// @(#)root/pyroot:$Id$ // Author: Wim Lavrijsen, Apr 2004 // Bindings #include "PyROOT.h" #include "PyStrings.h" #include "Utility.h" #include "ObjectProxy.h" #include "MethodProxy.h" #include "FunctionHolder.h" #include "TCustomPyTypes.h" #include "RootWrapper.h" #include "PyCallable.h" #include "Adapters.h" // ROOT #include "TROOT.h" #include "TSystem.h" #include "TObject.h" #include "TClassEdit.h" #include "TClassRef.h" #include "TCollection.h" #include "TFunction.h" #include "TMethodArg.h" #include "TError.h" // CINT #include "Api.h" // Standard #include #include #include #include #include #include //- data _____________________________________________________________________ dict_lookup_func PyROOT::gDictLookupOrg = 0; Bool_t PyROOT::gDictLookupActive = kFALSE; PyROOT::Utility::EMemoryPolicy PyROOT::Utility::gMemoryPolicy = PyROOT::Utility::kHeuristics; // this is just a data holder for linking; actual value is set in RootModule.cxx PyROOT::Utility::ESignalPolicy PyROOT::Utility::gSignalPolicy = PyROOT::Utility::kSafe; typedef std::map< std::string, std::string > TC2POperatorMapping_t; static TC2POperatorMapping_t gC2POperatorMapping; namespace { using namespace PyROOT::Utility; struct InitOperatorMapping_t { public: InitOperatorMapping_t() { // Initialize the global map of operator names C++ -> python. // gC2POperatorMapping[ "[]" ] = "__setitem__"; // depends on return type // gC2POperatorMapping[ "+" ] = "__add__"; // depends on # of args (see __pos__) // gC2POperatorMapping[ "-" ] = "__sub__"; // id. (eq. __neg__) // gC2POperatorMapping[ "*" ] = "__mul__"; // double meaning in C++ gC2POperatorMapping[ "[]" ] = "__getitem__"; gC2POperatorMapping[ "()" ] = "__call__"; gC2POperatorMapping[ "/" ] = PYROOT__div__; gC2POperatorMapping[ "%" ] = "__mod__"; gC2POperatorMapping[ "**" ] = "__pow__"; gC2POperatorMapping[ "<<" ] = "__lshift__"; gC2POperatorMapping[ ">>" ] = "__rshift__"; gC2POperatorMapping[ "&" ] = "__and__"; gC2POperatorMapping[ "|" ] = "__or__"; gC2POperatorMapping[ "^" ] = "__xor__"; gC2POperatorMapping[ "~" ] = "__inv__"; gC2POperatorMapping[ "+=" ] = "__iadd__"; gC2POperatorMapping[ "-=" ] = "__isub__"; gC2POperatorMapping[ "*=" ] = "__imul__"; gC2POperatorMapping[ "/=" ] = PYROOT__idiv__; gC2POperatorMapping[ "%=" ] = "__imod__"; gC2POperatorMapping[ "**=" ] = "__ipow__"; gC2POperatorMapping[ "<<=" ] = "__ilshift__"; gC2POperatorMapping[ ">>=" ] = "__irshift__"; gC2POperatorMapping[ "&=" ] = "__iand__"; gC2POperatorMapping[ "|=" ] = "__ior__"; gC2POperatorMapping[ "^=" ] = "__ixor__"; gC2POperatorMapping[ "==" ] = "__eq__"; gC2POperatorMapping[ "!=" ] = "__ne__"; gC2POperatorMapping[ ">" ] = "__gt__"; gC2POperatorMapping[ "<" ] = "__lt__"; gC2POperatorMapping[ ">=" ] = "__ge__"; gC2POperatorMapping[ "<=" ] = "__le__"; // the following type mappings are "exact" gC2POperatorMapping[ "const char*" ] = "__str__"; gC2POperatorMapping[ "char*" ] = "__str__"; gC2POperatorMapping[ "int" ] = "__int__"; gC2POperatorMapping[ "long" ] = PYROOT__long__; gC2POperatorMapping[ "double" ] = "__float__"; // the following type mappings are "okay"; the assumption is that they // are not mixed up with the ones above or between themselves (and if // they are, that it is done consistently) gC2POperatorMapping[ "short" ] = "__int__"; gC2POperatorMapping[ "unsigned short" ] = "__int__"; gC2POperatorMapping[ "unsigned int" ] = PYROOT__long__; gC2POperatorMapping[ "unsigned long" ] = PYROOT__long__; gC2POperatorMapping[ "long long" ] = PYROOT__long__; gC2POperatorMapping[ "unsigned long long" ] = PYROOT__long__; gC2POperatorMapping[ "float" ] = "__float__"; gC2POperatorMapping[ "->" ] = "__follow__"; // not an actual python operator gC2POperatorMapping[ "=" ] = "__assign__"; // id. #if PY_VERSION_HEX < 0x03000000 gC2POperatorMapping[ "bool" ] = "__nonzero__"; #else gC2POperatorMapping[ "bool" ] = "__bool__"; #endif } } initOperatorMapping_; // for keeping track of callbacks for CINT-installed methods into python: typedef std::pair< PyObject*, Long_t > CallInfo_t; std::map< int, CallInfo_t > s_PyObjectCallbacks; } // unnamed namespace //- public functions --------------------------------------------------------- ULong_t PyROOT::PyLongOrInt_AsULong( PyObject* pyobject ) { // Convert to C++ unsigned long, with bounds checking, allow int -> ulong. ULong_t ul = PyLong_AsUnsignedLong( pyobject ); if ( PyErr_Occurred() && PyInt_Check( pyobject ) ) { PyErr_Clear(); Long_t i = PyInt_AS_LONG( pyobject ); if ( 0 <= i ) { ul = (ULong_t)i; } else { PyErr_SetString( PyExc_ValueError, "can\'t convert negative value to unsigned long" ); } } return ul; } //____________________________________________________________________________ ULong64_t PyROOT::PyLongOrInt_AsULong64( PyObject* pyobject ) { // Convert to C++ unsigned long long, with bounds checking. ULong64_t ull = PyLong_AsUnsignedLongLong( pyobject ); if ( PyErr_Occurred() && PyInt_Check( pyobject ) ) { PyErr_Clear(); Long_t i = PyInt_AS_LONG( pyobject ); if ( 0 <= i ) { ull = (ULong64_t)i; } else { PyErr_SetString( PyExc_ValueError, "can\'t convert negative value to unsigned long long" ); } } return ull; } //____________________________________________________________________________ Bool_t PyROOT::Utility::SetMemoryPolicy( EMemoryPolicy e ) { // Set the global memory policy, which affects object ownership when objects // are passed as function arguments. if ( kHeuristics <= e && e <= kStrict ) { gMemoryPolicy = e; return kTRUE; } return kFALSE; } //____________________________________________________________________________ Bool_t PyROOT::Utility::SetSignalPolicy( ESignalPolicy e ) { // Set the global signal policy, which determines whether a jmp address // should be saved to return to after a C++ segfault. if ( kFast <= e && e <= kSafe ) { gSignalPolicy = e; return kTRUE; } return kFALSE; } //____________________________________________________________________________ Bool_t PyROOT::Utility::AddToClass( PyObject* pyclass, const char* label, PyCFunction cfunc, int flags ) { // Add the given function to the class under name 'label'. // use list for clean-up (.so's are unloaded only at interpreter shutdown) static std::list< PyMethodDef > s_pymeths; s_pymeths.push_back( PyMethodDef() ); PyMethodDef* pdef = &s_pymeths.back(); pdef->ml_name = const_cast< char* >( label ); pdef->ml_meth = cfunc; pdef->ml_flags = flags; pdef->ml_doc = NULL; PyObject* func = PyCFunction_New( pdef, NULL ); PyObject* method = TCustomInstanceMethod_New( func, NULL, pyclass ); Bool_t isOk = PyObject_SetAttrString( pyclass, pdef->ml_name, method ) == 0; Py_DECREF( method ); Py_DECREF( func ); if ( PyErr_Occurred() ) return kFALSE; if ( ! isOk ) { PyErr_Format( PyExc_TypeError, "could not add method %s", label ); return kFALSE; } return kTRUE; } //____________________________________________________________________________ Bool_t PyROOT::Utility::AddToClass( PyObject* pyclass, const char* label, const char* func ) { // Add the given function to the class under name 'label'. PyObject* pyfunc = PyObject_GetAttrString( pyclass, const_cast< char* >( func ) ); if ( ! pyfunc ) return kFALSE; Bool_t isOk = PyObject_SetAttrString( pyclass, const_cast< char* >( label ), pyfunc ) == 0; Py_DECREF( pyfunc ); return isOk; } //____________________________________________________________________________ Bool_t PyROOT::Utility::AddToClass( PyObject* pyclass, const char* label, PyCallable* pyfunc ) { // Add the given function