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Element Abundances

Bauer & Westfall, 2010

Left over from
Big Bang
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Big Bang



6

He/H ratio from Big Bang
• Coming out of QGP, T ~ 1011 K (~10 MeV)
• p and n in equilibrium
• Number of p and n

determined by Boltzmann factors

• T~0.86 MeV: weak reactions too slow to
maintain equilibrium

• Ratio freezes out at
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He/H ratio from Big Bang
• So far (t = 1 s): 22 n for every 100 p, T still too

high for nuclei to form
• t = 100 s:  T ~ 109 K, nuclei (alpha particles)

can from
– Due to beta decay (half life 15 min), only ~16 n are

left for every 100 p
• All free n can get trapped in α’s:

– 16 n and 16 p can form 8 α
– Mass fraction of alphas is then

2*16/(100+16) = 27%
– Close to observed value of 23%
– Big success for early Big Bang cosmology!
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Big Bang: He/H = 23%
OK, got that!
Turns out lecture is not a
complete waste of time …
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Element Abundances

Bauer & Westfall, 2010

Fusion inside
stars
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Nuclear Fusion in Stars

• Nuclear fusion ⇒ hydrostatic equilibrium
• Burn to central
   fuel exhaustion
• Contraction
• Ignite next burning
   phase
• Onion skin layers
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Element Abundances

Bauer & Westfall, 2010

Where is this from?
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Nuclear Physics

Astro-
Physics

Particle
Physics

RHIC
JLab
LHC
…

SNO
Super-K
DUSEL

…

FRIB
RIKEN
FAIR

…

Our Science



13

Pre-Collapse Fe Core

• Iron-mass range nuclei A ~ 45-65
• Fusion has fizzled
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• Iron-mass range nuclei A ~ 45-65
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Pre-Collapse Fe Core

• Iron-mass range nuclei A ~ 45-65
• Fusion has fizzled

– Some gravitational collapse
– Electron gas becomes degenerate

• (Only) electron degeneracy pressure
stabilizes core
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Onset of Collapse

– Silicon burns in shell around Fe core
adding to its mass
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Onset of Collapse

– Silicon burns in shell around Fe core
adding to its mass

– Electrons are captured by nuclei

• endothermic
• reduces ηe

  e
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Onset of Collapse

– Silicon burns in shell around Fe core
adding to its mass

– Electrons are captured by nuclei

– Stability requires:

e Z A Z A e
! + " ! +( , ) ( , )1 #

M M MCore Ch e< = 144 2 2. ( )! 

Two ways toTwo ways to  trigger a catastrophe:trigger a catastrophe:
Make left side bigger; make right side smallerMake left side bigger; make right side smaller
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Onset of Collapse

– Silicon burns in shell around Fe core
adding to its mass

– Electrons are captured by nuclei

– Stability requires:

e Z A Z A e
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Onset of Collapse

– Silicon burns in shell around Fe core
adding to its mass

– Electrons are captured by nuclei

– Stability requires:

e Z A Z A e
! + " ! +( , ) ( , )1 #

M M MCore Ch e< = 144 2 2. ( )! 

lower electron fraction => higher density => higher Fermi energylower electron fraction => higher density => higher Fermi energy
=> higher capture rates => lower electron fraction => higher capture rates => lower electron fraction ……

runaway
 instability --
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Bounce Dynamics

• Accepted picture:
– Approach free fall
– Weak and electromagnetic interactions breakup

heavy nuclei ⇒ create free neutrons
– Collapse ensues until neutron pressure stops it

•  ρc ~ 3ρ0
•  ηe ~ 0.3
•  t bounce ~ 0.1 s

– Large amount of gravitational energy released
• Couple 1% of this energy to infall
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Energy considerations
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Traditional Approach: Hydro

• Tough problem for hydro based calculations
– Multiple fluids

• Track p, n, α, average heavy nucleus
• Simplifying assumptions about neutrino flow

– Optically thick and thin regions
– MGFLD

can “average out”
 structure effects

trouble between
trapping and
free steaming
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Traditional Approach: Hydro

• Tough problem for hydro based calculations
– Multiple fluids

• Track p, n, α, average heavy nucleus
• Simplifying assumptions about neutrino flow

