Wolfgang Bauer

Department of Physics and Astronomy &
Institute for Cyber-Enabled Research

G MICHIGAN STATE UNIVERSITY




Irina Sagert, MSU PHY (Lynen Fellow)

Dirk Colbry, MSU iCER

Terrance Strother, LANL (former MSU Ph.D.)
Tobias Bollenbach, MSU M.S. (Studienstiftung)
Rodney Picket, MSU CSE undergraduate
James Howell, MSU CSE undergraduate

Alec Staber, MSU AST undergraduate



e ... according to fluid
dynamics experts



* Conservation Laws
— Linear momentum (Newton’s 2"9 Law)

— Energy (including Mass)

* Navier-Stokes Equation
p(%ﬂvﬁ)ﬁj =-Vp+VT+F
v = flow velocity
p = pressure
p = fluid density
T = stress tensor

F = external force Credit: Thierry Dugnolle (Wikipedia)



e =ratio of inertial forces to viscous (friction) forces

® Re:p_VIJ
n

p = fluid density

v = typical flow speed

L = characteristic length scale
1) = dynamic viscosity

 Rule of thumb: Re > 5,000 turbulent flow
Re < 2,000 laminar flow
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* =ratio of mean free path to characteristic length

scale
Kn = A
L

* Needed for hydro to be valid Kn— 0
 Example ideal gas: Kn S )
p g . idealgas_\/z(él-n_rz)pL

— N, molecules at STP: Kn ~ 30

N, molecules , I . o FIGURE 19.27 Scale drawing
o C Coe e o showing the size of nitrogen molecules,
the mean free path of the molecules in the
gas, and the average distance between

molecules.

Credit: Bauer & Westfall 2013

— Average distance between molecules
6
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arXiv.org > cond-mat > arXiv:1105.6256
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100 AGev Au + Au 100 AGev

T, = 419 MeV T = 239 MeV

Relativistic Heavy lon Collider (RHIC).
Data: STAR Collaboration
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Credit: McLerran 2013

Cartoon of the time evolution of an ultra-relativistic heavy ion collision



Relativistic heavy
ion collisions

Scale 10> m
Shock wave (?)

Successful @RHIC
—v,
—n/s small v/

H. Stocker, J.A. Maruhn, and W. Greiner, PRL 44, 725 (1980)



coordinate \ ,
space E d’'N _ 1 d°N
anisotropy d’p 2z p,dp,dy

| [1+zilvn@py)cos(n@—wr))]
v, =(cos(n(¢g—"¥.)))

v » Azimuthal correlation with
the reaction plane.
momentum
space » Built up in the early stage,
anisotropy therefore supplies the

early information of matter
generated in the collision.

Credit: Na Li, 25t WWND, 2009
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Strong indication for hydrodynamic flow!
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Type Il core
collapse supernovae

Scale 10’ m

Neutrino-driven
dynamics

Stalled shock
wave



* National Ignition Facility

 Most powerful laser in the world: 0.5 PW
(1.8 MJ/4 ns)



* |CF capsule
* Scale 10™ m

e Livermore hydro codes fail

— Ignition predicted,
but not achieved



Start from many-body Hamiltonian
ih8t|‘-IJN>:I-AI|‘PN>

Construct density matrix for many particle wave
function

Py = |\PN><\PN | = ihd,py = [I:\I’pN]
BBGKY (Bogoliubov-Born-Green—Kirkwood-Yvon) Hierarchy
9,0, = F(p,:Pp)

Truncate at some level n: p,..=G(p,)

— Here: truncate at 3-body level; 3-body matix = product
of 2-body density matrices



* Introduce Wigner transform:
1 ipy
fOepy=— [lw e+ )=yl e "dy
* Final result: time evolution equation for 1-body

Wigner-transform, which contains two-body

correlations
0 i .

5/ (T0t) + =N f(F D) = VUV, f(7,51)
9 3 3 3
— P d / d d /
273 m2 / qr g2 a-q2
1 O, . . do
| —p*+a—a —¢)) FP+E—qu—q) —=
2m A0

{f( Qv ) f(7. 3y, t) (1= F(.5.0)) (1= £ (7. 32.1))

~SERNIEED (1= 16d0) (1 1E300) |
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e Approximate f by a sum of delta functions in phase
space:
F,58) = [ drodpo 635~ o, oy 10) 8%~ B, oy ) F o o o)

Insert this into integral transport equation to obtain
equations of motion for 6 coordinates of each test

particle Q O Q

Coulomb

\ |
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* Energy functional as a function of density
temperature, momentum, isospin, ...

* Not easy!



Two-body cross sections from experiment
Most accurate method: Distance of closest approach

— CPU time O(N?)

