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Abstract

Multiplicity fluctuations of intermediate-mass fragments are studied with the percolation model. It is shown that
super-Poissonian fluctuations occur near the percolation transition and that this behavior is associated with the fragmentative
nature of the percolation model. The consequences of various choices in defining and binning fragments are also evaluated.
Several suggestions for experiments in nuclear fragmentation are presented. q 1998 Published by Elsevier Science B.V. All
rights reserved.
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The study of nuclear fragmentation at high excita-
tion has proven enigmatic. Sophisticated models

w xbased on statistical equilibrium 1,2 or mean field
simulations that model the growth of unstable dy-

w xnamical modes 2,3 have been able to reproduce
w xseveral features of fragment yields 1 as measured in

intermediate heavy ion collisions. Even more ambi-
tious microscopic models that account for the Fermi
degeneracy of nuclear matter are currently under

w xdevelopment 4–6 . However, simple percolation
w xmodels 7–9 have perhaps been the most successful

in reproducing fragment yields and their moments
w xover a wide range of excitations 10 , and have also

1 Permanent address: Ain Shams University, Faculty of Sci-
ence, Department of Physics, Abbassia 11566, Cairo, Egypt.

had some success in modeling the fragmentation of
w xatomic clusters 11 .

w xRecently, Moretto and collaborators 12 have put
forth the measurement of fragment multiplicity dis-
tributions as an insightful tool for understanding the
mechanisms and the driving principles of nuclear
fragmentation. Experimental fragment yields have
shown themselves to be well described by binomial
distributions, while the interpretation of the binomial

w xparameters has been deeply debated 13–15 .
Here, we present calculations of fragment multi-

plicity distributions for percolation calculations. Our
aim is to address the following questions:
1. Are fragment multiplicity distributions from per-

colation calculations of a binomial nature?
2. Is the variance of the multiplicity distribution

governed by simple conservation laws or by other
principles?
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3. Do fluctuations near the percolative transition
affect fragment distributions?

4. In analyzing nuclear experiments, should one bin
distributions by multiplicity, by excitation energy,
or by some other criteria?
At first glance, percolation models seem to have

little in common with a nuclear multifragmentative
event. No dynamics are present, and bulk properties
such as pressure and specific heat do not even have
analogs in a percolative description. Intermediate-
sized clusters appear copiously in percolation model-
sonly near the critical point, and at that point are
characterized by fractal shapes. In contrast, the liq-
uid-gas phase transition is first order, and clusters
can appear far from the critical point, where surface
energies are significant and clusters are more spheri-
cal in nature. However, percolation models do incor-
porate particle-number conservation and the topol-
ogy associated with short-range binding, and there-
fore can prove insightful in modeling nuclear frag-
mentation. In fact, a rigorous connection between
bond breaking probability, deposited energy and nu-

w xclear binding energy has been established 16 , which
is a generalization of the Coniglio-Klein formula of

w xthe lattice gas model 17,18 . For our studies we
w xemploy bond percolation 7–9 where a spherical

section of a cubic lattice is arranged, and bonds
between the sites are randomly broken with a proba-
bility p. One defines a fragment as a group of
connected sites. For values of p below p s .7512c

the majority of sites belong to a single large cluster.
When p exceeds p , the lattice is broken into manyc

small and intermediate sized clusters. We have cho-
sen spherical lattices of size N s123 to addresssites

lattices of sizes relevant for nuclear fragmentation
and N s4169 to understand the behavior in largersites

lattices. For each event the number n of intermedi-
Ž .ate-mass fragments IMFs is recorded. The default

definition of an IMF is that it is of size,

3FZF20, 1Ž .
where Z refers to the number of sites in the cluster.
By recording thousands of events multiplicity distri-
butions were generated for given values of p. Fig. 1
displays multiplicity distributions for ps0.7 and
ps0.8 for the 123-site case.