to the class under name 'label'. MethodProxy* method = (MethodProxy*)PyObject_GetAttrString( pyclass, const_cast< char* >( label ) ); if ( ! method || ! MethodProxy_Check( method ) ) { // not adding to existing MethodProxy; add callable directly to the class if ( PyErr_Occurred() ) PyErr_Clear(); Py_XDECREF( (PyObject*)method ); method = MethodProxy_New( label, pyfunc ); Bool_t isOk = PyObject_SetAttrString( pyclass, const_cast< char* >( label ), (PyObject*)method ) == 0; Py_DECREF( method ); return isOk; } method->AddMethod( pyfunc ); Py_DECREF( method ); return kTRUE; } //____________________________________________________________________________ Bool_t PyROOT::Utility::AddUsingToClass( PyObject* pyclass, const char* method ) { // Helper to add base class methods to the derived class one (this covers the // 'using' cases, which the dictionary does not provide). MethodProxy* derivedMethod = (MethodProxy*)PyObject_GetAttrString( pyclass, const_cast< char* >( method ) ); if ( ! MethodProxy_Check( derivedMethod ) ) { Py_XDECREF( derivedMethod ); return kFALSE; } PyObject* mro = PyObject_GetAttr( pyclass, PyStrings::gMRO ); if ( ! mro || ! PyTuple_Check( mro ) ) { Py_XDECREF( mro ); Py_DECREF( derivedMethod ); return kFALSE; } MethodProxy* baseMethod = 0; for ( int i = 1; i < PyTuple_GET_SIZE( mro ); ++i ) { baseMethod = (MethodProxy*)PyObject_GetAttrString( PyTuple_GET_ITEM( mro, i ), const_cast< char* >( method ) ); if ( ! baseMethod ) { PyErr_Clear(); continue; } if ( MethodProxy_Check( baseMethod ) ) break; Py_DECREF( baseMethod ); baseMethod = 0; } Py_DECREF( mro ); if ( ! MethodProxy_Check( baseMethod ) ) { Py_XDECREF( baseMethod ); Py_DECREF( derivedMethod ); return kFALSE; } derivedMethod->AddMethod( baseMethod ); Py_DECREF( baseMethod ); Py_DECREF( derivedMethod ); return kTRUE; } //____________________________________________________________________________ Bool_t PyROOT::Utility::AddBinaryOperator( PyObject* left, PyObject* right, const char* op, const char* label ) { // Install the named operator (op) into the left object's class if such a function // exists as a global overload; a label must be given if the operator is not in // gC2POperatorMapping (i.e. if it is ambiguous at the member level). // this should be a given, nevertheless ... if ( ! ObjectProxy_Check( left ) ) return kFALSE; // retrieve the class names to match the signature of any found global functions std::string rcname = ClassName( right ); std::string lcname = ClassName( left ); PyObject* pyclass = PyObject_GetAttr( left, PyStrings::gClass ); Bool_t result = AddBinaryOperator( pyclass, lcname, rcname, op, label ); Py_DECREF( pyclass ); return result; } //____________________________________________________________________________ Bool_t PyROOT::Utility::AddBinaryOperator( PyObject* pyclass, const char* op, const char* label ) { // Install binary operator op in pyclass, working on two instances of pyclass. PyObject* pyname = PyObject_GetAttr( pyclass, PyStrings::gName ); std::string cname = ResolveTypedef( PyROOT_PyUnicode_AsString( pyname ) ); Py_DECREF( pyname ); pyname = 0; return AddBinaryOperator( pyclass, cname, cname, op, label ); } //____________________________________________________________________________ static inline TFunction* FindAndAddOperator( const std::string& lcname, const std::string& rcname, const char* op, TCollection* funcs ) { // Helper to find a function with matching signature in 'funcs'. std::string opname = "operator"; opname += op; TIter ifunc( funcs ); TFunction* func = 0; while ( (func = (TFunction*)ifunc.Next()) ) { if ( func->GetListOfMethodArgs()->GetSize() != 2 ) continue; if ( func->GetName() == opname ) { if ( ( lcname == ResolveTypedef( TClassEdit::CleanType( ((TMethodArg*)func->GetListOfMethodArgs()->At(0))->GetTypeName(), 1 ).c_str() ) ) && ( rcname == ResolveTypedef( TClassEdit::CleanType( ((TMethodArg*)func->GetListOfMethodArgs()->At(1))->GetTypeName(), 1 ).c_str() ) ) ) { // done; break out loop return func; } } } return 0; } Bool_t PyROOT::Utility::AddBinaryOperator( PyObject* pyclass, const std::string& lcname, const std::string& rcname, const char* op, const char* label ) { // Find a global function with a matching signature and install the result on pyclass; // in addition, __gnu_cxx is searched pro-actively (as there's AFAICS no way to unearth // using information). static TClassRef gnucxx( "__gnu_cxx" ); TFunction* func = 0; if ( gnucxx.GetClass() ) { func = FindAndAddOperator( lcname, rcname, op, gnucxx->GetListOfMethods() ); if ( func ) { PyCallable* pyfunc = new TFunctionHolder< TScopeAdapter, TMemberAdapter >( TScopeAdapter::ByName( "__gnu_cxx" ), func ); return Utility::AddToClass( pyclass, label ? label : gC2POperatorMapping[ op ].c_str(), pyfunc ); } } if ( ! func ) func = FindAndAddOperator( lcname, rcname, op, gROOT->GetListOfGlobalFunctions( kTRUE ) ); if ( func ) { // found a matching overload; add to class PyCallable* pyfunc = new TFunctionHolder< TScopeAdapter, TMemberAdapter >( func ); return Utility::AddToClass( pyclass, label ? label : gC2POperatorMapping[ op ].c_str(), pyfunc ); } return kFALSE; } //____________________________________________________________________________ Bool_t PyROOT::Utility::BuildTemplateName( PyObject*& pyname, PyObject* args, int argoff ) { // Helper to construct the "< type, type, ... >" part of a templated name (either // for a class as in MakeRootTemplateClass in RootModule.cxx) or for method lookup // (as in TemplatedMemberHook, below). PyROOT_PyUnicode_AppendAndDel( &pyname, PyROOT_PyUnicode_FromString( "<" ) ); Py_ssize_t nArgs = PyTuple_GET_SIZE( args ); for ( int i = argoff; i < nArgs; ++i ) { // add type as string to name PyObject* tn = PyTuple_GET_ITEM( args, i ); if ( PyROOT_PyUnicode_Check( tn ) ) PyROOT_PyUnicode_Append( &pyname, tn ); else if ( PyObject_HasAttr( tn, PyStrings::gName ) ) { // this works for type objects PyObject* tpName = PyObject_GetAttr( tn, PyStrings::gName ); // special case for strings if ( strcmp( PyROOT_PyUnicode_AsString( tpName ), "str" ) == 0 ) { Py_DECREF( tpName ); tpName = PyROOT_PyUnicode_FromString( "std::string" ); } PyROOT_PyUnicode_AppendAndDel( &pyname, tpName ); } else { // last ditch attempt, works for things like int values PyObject* pystr = PyObject_Str( tn ); if ( ! pystr ) { return kFALSE; } PyROOT_PyUnicode_AppendAndDel( &pyname, pystr ); } // add a comma, as needed if ( i != nArgs - 1 ) PyROOT_PyUnicode_AppendAndDel( &pyname, PyROOT_PyUnicode_FromString( "," ) ); } // close template name; prevent '>>', which should be '> >' if ( PyROOT_PyUnicode_AsString( pyname )[ PyROOT_PyUnicode_GetSize( pyname ) - 1 ] == '>' ) PyROOT_PyUnicode_AppendAndDel( &pyname, PyROOT_PyUnicode_FromString( " >" ) ); else PyROOT_PyUnicode_AppendAndDel( &pyname, PyROOT_PyUnicode_FromString( ">" ) ); return kTRUE; } //____________________________________________________________________________ Bool_t PyROOT::Utility::InitProxy( PyObject* module, PyTypeObject* pytype, const char* name ) { // Initialize a proxy class for use by python, and add it to the ROOT module. // finalize proxy type if ( PyType_Ready( pytype ) < 0 ) return kFALSE; // add proxy type to the given (ROOT) module Py_INCREF( pytype ); // PyModule_AddObject steals reference if ( PyModule_AddObject( module, (char*)name, (PyObject*)pytype ) < 0 ) { Py_DECREF( pytype ); return kFALSE; } // declare success return kTRUE; } //____________________________________________________________________________ int PyROOT::Utility::GetBuffer( PyObject* pyobject, char tc, int size, void*& buf, Bool_t check ) { // Retrieve a linear buffer pointer from the given pyobject. // special case: don't handle character strings here (yes, they're buffers, but not quite) if ( PyBytes_Check( pyobject ) ) return 0; // attempt to retrieve pointer to buffer interface PyBufferProcs* bufprocs = Py_TYPE(pyobject)->tp_as_buffer; PySequenceMethods* seqmeths = Py_TYPE(pyobject)->tp_as_sequence; if ( seqmeths != 0 && bufprocs != 0 #if PY_VERSION_HEX < 0x03000000 && bufprocs->bf_getwritebuffer != 0 && (*(bufprocs->bf_getsegcount))( pyobject, 0 ) == 1 #else && bufprocs->bf_getbuffer != 0 #endif ) { // get the buffer #if PY_VERSION_HEX < 0x03000000 Py_ssize_t buflen = (*(bufprocs->bf_getwritebuffer))( pyobject, 0, &buf ); #else Py_buffer bufinfo; (*(bufprocs->bf_getbuffer))( pyobject, &bufinfo, PyBUF_WRITABLE ); buf = (char*)bufinfo.buf; Py_ssize_t buflen = bufinfo.len; #endif if ( buf && check == kTRUE ) { // determine buffer compatibility (use "buf" as a status flag) PyObject* pytc = PyObject_GetAttr( pyobject, PyStrings::gTypeCode ); if ( pytc != 0 ) { // for array objects if ( PyROOT_PyUnicode_AsString( pytc )[0] != tc ) buf = 0; // no match Py_DECREF( pytc ); } else if ( seqmeths->sq_length && (int)(buflen / (*(seqmeths->sq_length))( pyobject )) == size ) { // this is a gamble ... may or may not be ok, but that's for the user PyErr_Clear(); } else if ( buflen == size ) { // also a gamble, but at least 1 item will fit into the buffer, so very likely ok ... PyErr_Clear(); } else { buf = 0; // not compatible // clarify error message PyObject* pytype = 0, *pyvalue = 0, *pytrace = 0; PyErr_Fetch( &pytype, &pyvalue, &pytrace ); PyObject* pyvalue2 = PyROOT_PyUnicode_FromFormat( (char*)"%s and given element size (%ld) do not match needed (%d)", PyROOT_PyUnicode_AsString( pyvalue ), seqmeths->sq_length ? (Long_t)(buflen / (*(seqmeths->sq_length))( pyobject )) : (Long_t)buflen, size ); Py_DECREF( pyvalue ); PyErr_Restore( pytype, pyvalue2, pytrace ); } } return buflen; } return 0; } //____________________________________________________________________________ std::string PyROOT::Utility::MapOperatorName( const std::string& name, Bool_t bTakesParams ) { // Map the given C++ operator name on the python equivalent. if ( 8 < name.size() && name.substr( 0, 8 ) == "operator" ) { std::string op = name.substr( 8, std::string::npos ); // stripping ... std::string::size_type start = 0, end = op.size(); while ( start < end && isspace( op[ start ] ) ) ++start; while ( start < end && isspace( op[ end-1 ] ) ) --end; op = TClassEdit::ResolveTypedef( op.substr( start, end - start ).c_str(), true ); // map C++ operator to python equivalent, or made up name if no equivalent exists TC2POperatorMapping_t::iterator pop = gC2POperatorMapping.find( op ); if ( pop != gC2POperatorMapping.end() ) { return pop->second; } else if ( op == "*" ) { // dereference v.s. multiplication of two instances return bTakesParams ? "__mul__" : "__deref__"; } else if ( op == "+" ) { // unary positive v.s. addition of two instances return bTakesParams ? "__add__" : "__pos__"; } else if ( op == "-" ) { // unary negative v.s. subtraction of two instances return bTakesParams ? "__sub__" : "__neg__"; } else if ( op == "++" ) { // prefix v.s. postfix increment return bTakesParams ? "__postinc__" : "__preinc__"; } else if ( op == "--" ) { // prefix v.s. postfix decrement return bTakesParams ? "__postdec__" : "__predec__"; } } // might get here, as not all operator methods are handled (new, delete, etc.) return name; } //____________________________________________________________________________ PyROOT::Utility::EDataType PyROOT::Utility::EffectiveType( const std::string& name ) { // Determine the actual type (to be used for types that are not classes). EDataType effType = kOther; G__TypeInfo ti( name.c_str() ); if ( ti.Property() & G__BIT_ISENUM ) return EDataType( (int) kEnum ); std::string shortName = TClassEdit::ShortType( ti.TrueName(), 1 ); const std::string& cpd = Compound( name ); const int mask = cpd == "*" ? kPtrMask : 0; if ( shortName == "bool" ) effType = EDataType( (int) kBool | mask ); else if ( shortName == "char" ) effType = EDataType( (int) kChar | mask ); else if ( shortName == "short" ) effType = EDataType( (int) kShort | mask ); else if ( shortName == "int" ) effType = EDataType( (int) kInt | mask ); else if ( shortName == "unsigned int" ) effType = EDataType( (int) kUInt | mask ); else if ( shortName == "long" ) effType = EDataType( (int) kLong | mask ); else if ( shortName == "unsigned long" ) effType = EDataType( (int) kULong | mask ); else if ( shortName == "long long" ) effType = EDataType( (int) kLongLong | mask ); else if ( shortName == "float" ) effType = EDataType( (int) kFloat | mask ); else if ( shortName == "double" ) effType = EDataType( (int) kDouble | mask ); else if ( shortName == "void" ) effType = EDataType( (int) kVoid | mask ); else if ( shortName == "string" && cpd == "" ) effType = kSTLString; else if ( name == "#define" ) { effType = kMacro; } else effType = kOther; return effType; } //____________________________________________________________________________ const std::string PyROOT::Utility::Compound( const std::string& name ) { // Break down the compound of a fully qualified type name. std::string cleanName = name; std::string::size_type spos = std::string::npos; while ( ( spos = cleanName.find( "const" ) ) != std::string::npos ) { cleanName.swap( cleanName.erase( spos, 5 ) ); } std::string compound = ""; for ( int ipos = (int)cleanName.size()-1; 0 <= ipos; --ipos ) { char c = cleanName[ipos]; if ( isspace( c ) ) continue; if ( isalnum( c ) || c == '_' || c == '>' ) break; compound = c + compound; } return compound; } //____________________________________________________________________________ const std::string PyROOT::Utility::ClassName( PyObject* pyobj ) { // Retrieve the class name from the given python object (which may be just an // instance of the class). std::string clname = ""; PyObject* pyclass = PyObject_GetAttr( pyobj, PyStrings::gClass ); if ( pyclass != 0 ) { PyObject* pyname = PyObject_GetAttr( pyclass, PyStrings::gName ); if ( pyname != 0 ) { clname = PyROOT_PyUnicode_AsString( pyname ); Py_DECREF( pyname ); } else PyErr_Clear(); Py_DECREF( pyclass ); } else PyErr_Clear(); return clname; } //____________________________________________________________________________ const std::string PyROOT::Utility::ResolveTypedef( const std::string& typeName ) { // Helper; captures common code needed to find the real class name underlying // a typedef (if any). G__TypeInfo ti( typeName.c_str() ); if ( ! ti.IsValid() ) return typeName; return ti.TrueName(); } //____________________________________________________________________________ void PyROOT::Utility::ErrMsgCallback( char* msg ) { // Translate CINT error/warning into python equivalent. // ignore the "*** Interpreter error recovered ***" message if ( strstr( msg, "error recovered" ) ) return; // ignore CINT-style FILE/LINE messages if ( strstr( msg, "FILE:" ) ) return; // get file name and line number char* errFile = (char*)G__stripfilename( G__get_ifile()->name ); int errLine = G__get_ifile()->line_number; // ignore ROOT-style FILE/LINE messages char buf[256]; snprintf( buf, 256, "%s:%d:", errFile, errLine ); if ( strstr( msg, buf ) ) return; // strip