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Abstract. Of all phase transitions in nuclear matter, the fragmentation phase

transition is perhaps the one for which there is the best experimental evidence

as of now. In addition, theoretical models have been developed to a degree

where detailed comparisons are possible. With the advent of rare isotope pro-

duction facilities using projectile fragmentation techniques (NSCL, GSI, . . . ,

and hopefully RIA in the coming decade), the main interest in this �eld is

beginning to shift towards the exploration of the isospin degree of freedom in

the nuclear equation of state. Here we employ a statistical multifragmentation

model and discuss the connection between the width of the isotope distribution

and the isospin term in the nuclear equation of state.

1. Introduction

The most interesting goal of high-energy heavy ion physics over the last two decades

has been the exploration of the nuclear phase diagram, i.e. the response of nuclei

and nuclear matter as a function of the thermodynamic variables density, pressure,

and temperature.

There are two distinct phase transitions that theory predicts to exist in this

nuclear matter phase diagram. The �rst is the transition between a plasma of quarks

and gluons and a gas of (color-singlet) hadrons. It dominated the early history of

the universe about a microsecond after the Big Bang. The heavy ion program at

CERN SPS, the AGS, and now at RHIC is attempting to recreate this transition in

laboratory experiments. The other transition is that between a hadron gas and the

Fermi liquid of ground state nuclei. This transition has been investigated at, among
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others, our own facility, the National Superconducting Cyclotron Laboratory. It is

of relevance, for example, in the astrophysical production of heavy elements [1].

It is by no means assured that we are actually able to investigate these phase

transitions in laboratory experiments. In order to be able to use the terminology of

thermodynamics, we need to establish that equilibrium has indeed been established.

In addition, there is no possibility to prepare our nuclear system in a certain state

at �xed values of the thermodynamic variables and keep it there for measurements.

The hot nuclear matter that we create in heavy ion collisions instead will propa-

gate along a path through the phase diagram. And since we are relegated to only

measuring asymptotic momentum states of particles produced in these heavy ion

collisions, it is not even clear that we can extract values for the thermodynamic

variables.

However, during the last two decades the �eld of heavy ion physics has made as-

tounding progress in answering many of these questions. For example, the question

of measuring the volume has been studied intensively by using Hanbury-Brown-

Twiss type of intensity interferometry [2].

Here we will describe recent advances in our understanding of the fragmentation

phase transition and the future extension of these studies into the isospin degree of

freedom.

2. Percolation Model

One model that has been employed to study the physics of the fragmentation phase

transition is the percolation model [3], in particular the formulation of nuclear frag-

mentation as a 3d bond percolation problem. One particularly interesting feature

of the percolation model is that it contains a continuous phase transition. In the

limit of in�nite lattices one can show that the critical exponents are not dependent

on the particular lattice structure employed, and from the numerical value of the

critical exponents it is observed that hyperscaling,

2� � = (� � 1)=� = 2� + 
 (1)

seems to hold. The critical exponent � is de�ned from the relation P / (p�pc)� for

the order parameter as a function of the control parameter and has the numerical

value of � = 0:41. The exponent 
 governs the divergence of the cluster size

distribution at the critical point, / jp � pcj�
 , and has the numerical value of


 = 1:8.

In our percolation-based model, one recognizes that the strong interaction is

short-ranged, and that are nucleons connected with their nearest neighbors. Depo-

sition of excitation energy results in broken bonds as the nuclei expand. The physics

of the energy deposition then enters into the determination of the bond existence

or, equivalently, breaking probability. For proton-induced multifragmentation, the

Glauber approximation has been employed successfully. Here, the energy deposi-

tion into the target and the breaking probability is determined as a function of
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the impact parameter by the number of nucleons encountered by the projectile on

it's path through the target nucleus. This model has been able to reproduce the

experimentally observed U-shaped mass distributions, overall fragmentation cross

sections, and low-to-medium-mass power laws of the cross sections for a wide variety

of target nuclei in the limiting fragmentation beam energy domain.