Moretto and collaborators have reported that the
multiplicity distributions of IMFs in nuclear frag-

Fig. 1. The multiplicity distribution for IMFs for the case of
Ž . Ž .ps0.7 left panel and ps0.8 right panel . The lines represent

Ž . Ž .negative binomial left panel and binomial right panel fits,
where the two parameters were chosen to match the mean and
variance of the distributions.

mentation are observed to be well described by
binomial distributions. Binomial distributions are de-
fined by two parameters p and N ,b b

N !b N ynn bP n s p 1yp . 2Ž . Ž . Ž .b b bn! N yn !Ž .b

The mean and variance of binomial distributions are
given by

² : 2 ² :n sp N , s s n 1yp , 3Ž . Ž .b b b

with the variance always being less than the mean.
Thus, by measuring the mean and variance, one can
determine the binomial parameters, p and N . Inb b

the limit that the variance equals the mean the
distribution becomes Poissonian, and if the variance

Ž .is larger than the mean super-Poissonian , the distri-
bution can no longer be considered binomial. How-
ever, one might then consider the distribution to be a
negative binomial,

N qny1 !Ž .nb Nn n bP n s p 1yp 4Ž . Ž . Ž .nb nb nbN y1 !n!Ž .nb

In that case the mean and variance become
² :p N nnb nb 2² :n s , s s . 5Ž .

1yp 1ypŽ .nb b

The lines in Fig. 1 represent negative binomial and
binomial fits for the ps0.7 and the ps0.8 cases
respectively, where the parameters were chosen to
match the mean and variance of the two distribu-
tions. In all the calculations discussed here, two-
parameter fits were remarkably successful in describ-
ing the multiplicity distributions.

² : 2 ² :Fig. 2 displays n rN and s r n as asites

function of p for the small and large lattices. The
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Fig. 2. The average multiplicity of IMFs divided by the number of
sites, is displayed in the upper panel. The ratio of the variance to
the mean is shown in the lower panel. A ratio greater than unity is
super-Poissonian and signifies a positive correlation between IMFs.

Ž .Both 123-site circles and the 4169-site cases are illustrated.

distributions are super-Poissonian for p-p andc

become sub-Poissonian just above p . The super-c

Poissonian behavior is a signal of a positive correla-
tion between IMFs, as it signals that the presence of
an IMF will be positively correlated with the produc-
tion of other IMFS. We argue that this positive
correlation is a signal of the fragmentative nature of
the percolation model.

To understand the correlation, we rewrite the
expression for the difference of the variance and
mean in terms of a correlation function,

2 ² : ² :s y n s n yn n ynŽ . Ž .Ý a a b b
a/b

2 2² :q n yn ynÝ a a a
a

² :f n yn n yn . 6Ž .Ž . Ž .Ý a a b b
a/b

The sums over a and b represent the sums over all
types of IMFs, where a type a refers to a specific
size, shape and position. The first sum on the right-

Ž .hand side of Eq. 6 represents the correlation be-
tween different IMFs. The second sum can be ne-
glected, as the first two terms of the second sum
cancel each other since n can only be zero or unity,a

and the last term, which is negative, is small. This
last term becomes zero in the limit that the probabil-

Žity of any specific IMF defined by size, shape and
.position is small.

Since the bond breaking is random, only fragment
types that share the same sites or the same bound-
aries are correlated. If type a and type b share any
of the same sites, the correlation is clearly negative
as they can not coexist. This is related to particle
number conservation. However, if a and b merely
share some section of their boundaries a positive
correlation can exist. This positive correlation ap-
pears only for values of p where a majority of the
sites are taken up by large clusters, larger than the
size of an IMF. The presence of an IMF a then
creates extra surface within some larger cluster. The
increased surface area eases the production of a
second IMF of type b which borders the first IMF.
As p is increased to the point where most of the
sites are assigned to fragments the same size or
smaller than IMFs, the positive correlation disap-
pears, and the effects of particle-number conserva-
tion are dominant.

The super-Poissonian variance of the IMF multi-
plicity distribution signals the fragmentative aspect
of the percolation model. The positive correlation
arises from the additional surface created by the
production of a fragment. In other models, e.g. an
evaporative picture, emission does not lead to an
increased surface area, and one might expect qualita-
tively different behavior. Thus, the study of IMF
multiplicity distribution in nuclear collisions may
provide insight into the general principles of the
fragmentation mechanism.

Several other effects can affect the width of the
IMF multiplicity distribution. One can imagine bin-
ning percolation events according to p as done
above, by the number of broken bonds, or by the
overall multiplicity. One might similarly consider
binning experimental events by an even larger as-
sortment of criteria: multiplicity, transverse energy,
beam energy, the size of the largest fragment, or by
any combination of the above. One might also con-
sider altering the mass range that defines an IMF. All
such seemingly arbitrary choices affect the width of
the multiplicity distribution. For nuclear experi-
ments, the choice of criteria is often constrained by
details of the experiment such as acceptance or
method of excitation, e.g. symmetric central colli-
sions of heavy ions at intermediate energy vs. high-
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energy peripheral collisions. Thus, we concentrate on
the general behavior and manifestations of various
binning criteria in percolation calculations. Many of
the lessons learned from this effort should carry over
to the analysis of nuclear experiments.

