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Abstract

The present status of the use of two-particle intensity interferometry as a diagnostic ool
to study the dynamics of intermediate energy iieavy ion collisions is examined. Calculations
for the two-proton correlation function are presented and compared to experiment. These
calculations are based on the nuclear Boltzmann-Uehling-Uhlenbeck transport theory. At heavy
ion beam energies around 100 MeV per nucleon it is found that there is only a weak sensitivity
of the results on the nuclear compressibility, but a strong dependence on the in-medium
nucleon-nucleon cross section.

1. INTRODUCTION

Intensity interferometry was introduced by Hanbury Brown and Twiss as a technique for
astronomical distance measurement [1]. They recorded the two-photon correlation function
for incoming coincident photons as a function of their relative momentum. This correlation
function can be written as:

- = nuj
R(ky, ko) = "(“gji -1 (1),

where (n;2) is the probability of detecting two coincident photons of wavenumber £, and %, in

detectors 1 and 2, and (n;) is the probability of detecting a photon of momentam k; in detector
¢ (¢ = 1,2). Equation 1 contains only count rates, which are proportional to the absolute
squares of the amplitudes. As a consequence, HBT interferometry is insensitive to phase shifts
introduced by atmospheric disturbances. It can be used with very large base lines and delivers
superior resolution. This was first shown in [2] by measuring the angular diameter of Sirius.

The physical basis of the HBT effect is that two photons have a non-zero correlation function
due to the symmetrization of their wave functions, a consequence of the quantum statistics for
identical particles.

A similar technique can also be used for source size determinations in subatomic physics.
This was first realized by Goldhaber et al. [3] by studying angular distributions of pions in
pp annihilation processes. They found that the emission probability of coincident identical
pions is strongly affected by their Bose-Einstein statistics, which causes an enhancement of the
correlation function at zero relative momentum, ¢ = 0. The width of the maximum at q = 0
depends on the radius of the interaction volume [3] and also on the life-time of the emitting
source [4].
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In recent years, two-pion intensity interferometry has been strongly pursued at ultra-
relativistic energies, where the interest is on the interplay between source dynamics and
final state interaction [5, 6] and pion correlations from an exploding source {7]. Intensity
interferometry derives its main attraction, however, from the prospect of its possible use as a
diagnostic tool for the formation of quark-gluon plasma [7, 8].

Intensity interferometry is not restricted to bosons, but can also be applied to Fermions.
Koonin [9] proposed to use two-proton intensity inicrferometry to obtain ‘pictures’ of heavy
ion collisions. The advantage of using protons as a probe lies in the fact that they are already
present in the colliding nuclei and can be liberated relatively easily. In contrast, to create a
pair of pions one has to spend an energy Enin = 2m, ~ 280 MeV in the center of mass of
the generating system. Therefore, protons can be ased as a probe at much lower energies. In
addition, the two-proton relative wave function contains the prominent 2He-‘resonance’, which
ieads to enhanced sensitivity of the correlation function to the source size. Lastly, protons are
easy to detect with the required resolution.

Recent progress has been centered around the theoretical computation of two-proton
correlation functions from nuclear transport theory [10, 11, 12, 13]. In this framework, it is now
possible to understand the dependence of the correlation functions on the parameters discussed
above. Comparisons of this theory to experimental data [10, 12, 13] have now established
two-proton intensity interferometry as a quantitative tool to study heavy ion reaction dynamics.

Recently, several groups have begun to study two-neutron correiations (14, 15, 16, 17].
This probe has the advantage that there is no Coulomb interaction between the two neutrons or
between the neutrons and the emitting source. However, there are bigger experimental obstacles
due to the relatively small neutron detection efficiencies of gocd-resolution detectors and due
to problems associated with ‘cross-talk’ between neighboring detectors.

A summary of the present status of the field as well as further references can be found in
[18]. In this paper we will primarily focus on the use of two proton intensity interferometry as
a diagnostic tool for studying intermediate energy heavy ion reaction dynamics and with it the
determination of limits on the parameters of interactions of nucleons in dense nuclear matter.

2. INTERMEDIATE ENERGY HEAVY ION TRANSPORT THEORY

During the last 5-7 years, several groups have developed a nuclear iransgori ineory for
intermediate energy (20 MeV < Fpeam/A < 2 GeV) heavy ion reactions [19, 20, 21, 22].
This transport theory describes the time evolution of the nuclear one-body Wigner distribution
f(7, p, t) under the influence of the nuclear mean field and individual nucleon-nucleon collisions
via the Boltzmann-Uchling-Uhienbeck (BUU) equation
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Here U is the mean ficld potential, and do/dfQ is the in-medium nucleon-nucleon scattering
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cross section.