– Very large number of time steps
– Special relativity, causality
– Realistic rotation difficult to include in 1-2 D
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Traditional Approach: Hydro

• Tough problem for hydro based calculations
– Multiple fluids

• Track p, n, α, average heavy nucleus
• Simplifying assumptions about neutrino flow

– Very large number of time steps
– Special relativity, causality
– Realistic rotation difficult to include in 1-2 D

• Limited success
– Burrows et al. (2D) & Fryer et al. (3D)

different explosion
        mechanisms
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Burrows et al. Acoustic Mechanism
A. Burrows et al., A. Burrows et al., ApJ ApJ 20062006
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Fryer et al. Convection

• Similar to their 2D
convection

• Convection
mechanism drives
explosion

• No core
oscillations

• 150-200 km/s kick

C. Fryer & P. Young, C. Fryer & P. Young, ApJ ApJ 20072007
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Supernovae Simulation Wish List

• Explicitly model propagation of full ensemble
of nuclei
– Full reaction network
– Retain sensitivity to structure

• Explicitly model propagation of neutrinos in a
general way
– No simplifying assumptions
– No problems between trapping and free

streaming
• Do this in 3D Too soon for hydro!



29 Simulations of Supernovae
and Nuclear Collisions

• Similarities: Must simulate
– particle production

• neutrinos for supernovae
• pions for nuclear collisions

– shock wave formation
– interplay between regular and chaotic collective

dynamics
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• Characterize system with 6-D phase space
density f

• Need to numerically solve transport equations

Simulations of Nuclear
Collisions
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Wait, where does this
equation come from?
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Many-Body Theory in a Nut Shell
• Schrödinger eq. for n-body wave function, Hψ = Eψ .
• Form density matrix ψψ∗n, which obeys von Neumann

eq. of motion
• Define n-1 body density matrix ψψ∗n-1 via integration

over n-body density matrix ψψ∗n.
– Eq. of motion: dtψψ∗n-1 = F(ψψ∗n-1,ψψ∗n)
– Truncate at some level by neglecting hire correlation
– Lowest level (no 2-body correlations: mean field): TDHF
– Second-lowest (no 3-body correlations: mena field + two-

body collision: correlation dynamics
• Wigner transform: f(r,p,t)

– Lowest level: Vlasov equation
– Second lowest: BUU equation (shown 2 pages ago)



33

Simulations of Nuclear Collisions

• Numerical approach
– Fully discritize relevant phase space
– Course grid ~ 109 lattice sites
– Alternative:

• Only follow initially occupied phase space cells in
time and represent them by imaginary test particles

• One-body mean-field potentials (ρ,p,τ)
• Scatter via realistic cross sections
• Coupled equations for many species no problem
• 100 -1000 test particles/nucleon
• ~10 -100 k test particles total

Too big!

sufficient
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Test Particle Approach

• Formally approximate f by a sum of delta
functions (test particles)

• Insert this into integral transport equation to
obtain equations of motion for 6 coordinates
of each test particle
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Test Particle Approach

Nuclear EOS

Coulomb

2-body scattering
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Test Particle Approach
• Reproduces experiments (lots of them)

2-particle
interferometry

Pion spectra

B.A. Li & WB, PLB (1991)W.G. Gong et al., PRL (1990)
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Test Particle Approach Applicability
• Require number of test particles large

enough to accommodate phase space
complexity (important details)

• Whether

number of physical particles
number of test particles 1 oror

number of physical particles
number of test particles 1

macroscopic

microscopic
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Apply This To Supernovae

• ~1 M iron core ~1057 baryons & leptons
• ~107 matter test particles ⇒ ~1050 baryons

per matter test particle
• Matter test particles interact via one-body

potentials (ρ,ηe, r ) and 2-body scattering
• Neutrino test particles can be created and

destroyed
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Coupled transport equations

• 2-body collision terms structurally identical to BUU
source term
– Couples transport equations
– Essential input: neutrino-nucleus cross sections

(Nakamura et al, ApJ 1999; K. Sumiyoshi et al, NPA
2001, Fröhlich et al, PRL 2006, B.A. Brown, …)

(includes relativity; otherwise very similar derivation to BUU eq.) 
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Selecting Scattering Pairs

• Matter test particles
– Baryonic matter in hydro limit
– Time and distance between
    collisions is small
– Organize matter test particles
    in 3D grid
– Randomize COM momenta