newline, if any int len = strlen( msg ); if ( msg[ len-1 ] == '\n' ) msg[ len-1 ] = '\0'; // concatenate message if already in error processing mode (e.g. if multiple CINT errors) if ( PyErr_Occurred() ) { PyObject *etype, *value, *trace; PyErr_Fetch( &etype, &value, &trace ); // clears current exception // need to be sure that error can be added; otherwise leave earlier error in place if ( PyROOT_PyUnicode_Check( value ) ) { if ( ! PyErr_GivenExceptionMatches( etype, PyExc_IndexError ) ) PyROOT_PyUnicode_AppendAndDel( &value, PyROOT_PyUnicode_FromString( (char*)"\n " ) ); PyROOT_PyUnicode_AppendAndDel( &value, PyROOT_PyUnicode_FromString( msg ) ); } PyErr_Restore( etype, value, trace ); return; } // else, translate known errors and warnings, or simply accept the default char* format = (char*)"(file \"%s\", line %d) %s"; char* p = 0; if ( ( p = strstr( msg, "Syntax Error:" ) ) ) PyErr_Format( PyExc_SyntaxError, format, errFile, errLine, p+14 ); else if ( ( p = strstr( msg, "Error: Array" ) ) ) PyErr_Format( PyExc_IndexError, format, errFile, errLine, p+12 ); else if ( ( p = strstr( msg, "Error:" ) ) ) PyErr_Format( PyExc_RuntimeError, format, errFile, errLine, p+7 ); else if ( ( p = strstr( msg, "Exception:" ) ) ) PyErr_Format( PyExc_RuntimeError, format, errFile, errLine, p+11 ); else if ( ( p = strstr( msg, "Limitation:" ) ) ) PyErr_Format( PyExc_NotImplementedError, format, errFile, errLine, p+12 ); else if ( ( p = strstr( msg, "Internal Error: malloc" ) ) ) PyErr_Format( PyExc_MemoryError, format, errFile, errLine, p+23 ); else if ( ( p = strstr( msg, "Internal Error:" ) ) ) PyErr_Format( PyExc_SystemError, format, errFile, errLine, p+16 ); else if ( ( p = strstr( msg, "Warning:" ) ) ) // either printout or raise exception, depending on user settings PyErr_WarnExplicit( NULL, p+9, errFile, errLine, (char*)"CINT", NULL ); else if ( ( p = strstr( msg, "Note:" ) ) ) fprintf( stdout, "Note: (file \"%s\", line %d) %s\n", errFile, errLine, p+6 ); else // unknown: printing it to screen is the safest action fprintf( stdout, "Message: (file \"%s\", line %d) %s\n", errFile, errLine, msg ); } //____________________________________________________________________________ void PyROOT::Utility::ErrMsgHandler( int level, Bool_t abort, const char* location, const char* msg ) { // Translate ROOT error/warning to python. // initialization from gEnv (the default handler will return w/o msg b/c level too low) if ( gErrorIgnoreLevel == kUnset ) ::DefaultErrorHandler( kUnset - 1, kFALSE, "", "" ); if ( level < gErrorIgnoreLevel ) return; // turn warnings into python warnings if (level >= kError) ::DefaultErrorHandler( level, abort, location, msg ); else if ( level >= kWarning ) { // either printout or raise exception, depending on user settings PyErr_WarnExplicit( NULL, (char*)msg, (char*)location, 0, (char*)"ROOT", NULL ); } else ::DefaultErrorHandler( level, abort, location, msg ); } //____________________________________________________________________________ Long_t PyROOT::Utility::InstallMethod( G__ClassInfo* scope, PyObject* callback, const std::string& mtName, const char* rtype, const char* signature, void* func, Int_t npar, Long_t extra ) { // Install the given CINT-based method (typically callbacks). static Long_t s_fid = (Long_t)PyROOT::Utility::InstallMethod; ++s_fid; // Install a python callable method so that CINT can call it if ( ! PyCallable_Check( callback ) ) return 0; // create a return type (typically masked/wrapped by a TPyReturn) for the method G__linked_taginfo pti; pti.tagnum = -1; pti.tagtype = 'c'; std::string tagname; // used as a buffer if ( rtype ) { tagname = rtype; if ( tagname == "TPyReturn" ) { // special case: setup a pseudo-inherited class to allow