All present solution schemes for the above equation employ the test particle method, in
which the entire phase space is divided into small cells, whose equations of motion are first
order differential equations in time. The collision integral is solved via an intranuclear cascade
[23] for the test particles. The test particle collisions respect the Pauli exclusion principle due
to the presence of the factors 1 — f, which are numerically implemented via a Monte Carlo
rejection method.

3. LARGE-ANGLE CORRELATIONS

Since the solution of Equation 2 represents the time evolution of the single particle
distribution function f, it is possible (in the limit of ¢ — o0) to predict all single particle
observables such as proton spectra [24] in this theory. It is also possible to predict the
production cross sections of secondary particles such as pions [19, 20, 25] or high-energy
photons [26].

Predictions for two-particle correlations can only be made, if these correlations are simply
consequences of the conserva:ion laws for momentum, energy, angular momentum, and particle
number. We have shown [27] that two-proton correlation functions measured at large angles
can be successfully reproduced by the BUU theory, provided that total momentum conservation
is correctly taken into account. In another investigation Ardouin et al. [28] found that the
variation of the large angle correlation function with polar angle 8 is iargely due to angular
momentum effects.

4. CALCULATION OF CORRELATIONS AT SMALL RELATIVE MOMENTUM

At small relative momentum ¢’ = %( 1 — p2), the interaction between the two particles has
to be taken into account explicitly to calculate the two-particle correlation function.

-

To derive an expression for the two-particle correlation function, C(P,{), we assume
that the final-state interaction between the two detected particles dominates, that final-state
interactions with all remaining particles can be neglected, that the correlation functions are
determined by the two-body density of states as corrected by the interactions between the two
pariicles, and that the single particle phase space distribution function of emitted particles,
g(7, x) varies slowly as a function of momentum 5 (i.e. g{(7,z) = g(F £ ¢,z)). Then the
theoretical expression for the two-particle correlation function can be written as [9, 7, 11]

I12(p1, 52)
I, (51) 1, (72)

- - 2
[ttt o3P z)o(b P2 |6 (7,71 -4 a2
[dtz19(4P,21) [ ¢*22 (3P, )

C(P,§) = R(P,9)+1=

: (3)

where P = P1 + P2 is the total momentum of the particle pair. z, and z are the space time
poinis of the emission of protons 1 and 2. II, is the single- and I, is the two-particle emission
probability.

#(q,7) is the relative wave function of the particle pair. The effect that gives rise to the HBT
effect is the identical particle interference. In the absence of any other interaction the square of
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the two particle wave function is then simply given by

18(3 7 = 1 & cos(2¢7), (4)

where the upper cign stands for bosons and the lower for fermions. )
In the presence of other interactions this result is modified. The relative wave function for
Coulomb scattering is

$e(q,7) = exp(—377) T(1 + in) exp(igz) 1 Fi(—inlilig(r — 2)) (5)

where ; F} is the confluent hypergeometric series, and § = aZ; Z;m, /¢. The two-pion relative
wave function at small relative momentum is usually approximated as the symmetrized Coulomb
scattering wave function

[6==(@ P = §1c(@7) + (g, ) (6)

Figure 1: Absolute square of the two-pion relative wave function, |¢.-(g, T, cos =0.5)}%.

Due to symmetries, the wave function only depends on three independent variables which
we choose to be ¢, , and cos & = ¢- 7/gr. The square of the two-pion relative wave function is
displayed in Figure 1 as a function of ¢ and r for cos§ = 0.5. For r — 0, |¢,-|? is now given
by the the Gamov penetration factor

27y

(G =2
Ié (q )l exp(27r1]) -1

(7)

For the two-proton relative wave function the strong interaction with the prominent 2He-
‘resonance’ cannot be neglected. To obtain the relative wave function in this case, we solve a
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radial Schrodinger equation with the Coulomb and the modified Reid soft core potential. The
two-proton relative wave function is shown in Figure 2. One can observe the peak at ¢ =
20 MeV/c due to the He-‘resonance’. Due to the effect of antisymmetrization, Iépp] — 0 as
r—0.
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Figure 2: Absolute square of the two-proton relative wave function, |¢,,(g, T, cos 8 =0.5)[%

Equation 3 requires orly the two-particle relative wave function and the single-particle
phase space distribution function. Under the assumptions stated above it is thus possible to
generate two-particle correlation functions for small relative momenta irom a theory which only
predicts one-particle distribution functions.