Algorithm: stochastic Direct Simulation Monte Carlo (DSMC)
[Nuclear physics: Kortemeyer et al., PLB 374, 25 (1996)]

tCPU ~ N log N
Main operation:
    Database sort
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Selecting Scattering Pairs
• Neutrinos not generally in hydro limit

– Some free-streaming, some trapped, some in
between

– Use beam attenuation
   arguments

– Construct relative
probabilities

APPLICALBE EVERYWHERE AT ALL TIMES!
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Matter Test Particle Properties

3 free neutrons

• Explicitly represent all nuclei
– Many hundreds of isotopes
– Lots of work: reaction network, weak interaction

cross sections
– All Z,A between drip lines
– Ensemble propagation
– “Coupled channels” in

reaction network

– Free baryons
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Initial Conditions

• Start with Woosley & Weaver’s 15 M progenitor

Use for the first 10Use for the first 1077 years years
Concentrate on last 0.3 secondsConcentrate on last 0.3 seconds
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Core Modeled: Initial Conditions

• Mcore = 1.33 M

• Spherically symmetric
• Radius ≈ 1000 km

““FeFe””  ⇒⇒ A  A ∈∈ [48,65]  Z/A < 26/56 [48,65]  Z/A < 26/56
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Some Results

• Single processor (spherical symmetry)
• 1 million matter test particles

– 385 nuclei + free baryons
• Cold soft BKD nuclear EOS
• Weak interaction network

– Electron capture (reduced FFN rates)
– Neutrino-matter interactions
– Neutrino oscillations a la “MSW”

• No fusion or photo-disintegration channels
included
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Time evolution

Interplay of macro- andInterplay of macro- and
micro-scales forcesmicro-scales forces  veryvery
large number oflarge number of
comparatively small timecomparatively small time
stepssteps
((cc ~ 1 ft/ns) ~ 1 ft/ns)
ΔΔtt = 10 = 10-5-5 s s

=> Mostly boring initial=> Mostly boring initial
time evolution (taketime evolution (take
1000 steps between1000 steps between
frames)frames)
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Time evolution
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Time evolution
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Time evolution
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Time evolution
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Time evolution
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Time evolution
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Time evolution
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Time evolution
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3% 3% cc

Boring first 9000Boring first 9000
time steps are donetime steps are done
Now: MovieNow: Movie

Time evolution



56

Time evolution
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~0.002~0.002ρρ00

~0.2~0.2ρρ00

58 km58 km

Time evolution
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Remnant
• M=0.25 M

• R=7.3 km
•  ρc=1.7ρ0
•  ηc=0.27

Time evolution
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Why?

• Electron fraction spike “cuts” the core in two
– Proto-remnant “gently” assumes ideal configuration
– Role of nuclear EOS totally different

• How does the spike form?
–  ρ(rexp) ~ 0.002ρ0

– Study neutrino-matter interaction probabilities
• Nuclear structure
• Relativistic electron gas statistical mechanics
• Essential input: neutrino cross sections & nuclear structure

(weak neutral current ~ A2)
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t t = 0.01000 s= 0.01000 s

Average neutrino interaction
probability

Isotope composition
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t t = 0.03000 s= 0.03000 s
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t t = 0.05000 s= 0.05000 s
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t t = 0.07000 s= 0.07000 s
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nuclear
structure

t t = 0.09000 s= 0.09000 s
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Free
neutrons

t t = 0.10000 s= 0.10000 s
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electron gas
degeneracy

t t = 0.11265 s= 0.11265 s
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t t = 0.12000 s= 0.12000 s
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Summary
• New solution method for supernova dynamics

– Test particle method
– Link between nuclear dynamics and astrophysics

• New explosion mechanism
– Shockwave originates ~ 50 km above neutron star

surface
– Due to neutrino heating / opacity change
– VERY dependent on nuclear structure and

neutrino cross sections



69

Next

• Need more test particles to test for
convergence
– Shown today: results for 106 test particles
– Perhaps 108 needed

• Use parallel processor installations
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Convergence

With 108 test particles
interesting 3d effects
can be probed
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Effect of Rapid Rotation

   

!
L  conserved (no external torques) during collapse
I  reduced by ~104 !"  increases by same factor
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