[J. Cugnon et al. NPA352, 505 (1981)]
Fastest method: Direct Simulation Monte Carlo
— Scattering grid

— Causality violations and shock wave diffusion unavoidable
[F.J. Alexander, A.L. Garcia, B.J. Alder, PRL 74, 5212 (1995),
G. Kortemeyer, F. Daffin,WB, PLB 374, 25 (1996)]

Best of both Worlds?
[l. Sagert et al, sub. Physics of Fluids (2012)]
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e Point 1: Kinetic theory
without collisions (=
Vlasov) reproduces
mean field theory (=
TDHF)

JOSEPH J. MOLITORIS, DETLEV HAHN,
HORST STOCKER,
Prog. Nuc. Part. Phys. 15, 239 (1985)



* Point 2: Kinetic theory JOSEPH J. MOLITORIS, DETLEV HAHN,
i HORST STOCKER,
Wlt N CO ISIOnS ( VU UI Prog. Nuc. Part. Phys. 15, 239 (1985)

BUU, ...) reproduces
hydro!
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JOSEPH J. MOLITORIS, DETLEV HAHN,
HORST STOCKER,
Prog. Nuc. Part. Phys. 15, 239 (1985)
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30

=Tucpu/T

Speed-up S

Simulation —e—
Ideal speed-up — — —
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e Observables
— Bulk velocity

— Pressure (= average of diagonal elements of stress tensor
per volume)

— Density



Initial conditions:



Initial conditions:
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Homogeneous gas with uniform radial
inward speed v,

( dof)
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* No wall heating * No shock wave diffusion
* No causality violations * No “running ahead” of

shock front
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Turbulent flow
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* Code passes all standard hydrodynamic tests
* (Slow) convergence to analytic results with
increasing test particle number

— Typical number of test particles used in 3d tests:
10 million — 100 million

* No physical limit to precision of shock wave
localization
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* Large mean free path, large Knudsen number
* Sod shock test:

A =mean free path
dx =box size
Fs = “free streaming”, A infinite



* Large mean free path, large Knudsen number
* 2d Noh shock test:

A =mean free path
dx =box size
Fs = “free streaming”, A infinite



e Supernova explosion driven by neutrino shock (?)
* Neutrinos cannot be modeled by hydro

— Extremely small cross sections
— Very large Knudsen number

e Kinetic theory: no problem

— Can be calculated in the same framework



L

2-body collision terms structurally identical to BUU
source term

— Couples transport equations of baryons and neutrinos

— Essential input: neutrino-nucleus cross sections
(Nakamura et al, ApJ 1999; K. Sumiyoshi et al, NPA 2001,
Frohlich et al, PRL 2006, B.A. Brown, ...)



* Explicitly represent all nuclei
— Many hundreds of isotopes

— Lots of work: reaction network, weak interaction cross
sections

— All Z,A between drip lines
— Ensemble propagation

— “Coupled channels” in
reaction network

— Free baryons



* Start with Woosley & Weaver’ s 15 M, progenitor
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1.0:
: * M_,.=133 Mg
107" e Spherically symmetric
: Ol » Radius = 1000 km
0t
0%

October 28, 2013 |nterior mass (M/Me)



Single processor (spherical symmetry)

1 million matter test particles
— 385 nuclei + free baryons

Cold soft BKD nuclear EOS

Weak interaction network

— Electron capture (reduced FFN rates)
— Neutrino-matter interactions

— Neutrino oscillations a la “MSW”

No fusion or photo-disintegration channels
included



Interplay of macro- and
micro-scales forces very
large number of
comparatively small time
steps

(c~ 1 ft/ns)

At=107s

=> Mostly boring initial
time evolution (take 1000
steps between frames)
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3% c

Boring first 9000
time steps are done
Now: Movie
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~0.2p,

~0.002p,

58 km
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Remnant
* M=0.25 M
e R=7.3 km

* pcentral = 1-7,00
* r]central =0.27



* Electron fraction spike “cuts” the core in two
— Proto-remnant “gently” assumes ideal configuration
— Role of nuclear EOS totally different

 How does the spike form?
— p(rey) ~ 0.002p,
— Study neutrino-matter interaction probabilities
* Nuclear structure

* Relativistic electron gas statistical mechanics

* Essential input: neutrino cross sections & nuclear structure
(weak neutral current ~ A?)



t=0.01000 s

Average neutrino interaction
probability

¢

I

Isotope composition



t =0.03000 s

October 28, 2013

60



t =0.05000 s
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t=0.07000 s
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t =0.09000 s
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nuclear
structure

63



t =0.10000 s
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Free
neutrons
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t=0.11265s

electron gas
~—degeneracy
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t=0.12000 s
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P. Sorensen (this meeting)
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Angular
momentum
conservation

Baryons fall in on
equator;
neutrinos escape
along poles

Macroscopic
parity violation

Finite recoil of
neutron start



* New solution method for supernova dynamics
— Test particle method
— Link between nuclear dynamics and astrophysics
— Passes all standard hydrodynamic verification tests

* New explosion mechanism
— Shockwave originates ~ 50 km above neutron star surface
— Due to neutrino heating / opacity change
— VERY dependent on nuclear structure and neutrino cross sections



Mike Lisa:
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NOT YET!
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RANP 4 Advisory Board, August 1995

October 28, 2013

77



October 28, 2013

78