Ž .Before we proceed, we define a quantity R p ,
the difference of the variance and the mean, normal-

² :2ized by the ratio, N r n .sites

Nsites 2 ² :R p ' s y n . 7Ž . Ž .Ž .2² :n

² :2By dividing by n , this normalization allows one
to view the correlation even when fragment produc-
tion is rare, and by multiplying by N , R becomessites

independent of the lattice size for large lattices.
Positive and negative values of R refer to super and
sub-Poissonian distributions respectively.

Rather than breaking each bond with probability
p, one can break a fixed percentage p of the bonds.
The multiplicity distributions as seen in Fig. 3 re-
main sub-Poissonian for the entire range of p. This
extra negative correlation is expected as the presence

Fig. 3. Three different binnings of events are illustrated: Describ-
ing the event by the random probability p of breaking bonds
Ž .circles , Categorizing events by the actual fraction of broken

Ž .bonds squares , or binning events according to the overall multi-
Ž .plicity triangles . In the last case, the average value of p for

events of a given multiplicity is used to determine the horizontal
axis. For the latter two cases the binnings introduce an autocorre-
lation with the number of IMFs that reduces the width of the
multiplicity distribution.

of an IMF of type a expended some of the broken
bonds. This correlation is non-local as fragments far
away from a are less likely to be produced. This
difference between binning by p and binning by the
actual number of broken bonds can be thought of as
being analogous to the difference between the canon-
ical and microcanonical statistical distributions. In
fact, if an energy is assigned to each bond, and the
state of the system is completely described by
whether bonds are broken or not, the two choices of
binning can indeed be labeled as the canonical and
microcanonical treatments.

However, it is not obvious as to which choice of
binnings is more appropriate for comparison with
nuclear data. Even for the case of fixed beam energy
and central collisions, other degrees of freedom, such
as the kinetic and internal energy of the fragments,
share the energy with the spatial degrees of freedom
which are more closely associated with binding.
Also, several particles are typically emitted before
the fragmentation stage and the portion of the origi-
nal excitation energy that determines fragmentation
is further randomized.

One might also bin events by the overall multi-
plicity of fragments of any size rather than p. This
has the advantage of offering a convenient means of
comparing percolative calculations to experimental
results, and sidestep some of the ambiguities men-
tioned above. This also introduces a negative correla-
tion as the existence of an IMF of type a reduces the
net number of other fragments by one, making the
existence of a second IMF less likely. The results of
such a binning are displayed in Fig. 3. The binnings
were performed by choosing p randomly between
0.4 and 1.0, then binning the event according to
multiplicity, and finally using the average p of
events with a given multiplicity as the horizontal
axis. In this way, each point in Fig. 3 corresponds to
a specific multiplicity but covers a range of p val-
ues. Again the variance is pushed into the sub-Pois-
sonian range. This illustrates the general principal
that any binning criteria that is autocorrelated with
the number of IMFs pushes the IMF multiplicity
distribution in sub-Poissonian direction.

We also investigate the effects of changing the
mass range that defines an IMF. The choice of
3FZF20 was motivated by a convention for the
definition of IMFs in the analyses of nuclear experi-
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ments. By raising the range to 15FZF20, we see
in Fig. 4 that the multiplicity distribution becomes
increasingly super-Poissonian. In fact, when binning
by a fixed number of broken bonds or a by a fixed
multiplicity, the multiplicity distributions can still be
pushed into the super-Poissonian range by using a
larger mass range for IMFs. This positive correlation
is due to the fact a larger fragment offers more
surface area for the creation of a second fragment.
Since this positive correlation represents the signal
for the fragmentative nature of the event, we suggest
that analyzing more massive fragments may lead to a
more insightful conclusion. However, one must be
careful to steer away from fission-like correlations
which set in when the mass range approaches half
the overall lattice.