For heavy ion collisions, the Glauber approximation as a means to calculate

energy deposition is clearly no longer suÆcient. Instead we have constructed a hy-

brid model [4] with a �rst stage intranuclear cascade step that calculates excitation

energy and size of the residue and a second stage percolation step. The excitation

energy deposition is related to the bond breaking probability via [5]

pb(T ) = 1�
2
p
�
�

�
3

2
; 0;

B

T

�
; (2)

where � is the generalized incomplete gamma function, B is the binding energy

per nucleon in the residue (taken as 6 MeV here), and T is the temperature. This

prescription is a generalization of the Coniglio-Klein formula for the existence of a

bond between neighboring sites [6,7]

pCK = 1� exp(�E=2T ) (3)

where E is the nearest-neighbor interaction energy. Thus there is a close connection

between the bond percolation theory and the lattice gas model.

Recently, the EoS collaboration [8{10] has attempted to measure the critical

exponents � and 
 that determine the universality class of the nuclear fragmentation

phase transition directly in the reaction of 1 A�GeV Au + C reactions, by using

a TPC to ensure full reconstruction of all 79 charges of the gold nucleus. They

measured the second moment of the charge distribution,

M2 =

1

0X
k=1

k
2
n(k) / jpb � pcj�
 (4)

(The upper limit in this sum is meant to indicate that the largest fragment { the

\in�nite cluster" { is not included) on an event-by-event basis as a function of the

total charged particle multiplicity. They extracted values of 
 = 1:4; � = 0:29.

In Fig. 1, the data of the EoS collaboration are shown by the �lled plot symbols

(statistical error bars are present, but smaller than the plot symbols). For each

multiplicity, two values of M2 are shown, the upper one where the summation in

Eq. 4 includes all fragments, and the lower one where the largest fragment was

excluded. Also shown is the power-law �t to the data (thin smooth line) that led

to the extraction of the values for 
 and � just quoted. The power-law �ts were

adjusted to reproduce the data points within the gray shaded rectangles in Fig. 1.

Also shown in this �gure is the result of our calculations with the percolation hybrid

model (histogram). Almost perfect agreement is obtained for all multiplicities.

Since this model has no adjustable �t parameters, this agreement has to be called
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Fig. 1. Comparison of the EoS data [8{10] (�lled circles) with the percolation

model (histogram) and the SMM model of Botvina et al. (dashed line) [4]. The

thin smooth curves represent the power-law �t of the EoS collaboration, and the

grey rectangles mark the data points that were used for the �t. The upper curves

and data points are for the second moments as calculated by using all fragments,

and the lower curves by using all but the heaviest fragment.

impressive. For comparison, we also show the result of the calculations using the

SMM [11] (dashed line), where very clear deviations from the data can be seen.

We conclude from this comparison that the data of the carbon induced multi-

fragmentation of gold indeed contain signi�cant circumstantial evidence for a second

order phase transition in nuclear matter, and that the universality class of this phase

transition is that of percolation, with 
 = 1:8; � = 0:41.

3. Fragmentation of Molecules

Possibly the most interesting feature of nuclear fragmentation is that it gives us a

glimpse on the modi�cations that extreme �nite-size e�ects cause for the character

of a phase transition. This is one area where this particular sub�eld can be expected
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to have a major impact on general many-body science.

Another �eld in which similar investigations can be made is that of molecular

fragmentation. Indeed, experiments recently performed at Argonne National Lab-

oratory for the fragmentation of buckyballs (C60-fullerenes) have also shown frag-

mentation patterns very similar to those observed in high-energy proton-induced

nuclear multifragmentation experiments. However, the space available here does

not allow us to elaborate, and we refer to the literature [12].

4. Isospin

The study of rare isotopes is attracting increasing attention due to the recent devel-

opment of radioactive beam facilities where isotopes are produced through nuclear

collisions. Projectile and target nuclei might vary in size from a few dozen nucleons

all the way to Uranium. The mechanism for rare isotope production might entail the

transfer of a few nucleons between the projectile and target, induced �ssion of the

projectile, or at highest energy transfer, multifragmentation. This last mechanism,

which assumes temperatures of a few MeV, is the focus of this study [13].