callbacks to work if ( scope ) tagname += scope->Fullname(); tagname += mtName; G__linked_taginfo tpy_pti = { "TPyReturn", 'c', -1 }; pti.tagname = tagname.c_str(); G__inheritance_setup( G__get_linked_tagnum( &pti ), G__get_linked_tagnum( &tpy_pti ), 0, 1, 1 ); } } else { const char* cname = scope ? scope->Fullname() : 0; tagname = cname ? std::string( cname ) + "::" + mtName : mtName; } pti.tagname = tagname.c_str(); int tagnum = G__get_linked_tagnum( &pti ); // creates entry for new names if ( scope ) { // add method to existing scope G__MethodInfo meth = scope->AddMethod( pti.tagname, mtName.c_str(), signature, 0, 0, func ); } else { // for free functions, add to global scope and add lookup through tp2f // setup a connection between the pointer and the name (only the interface method will be // called in the end, the tp2f must only be consistent: s_fid is chosen to allow the same // C++ callback to serve multiple python objects) Long_t hash = 0, len = 0; G__hash( mtName.c_str(), hash, len ); G__lastifuncposition(); G__memfunc_setup( mtName.c_str(), hash, (G__InterfaceMethod)func, tagnum, tagnum, tagnum, 0, npar, 0, 1, 0, signature, (char*)0, (void*)s_fid, 0 ); G__resetifuncposition(); // setup a name in the global namespace (does not result in calls, so the signature does // not matter; but it makes subsequent GetMethod() calls work) G__MethodInfo meth = G__ClassInfo().AddMethod( mtName.c_str(), mtName.c_str(), signature, 1, 0, func ); } // and store callback Py_INCREF( callback ); std::map< int, CallInfo_t >::iterator old = s_PyObjectCallbacks.find( tagnum ); if ( old != s_PyObjectCallbacks.end() ) { PyObject* oldp = old->second.first; Py_XDECREF( oldp ); } s_PyObjectCallbacks[ tagnum ] = std::make_pair( callback, extra ); // hard to check result ... assume ok return s_fid; } //____________________________________________________________________________ PyObject* PyROOT::Utility::GetInstalledMethod( int tagnum, Long_t* extra ) { // Return the CINT-installed python callable, if any. CallInfo_t cinfo = s_PyObjectCallbacks[ tagnum ]; if ( extra ) *extra = cinfo.second; return cinfo.first; } //____________________________________________________________________________ PyObject* PyROOT::Utility::PyErr_Occurred_WithGIL() { // Re-acquire the GIL before calling PyErr_Occurred() in case it has been // released; note that the p2.2 code assumes that there are no callbacks in // C++ to python (or at least none returning errors). #if PY_VERSION_HEX >= 0x02030000 PyGILState_STATE gstate = PyGILState_Ensure(); PyObject* e = PyErr_Occurred(); PyGILState_Release( gstate ); #else if ( PyThreadState_GET() ) return PyErr_Occurred(); PyObject* e = 0; #endif return e; } //____________________________________________________________________________ namespace { static int (*sOldInputHook)() = NULL; static PyThreadState* sInputHookEventThreadState = NULL; static int EventInputHook() { // This method is supposed to be called from CPython's command line and // drives the GUI. PyEval_RestoreThread( sInputHookEventThreadState ); gSystem->ProcessEvents(); PyEval_SaveThread(); if ( sOldInputHook ) return sOldInputHook(); return 0; } } // unnamed namespace PyObject* PyROOT::Utility::InstallGUIEventInputHook() { // Install the method hook for sending events to the GUI if ( PyOS_InputHook && PyOS_InputHook != &EventInputHook ) sOldInputHook = PyOS_InputHook; sInputHookEventThreadState = PyThreadState_Get(); PyOS_InputHook = (int (*)())&EventInputHook; Py_INCREF( Py_None ); return Py_None; } PyObject* PyROOT::Utility::RemoveGUIEventInputHook() { // Remove event hook, if it was installed PyOS_InputHook = sOldInputHook; sInputHookEventThreadState = NULL; Py_INCREF( Py_None ); return Py_None; }