predict all single particle
observables such as proton spectra [24] in this theory. It is also possible to predict the
production cross sections of secondary particles such as pions [19, 20, 25] or high-energy
photons [2vj .

Predictions for two-particle correlations can only be made, if these correlations are simply
consequences of the conserva~ion laws for momentum, energy, angular momentum, and particle
number. We have shown [27] that two-proton correlation functions measured at large angles
can be successfully reproduced by the BUU theory, provided that total momentum conservation
is correctly taken into account. In another investigation Ardouin et a1. [28] found that the
variation of the large angle correlation function with polar angle ® is Yargely due to angular
momentum effects.

4. CALCULATION OF CORRELATIONS AT SMALL RELATIVE MOMENTUM

At small relative momentum ~i z (pi - p2), the interaction between the two particles has
to be taken into account explicitly to calculate the two-particle correlation function .

To derive an expreç~lon for the two-particle correlation function, C(P, q~, we assume
that the final-state interaction between the two detected particles dominates, that final-state
interactions witi~ all_ remaining particles can be neglected, that the correlation functions are
deteYmined by the two-body density of states as corrected by the interactions between the two
particles, and that the single particle phase space distribution function of emitted particles,
g(p, ~) varies slowly as a function of momentum p (i.e . g(p, ~) ~ g(p" ~ q"", ~)) . Then the
theoretical expression for the two-particle correlation function can be written as [9, 7, 11 ]

niz(Pi~Pz)
C(P~ 9~ = R(P~ q~ + l ° iIl(Pl )ni (P2)

z
l d~~ld4~2 gl ~p~ ~i )9(2~~ ~2) ~

	

9~ Ty - TZ + ~ Zm~~

d421 g( 2 P~ ~i ) J 1~422 gl 2 p~ ~Z)

where P = pi + pz is the total momenturr~r of the particle pair. ~ 1 and ~z are the space time
points of the emission of protons 1 and 2. II 1 is the single- and II12 is the two-particle emission
probability.

~(q"", r~ is the relative wave function of the particle pair. Theeffect that gives rise to the HBT
effect is the identical particle interference. In the absence of any other interaction the square of
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Figure 2: Absolute square of the two-proton relative wave function, i~~(q, r, cos ~ = 0.5) ~ 2 .

Equation 3 requires only the two-particle relative wave function and the single-particle
phase space distribution function . Under the assumptions stated above it is thus possible to
generate two-particle correlation functions for small relative momentsîâom atheory whichonly
predicts one-particle distribution functions.

The resulting two-particle correlation function contains information on the emitting source.
To see this, we rewrite Equation 3 as

C(P~ q~ = J dar F~!T~ I~(q~ rÎ`2 -

	

(g)

Here r=i1 -r2 is the relative coordinate of the two emitted particles, and the function F~(T)
is defined as

J
d3~~(2p~ ~+2r~t>)f(zP~ ~-2rst>)

F~(r~ _

	

!	_

	

2

	

(9)
Jd3rf(2P,r,t>)

where R = z(rl + r2) is the center-of-mass coordinate of the two particles, and the è~Vigner
function f(p, r, t> ) is the phase space distribution of particles with momentumPand position r
at some time t> after both particles have been emitted:

c>

f(p, r, t>) = J

	

dt g(P, T- P~(t> - t)~m. t) .	(10)
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i~ re 3: Two-proton correlation functions calculated with a source parameteriza-
tion according to nation 1 l. The solid lines represent the complete calculations
includ' g the effects of quantum statistics and of the Coulomb and strong inter
action .
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Figure 4: Two-proton correlation function as a function of the absolute value of
total pair momentum, P, and relative momentum, q, for the reaction 141! + 2?Al at
beam energy E/A = 75 MeV and impact parameter b = 0 fm.
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We perform calculations of the single particle phase space distribution function f(r',p t)
by numerically solving Equation 2. These single particle distributions are theca inserted into
Equation 3 to generate the two-particle correlation function at small relative momentum.

In Figure 4, we show the two-proton correlation function, C(P, q), calculated for the
reaction 14N+ 2'Al at beam energy E/A = 75 MeV and impact parameter b = 0 fm. We can
clearly observe the suppression of the correlation function at q ~ 0 due to the cotnmit~~~d effects
of Coulomb interaction and antisymmetrization . Also clearly visible is the enhancement of
the correlation function around q = 20 MeV/c due to the 2He resonance. One can see that the
height ofthe resonance peak varies with total momentum, P. This effect is also experimen y
observed . When using Equation 11 to fit a source radâus to the correlation function one then
observes a typical momentum dependence of the extracted source size.
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Figure 6: Two-proton correlation function for the reaction g~iq + 27A1 at F/A =
75 MeV, as predicted by calculations based on the BULJ theory (lines) and as
experimentally measured (plot symbols) . (From [12])

It is clear from this figure that sizeable differences between the two calculations with
different assumptions on thein-mediumnucleon-nucleon cross section exist. In fact, variations
of the cross section by only 10% result in differences between the calculated correlation
functions which should be experimentally measurable. From this one has to conclude that
two-particle correlation functions are very sensitive probes for the colüsional dynamics of
intermediate energy heavy ion collisions.

In Figure 7we displây the sensitivity of the two-proton correlationfunction to the in-medium
nucleon-nucleon cross section, ~, and to the value of the nuclear matter compressibility, e~ . ~Ve
show the results of our calculations for a stiff nuclear equation of state (~c = 380 MeV) and
different values of the in-medium nucleon-nucleon cross section.

From our theoretical results and comparisons to experimental data we conclude that the
value of the in-mediumcross section (without correction due to the final state `Peak blocking')
is very close to the experimentally measured (energy dependent) free value. This is in agreement
with informationwe extracted from our investigation ofthe disappearance of nuclear collective
flow [30, 31]

We also varied the compressibility of nuclear matter; which enters the calculations through
the density dependence of the mean field potential U. In Figure 7, we also show a calculation
for a soft equation of state (rc = 200 MeV). Here we find, however, only a weak sensitivity
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