Isospin e�ects have been studied in lattice-gas models [14, 15] and in percola-

tion [16, 17]. Recently, Xu et al. have measured yields of light fragments from the

fragmentation of both 112Sn and 124Sn, and by taking ratios of isotope yields have

determined the relative chemical potentials of the two systems [18]. In our perco-

lation studies [16], we found that we were not able to reproduce the detailed values

of the isospin shifts observed in experiment. In a more purely theoretical study for

multicomponent percolation systems, however, Harreis and W.B. found that these

can be reduced to one-component percolation problems, albeit with a remarkable

shift in the critical percolation probability value in some limiting cases [17].

In the present manuscript we will from here on focus on the canonical ensemble

and utilize the statistical model, combined with a simulation of sequential decay.

Since our goal is to study the yields of rarely produced isotopes which may be

produced in future radioactive beam facilities as rarely as in one per 1017 events,

we employ the methods recently promoted by Chase and Mekjian[19{21] which

forego the need of using Monte Carlo methods. Majumder and Das Gupta have in

fact studied Boron, Carbon and Nitrogen isotope production with a similar model

to what is presented here [22]. The disadvantage of this method is that explicit

interaction of fragments (beyond mean �eld or excluded volume e�ects) is outside

the scope of the formalism.

The recursion relation for the canonical distribution function is


Z;N (T ) =
X
c

e
��Ec (5)

=
X
i

ai

A
!i(T ) 
Z�zi;N�ni

(T );

where the label c in the summation in the �rst line indicates one particular con�g-
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uration, and !i is the partition function of a speci�c nuclear species i,

!i(T ) =
Vred(miT )

3=2

(2�)3=2

X
internal levels j

e
��Ej ; (6)

where mi is the mass and zi, ni and ai are the charge neutron number and baryon

number of the species i. The reduced volume, Vred = Vtotal � 2A=�b, roughly

accounts for the overlap of the nuclei. Given the default breakup density of one

sixth �0, the resulting reduced volume is four times the volume of a system at

normal nuclear density.

Calculating the partition functions of speci�c species !i is straightforward given

the levels and degeneracies of the nuclei. This was done for all fragments with a < 6.

However, many of the nuclei which are generated in this approach have not yet been

observed, and for almost all of them the level structure is not known. Given our lack

of understanding of the ground state energies, let alone the excited state energies, we

employ a liquid-drop treatment. We have chosen the �nite-range liquid-drop model

(FRLDM) [23] as a means for generating ground state energies and have ignored the

microscopic terms in the model which account for shell structure. The spectrum of

excited states was generated by assuming a uniformly spaced assortment of single-

particle states with spacing �E = �=
p
A, where � is the level density parameter,

chosen to be 10 MeV. The degeneracy of a state with excitation energy n�E was

found by counting all ways to arrange particles and holes such that they summed to

the desired excitation energy. For heavy nuclei, the separation �E becomes small,

and when the separation fell below one MeV, the spectrum is interpolated onto a

mesh of 1.0 MeV resolution. Finally, all mass-formula energies were modi�ed to

account for screening of the Coulomb potential,

Ecoul: ! Ecoul:(1� �=�0); (7)

where �=�0 is the ratio of the density to nuclear matter density.

The vast majority of the nuclear levels considered in these calculations are

particle-unstable, including the ground states of those species outside the proton

and neutron drip lines. After the initial yields were calculated, the subsequent

decay was modeled by apportioning the weight of an unstable level into all the

levels into which the nucleus might decay. Eight decay modes were considered:

proton, neutron, deuteron, dineutron, diproton, t, 3He and �. The decay weights

were chosen according to Weisskopf arguments. Decays were calculated for all levels

in all nuclei, beginning with the heaviest nuclei. For the decay of each level, the

decay rate was calculated into every possible level energetically accessible through

the eight decay modes listed previously. The weight associated with the decaying

nucleus was then apportioned into all the states in proportion to the rates for the

decay into such states. The weights were also simultaneously added into the ground

states of the eight nuclei representing the eight decay modes. Thus, the decaying

process exactly preserved the initial N and Z of the original system.
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Fig. 2. Yields of mass 100 fragments are shown for the fragmentation of an

A = 200, Z = 80 system at a variety of temperatures. Yields are shown both for

the case where sequential decay is included (lower panel) and neglected (upper
panel) [13].