Finally, we study the consequences of smearing
the binning criteria, e.g. the values of p, or some
other binning variable, is chosen over a finite range
rather than a discrete value. To understand the ef-
fects of a finite range, we consider a binning variable
x, where a multiplicity distribution exists for any

² :Ž .discrete value of x with moments n x and
² 2:Ž .n x . One can then consider the distribution over
a finite range, x FxFx . Denoting quantitiesmin max

derived from distributions using the range of x

Fig. 4. The super-Poissonian nature of the multiplicity distribution
is magnified by restricting the IMF mass range to heavier parti-

Ž .cles, 15F ZF20. The 123-site case circles and the 4169-site
Ž .case triangles behave similarly.

values with overlines, we give expressions for the
difference of the variance and the mean.

x1 max2 2² :s y n s dx n xŽ .² : H
x yx xmax min min

2
x1 max ² :y dx n xŽ .Hž /x yx xmax min min

x1 max ² :y dx n x . 8Ž . Ž .H
x yx xmax min min

² :Ž .Assuming that n x varies linearly in the small
range of x,

x qxmax min² :n x s n q xyŽ . ² : ž /2

=
² : ² :n x y n xŽ . Ž .max min

, 9Ž .
x yxmax min

one can show that the difference of the variance and
mean becomes,

x1 max2 2 ² :s y n s dx s x y n xŽ . Ž .² : H
x yx xmax min min

21 ² : ² :q n x y n x .Ž . Ž .Ž .max min12

10Ž .
Thus if the distribution is averaged over a region
where the average multiplicity has changed, the re-
sulting distribution is pushed into the super-Poisso-

Ž .nian direction by the last term in Eq. 10 .
Smearing the distribution over a range of x is not

necessarily controllable in a nuclear fragmentation
experiment. Due to the inability of an experiment to
gate on a precise type of event such as a central
collision, all binnings effectively cover a finite range
of excitation energies. The widening of the multiplic-
ity distribution is also most affected for regions
where the average IMF multiplicity is rapidly chang-
ing as a function of x. Clearly, experiments where
all outgoing particles have been measured offer the
best chance of precisely characterizing events and
minimizing this effect.

w xThe behavior observed by Moretto 12 is clearly
contrary to the behavior shown in Fig. 2, as the
results remained clearly in the sub-Poissian range,
and were more strongly sub-Poissonian at lower
excitation. However, conclusive statements can not
be made without fully understanding the details of
the measurement and analysis. In fact, we are cur-
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rently investigating systematic effects, such as the
variation of reaction geometry and system size as a
function of excitation energy.

We conclude by answering the four questions
posed at the beginning of the manuscript. First, the
multiplicity distributions as predicted from percola-
tion models can be summarized by two parameters,
the binomial parameters for the cases where the
multiplicity distributions are sub-Poissonian and the
negative-binomial parameters for the super-Poisso-
nian cases.

Secondly, the variance of the multiplicity distribu-
tion can not be explained with simple conservation
laws. In fact, the most important conclusion from
this study is that measurement of IMF distributions
yield an important insight into the process of frag-
mentation. If nuclear multifragmentation is truly
fragmentative as in a percolation description, one
should expect an increased variance of the multiplic-
ity distribution, perhaps yielding super-Poissonian
distributions. Furthermore, this variance should in-
crease if one confines the analysis to larger frag-
ments. Sequential models and thermal models are
expected to behave in the opposite manner, as the
presence of a fragment is anticorrelated to a second
fragment due to particle and energy conservation,
and this anticorrelation is increasingly strong for
increasingly large fragments.

The third question centered on the role of fluctua-
tions at the critical point. The multiplicity distribu-
tion at a fixed value of p is not governed by critical
phenomena. The crossover from super-Poissonian to
sub-Poissonian behavior shown in Fig. 2 arises from
the dissolution of fragments larger than the IMF size
as a function of p. Although the fraction of sites that
are part of larger fragments is a rapidly changing
function, there is no associated divergence.

The final question regarding binning resulted in a
number of valuable lessons. Binning by observables
such as multiplicity which are correlated to the num-
ber of IMFs narrows the IMF multiplicity distribu-
tion, while binning over a range of excitations effec-
tively broadens the distributions. Thus the fact that
IMF multiplicity distributions are super-Poissonian
or sub-Poissonian is not decisive in itself. But, care-
ful analysis, along with the study of the behavior as a
function of the IMF mass range, should allow one to
make conclusive statements regarding the nature of
nuclear multifragmentation.

During the last 20 years a large number of studies
have investigated mass yields in the region of nu-
clear multifragmentation, but the shape of the mass
yields has been reproduced by a variety of disparate
theoretical descriptions. The recent development of
several full acceptance detector systems makes the
analysis of multiplicity distributions tenable. Using
the percolation model, we have demonstrated that the
qualitative nature of fragmentation might be under-
stood through the analysis of multiplicity distribu-
tions as sequential and percolative descriptions pre-
dict qualitatively different behaviors.
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