The resulting two-particle correlation function contains information on the emitting source.
To see this, we rewrite Equation 3 as

C(P,q) = [ &r Fa() 1@ A ®)

Here 7 = i} — 7, is the relative coordinate of the two emitted particles, and the function Fs(7)
is defined as

[£RFGP, Rtir )P, R-1705)
. 2
(ferrapiies)

where R = %(F; + 73) is the center-of-mass coordinate of the two particles, and the Wigner
function f(p, 7, 1) is the phase space distribution of particles with momentum p and position 7
at some time ¢, after both particles have been emitted:

f(B,7t5) = /t; dt g(p, 7 — p(t> —t)/m,1). (10)

3 (9)

Fp() =
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For a given momentum P, the correlation function has three degrees of freedom, ¢, which are
a function of Fp(7). Therefore correlation function measurements should allow the extraction
of Fjs(#), the normalized probability of two protons with the same momentum P/2 being
separated by 7. . ]

One may also use correlation function measurements to test various theoretical models
capable of predicting g(p,7,t) and thus making specific predictions about the correlation
functions. This approach is more realistic in its goals as a full six-dimensional determination of

C(P, §) is very difficult in practice.

3 ~omblete caleulati
. complete calculation
SR D S S " no nuclear interaction
of = === no nuclear interaction,
\ no antisymmetrization
1
— !
g : !'°=5fm
~ 0 —
+ b
- 1.0
| 1
]
05 T |
. re=10fm } re=20fm
00 —— e —

[ 100
q (MeV/c)

Figure 3: Two-proton correlation functions calculated with a source parameteriza-
tion according to Equation 11. The solid lines represent the complete calculations
including the effects of quantum statistics and of the Coulomb and strong inter-
action. The dashed lines represent the case of only Coulomb interaction, and the
dotted line is for Coulomb interaction plus the effect of the Fermi-Dirac statistics
for the two protons. (From [11]})

S. SENSITIVITY OF THE TWO-PROTON CORRELATION FUNCTION

Itis instructive to examine the sensitivity of the two-particle correlation function to different
components of the two-particle interaction. We perform such a study for the two-proton
correlation function. To do this, we use a simple zero-lifetime Gaussian source parameterization

9o(P, 7, t) = po exp(—1*[r3) §(t — ta) (11)

where 7y is the radius of the source. Figure 3 illustrates the effects of the different contributions
to the two-proton final state interaction for sources of different radii. The Coulomb interaction
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dominates the shape of the correlation function for very large source radii. For ry < 20 fm,
the correlation function becomes increasingly sensitive to the effects of antisymmetrization and
the strong interaction. The strong interaction has the dominant effect for source radii around
o = 2.5 fm due to the prominent He resonance.

It should be pointed out at this point, however, that in a realistic calculation the use
of a simple zero life-time Gaussian source parametrization is not sufficient [18]. Instead,
calculations containing the full time and momentum dependence of the emitting source are

needed.
C(P,q)
2.5

20

1.5
1.0
0.5

Figure 4: Two-proton correlation function as a function of the absolute value of
total pair momentum, P, and relative momentum, g, for the reaction *N + ?’Al at
beam energy E/A =75 MeV and impact parameter b = 0 fm.

6. CALCULATION OF TWO-PROTON CORRELATION FUNCTICNS

We perform calculations of the single particle phase space distribution function f(7, p, t)
by numerically solving Equation 2. These single particle distributions are then inserted into
Equation 3 to generate the two-particle correlation function at small relative momentum.

In Figure 4, we show the two-proton correlation function, C(P,q), calculated for the
reaction N + 27Al at beam energy £ /A =75 MeV and impact parameter b = 0 fm. We can
clearly observe the suppression of the correlation function at ¢ = 0 due to the combpined effects
of Coulomb interaction and antisymmetrization. Also clearly visible is the enhancement of
the correlation function around ¢ = 20 MeV/c due to the 2He resonance. One can see that the
height of the resonance peak varies with total momentum, P. This effect is also experimentally
observed. When using Equation 11 to fit a source radius to the correlation function one then
observes a typical momentum dependence of the extracted source size.
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One effect that may be responsible for this behavior is cooling of the source [29]). As
a consequence of the falling temperature, the characteristic lifetime for high-energy particles
is much shorter than the one for low-energy ones [11)}, leading to the observed effect. It is
therefore clear that meaningful interpretations of the two-proton correlation function require,
in general, calculations capable of predicting the full space-time dependence of the emission
function.