While the width of the isotope distribution is sensitive to the isospin term in the

nuclear equation of state, in practice the in
uence of sequential decays obscures this

e�ect. To illustrate this statement, we show in Fig. 2 a comparison of the isotope

production yields before (upper panel) and after (lower panel) sequential decays for

several temperatures.

By considering yields of fragments of a �xed a as a function of n � z, two

lessons were learned by considering a simple liquid drop model. First, the width

of the initial distribution was determined largely by the ratio of the temperature

to the symmetry term in the liquid-drop model. Secondly, isospin ampli�cation,

or isospin fractionation, could also be simply understood in terms of the same two

quantities.

Sequential decay dramatically altered the yields, pushing the yields towards the

valley of stability. The e�ects were strongest for larger fragments and for higher

temperatures. As the initial distributions for fragments of �xed a as a function of

n� z were broadest at high temperature, inclusion of sequential decay shows that 5

MeV is the best temperature for creating rare neutron-rich fragments in the a = 40
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region. For heavy fragments with a = 100, the optimum temperature was near three

MeV which is more in the domain of �ssion than the domain of multifragmentation.

In order to understand the sensitivity of the calculations to various aspects of

the modeling, the breakup density, level density, system size and system neutron

fraction were systematically varied. Results were weakly dependent on the breakup

density and moderately sensitive to the level density. Larger systems lead to some-

what broader yields due to �nite-size constraints. Yields were especially sensitive

to small changes in the isospin composition of the overall system. Thus, choosing

projectiles and targets with large neutron fractions, e.g. N=A for Uranium is 0.614

and N=A for 124Sn is 0.597, strongly increases the chances of creating isotopes near

the neutron drip line. Finally, the sensitivity of the yields with respect to details

of the evaporation was considered by adjusting the Coulomb barrier that leads to

preferential emission of neutrons as opposed to protons. The yields of neutron-rich

fragments were surprisingly insensitive to the barrier and changed almost imper-

ceptibly when the Coulomb barrier was removed altogether. Proton-rich fragments

were however quite sensitive to the details, as the tunneling allowed proton-rich

fragments to return to the valley of stability.
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Fig. 3. Predictions of fragmentation isotope yield probabilities, y, (yields per

fragmentation event) for the fragmentation of 238U at a temperature of 4.5 MeV

in our statistical multifragmentation model.

The ability of statistical models to explain isotope production is certainly of

scienti�c interest in its own right. Additionally, one might also consider whether



Nuclear Fragmentation . . . 9

multifragmentation could o�er a competitive means for creating rare isotopes. In

Fig. 3, we show as an example model calculations for isotope production probabili-

ties, y, in the fragmentation of 238U at a temperature of 4.5 MeV, a condition that

can be achieved in projectile fragmentation.

What is shown if Fig. 3 should only be considered a �rst exploratory study.

More detailed simulations of reaction dynamics e�ects are needed. In addition,

separating and focusing particles could be problematic. If one fragmented heavy

nuclei, which have the broadest yields, the Coulomb forces between the fragment

of interest and various parts of the residual system would spread the emission over

a large kinematic region making separation or focusing of the produced particles

diÆcult. This would be especially true for fragments produced at mid-rapidity.

Thus, it is diÆcult to discern whether there is a pragmatic side to the isospin

degree of freedom in multifragmentation. To date, experiments that measure isotope

yields have either been designed to focus on projectile rapidities and thus ignore

multifragmentative events, or have measured production of light elements, a < 20.

If statistical descriptions are shown to accurately describe isotope production for

a broader range of nuclides, it might warrant serious consideration of designing an

apparatus to capture and identify very rare isotopes in a very di�erent environment

than projectile fragmentation.
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