In Figure 5, we show the dependence of the height of the peak in the correlation funcgion.
C{P,q=20MeV), as a function of impact parameter and total pair momentum. We predict a
rich structure, which can and will be studied experimentally by using 4= detector systems for

impact parameter triggering.
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Figure 5: Pair momentum and impact parameter dependence of the height of the
maximum of the two-proton correlation function for the reaction N + 27 Al at E/A
=75 MeV, as predicted by calculations based on the BUU theory. (From [11])

7. COMPARISON WITH EXPERIMENT

In Figure 6, we compare our calculations of the two-proton correlation function to
experimental data for the system N + 27Al at a beam energy of E/A = 75 MeV. Since
the experimental data were not triggered on impact parameter, we have to also integrate our
calculations over impact parameter with the proper weighting factors. (Details of this impact
parameter averaging can be found in the Appendix of [12].) The experim:ental and theoretical
correlation functions are shown as a function of the relative momentum g for three different

gates on the total pair momentum | P| = |5, + ). For comparison, the beam momentum per
nucleon IS pream = 375 MeV/c.
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We show two different calculations. The solid line represents the full BUU calculations with
the full nucleon-nucleon cross sections. The dotted line is the result of the BUU calculation
with a reduced in-medium cross section, o = }0an, Where oy, is the free space clementary
nucleon-nucleon cross section. In both cases the medium corrections due to the Pauli-principle
for the final nucleon scattering states are, of course, taken into account.
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Figure 6: Two-proton correlation function for the reaction N + 27Al at E/A =
75 MeV, as predicted by calculations based on the BUU theory (lines) and as
experimentally measured (plot symbols). (From [12])

It is clear from this figure that sizeable differences between the two calculations with
different assumptions on the in-medium nucleon-nucleon cross section exist. In fact, variations
of the cross section by only 10% result in differences between the calculated correlation
functions which should be experimentally measurable. From this one has to conclude that
two-particle correlation functions are very sensitive probes for the collisional dynamics of
intermediate energy heavy ion collisions.

In Figure 7 we display the sensitivity of the two-proton correlation function to the in-medium
nucleon-nucleon cross section, o, and to the value of the nuclear matter compressibility, x. We
show the results of our calculations for a stiff nuclear equation of state (x = 380 MeV) and
different values of the in-medium nucleon-nucleon cross section.

From our theoretical results and comparisons to experimental data we conclude that the
value of the in-medium cross section (without correction due to the final state ‘Pauli blocking’)
is very close to the experimentally measured (energy dependent) free value. This is in agreement
with information we extracted from our investigation of the disappearance of nuclear collective
flow [30, 31]

We also varied the compressibility of nuclear matter, which enters the calculations through
the density dependence of the mean field potential U. In Figure 7, we also show a calculation
for a soft equation of state (x = 200 MeV). Here we find, however, only a weak sensitivity
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of our reaults on this parameter. This is expected, because for the relatively light system and
low beam: energy considered here only moderate maximum values of the nuclear density are
achieved.

200 I~ (N pp), E/A=T5MeV, 8,,=25°

'\ BUU: P=500MeV/c
175 |

stiff EOS

Y o soft ECS 1

1.00 -

Figure 7: Sensitivity of the two-proton correlation function to the in-medium nucleon-
nucleon cross section, o, and to the nuclear compressibility. (After [10]).

8. CONCLUSIONS

The calculation of two-particle correlation functions at small relative momentum on the
basis of one-body transport theories is feasible by using the convolution techniques described
above. Thus intensity interferometry is a powerful tool to test nuclear transport theories and to
investigate nuclear dynamics.

Comparisons with experiment show that the BUU transport theory is able to reproduce
detailed features of the experimentally measured two-proton correlation functions. These
features include the pair :nomentum dependence of the peak due to the 2He-‘resonance’, the
effect of source deformauun, and the lifetime effect on the correlation function.

We have shown that the theoretically obtained two-picicn correlation functions are sensitive
to the value of the in-medium nucleon-nucleon cross section. At higher beam energies and
for large systems we also expect a sensitivity of the results on the compressibility of nuclear
matter. Thus nuclear intensity interferometry is a useful tool to investigate the nuclear transport
properties, and it should also enable us to conduct further studies of the nuclear equation of
state.

From a theoretical standpoint it would clearly be desirable to compare to impact parameter
resolved experimental data, which would further increase the sensitivity of two-particle
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correlation functions at small relative momentum to the effects discussed above.
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